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Preface to the
Second Revised Edition

This book has been revised exhaustively according to the global demands  of the students.
Attention has been taken to add minor steps between two unmanageable lines where essential so
that the students can understand the subject matter without mental tire.

A number of questions have been added in this edition besides theoretical portion wherever
necessary in the book. Latest question papers are fully solved and added in their respective units.

Literal errors have also been rectified which have been accounted and have come to our
observation. Ultimately the book is a gift to the students which is now error free and user- friendly.

Constructive suggestions, criticisms from the  students and the teachers are always welcome
for the improvement of this book.
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Some Useful Formulae

1.1.1.1.1. sin ix = i sin hx

2.2.2.2.2. cos ix = cos hx

3.3.3.3.3. sin x = 
e e

i

ix ix− −

2

4.4.4.4.4. cos x = 
e eix ix+ −

2

5.5.5.5.5. Sin h2x = 
1
2

 (cosh 2x – 1)

6.6.6.6.6. cos h2x = 
1
2

 (cosh 2x + 1)

7.7.7.7.7. a dx
a

a
a ax

x

= ≠ >z log
,1 0

8.8.8.8.8. sin coshaxdx
a

hax=z 1

9.9.9.9.9. cos sinhaxdx
a

hax=z 1

10.10.10.10.10. tan log coshaxdx
a

hax=z 1

11.11.11.11.11.
1

2 2

1

a x
dx

x
a

arc
x
a−

= =−z sin sin

12.12.12.12.12.
1

2 2

2 2

x a
dx x x a

−
= + −z log

13.13.13.13.13.
1 1

2 2
1

x a
dx

a
x
a

arc
x
a+

= =−z tan tan

14.14.14.14.14. a x dx
x

a x
a x

a
2 2 2 2

2
1

2 2
− = − + −z sin

15.15.15.15.15. e bx dx
e

a b
ax

ax

sin =
+z 2 2  (a sin bx – b cos bx)

16.16.16.16.16. e bx dx
e

a b
ax

ax

cos =
+z 2 2  (a cos bx + b sin bx)

17.17.17.17.17. sec logax dx
a

=z 1
 |sec ax + tan ax|



18.18.18.18.18. cosec ax dx
a

=z 1
log  |cosec ax – cot ax|

19.19.19.19.19. sin x = x
x x− +

3 5

3 5
......

20.20.20.20.20. cos x = 1
2 4

2 4

− +x x
........

21.21.21.21.21. tan x = x
x

x x+ + − +
3

5 7

3
2

15
17
315

........

22.22.22.22.22. log (1 + x) = x
x x x− + − +

2 3 4

2 3 4
........

23.23.23.23.23. log (1 – x) = − − − −x
x x2 3

2 3
.........

24.24.24.24.24. sin hx = x
x x+ + +

3 5

3 5
........ .

25.25.25.25.25.
d

dx
ax  = ax loge a

26.26.26.26.26.
d

dx
x

x
cos− = −

−
1

2

1

1

27.27.27.27.27.
d

dx
x

x
cot− = −

+
1

2
1

1

28.28.28.28.28.
d

dx
x

x x
cosec− = −

−
1

2

1

1

29.29.29.29.29.
d

dx
x

x
ea alog log=

1

30.30.30.30.30.
d

dx
x
a

a

a x
tan .− =

+
1

2 2
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UNIT �

Differential Calculus-I

1.0 INTRODUCTION

Calculus is one of the most beautiful intellectual achievements of human being. The mathematical
study of change motion, growth or decay is calculus. One of the most important idea of differential
calculus is derivative which measures the rate of change of a given function. Concept of derivative
is very useful in engineering, science, economics, medicine and computer science.

The first order derivative of y denoted by 
dy
dx

, second order derivative, denoted by 
d y

dx

2

2

third order derivative by 
d y

dx

3

3  and so on. Thus by differentiating a function y = f(x), n times,

successively, we get the nth order derivative of y denoted by 
d y

dx

n

n  or Dny or yn(x). Thus, the process

of finding the differential co-efficient of a function again and again is called ����������
��		�
���������

1.1  nth DERIVATIVE OF SOME ELEMENTARY FUNCTIONS

��� ����
� ��������� ���� �� ���

Let y = (ax + b)m

y1 = ma (ax + b)m–1

y2 = m (m–1)a2 (ax + b)m–2

..... ...... ...................................

..... ...... ...................................
yn = m(m–1) (m–2) ... (m – n – 1) an (ax + b)m–n

���� �� When m is positive integer, then

yn =
m m m n m n

m n
( – )...( – + )( – )...1 1 3 2 1

3 2 1
⋅ ⋅

⋅ ⋅( – )...
 an(ax + b)m–n

⇒ yn =
d

dx
ax b

m

m n
a ax b

n

n
n m nm( ) ( )+ =

−
+ −

1
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���� ���� When m = n =  +ve integer

yn =
n

a ax bn

0
0( )+  = n an  ⇒   

d

dx
ax b n a

n

n
n n( )+ =

���� ����� When m = –1, then

y = (ax + b)–1 = 
1

( )ax b+
∴ yn = (–1) (–2) (–3) ... (–n) an (ax + b)–1–n

⇒
d

dx ax b

n

n

1
+

���
��� =

( )

( )

−

+ +

1
1

n n

n

n a

ax b

���� ���� ���
����� ���� When y = log (ax + b), then

y1 =
a

ax b+
Differentiating (n–1) times, we get

yn = an
d
dx

ax b
n

n

−

−
−+

1

1
1( )

Using case III, we obtain

⇒
d

dx
ax b

n

n log( )+� � =
( ) ( )

( )

− −

+

−1 11n n

n

n a

ax b

 �� !"#������$� ��������

(i) Consider y = amx

y1 = mamx. loge a

y2 = m2amx (loge a)2

...................................

...................................

yn = mn amx (loge a)n

(ii) Consider  y = emx

Putting a = e in above yn = mnemx

%�� &
��������
��� ���������� ���� ���� �� ��� �
� ���� ���� �� ��

Let y = cos (ax + b), then

y1 = – a sin (ax + b) = a cos ax b+ +	



�
�

π
2

y2 = – a2 cos (ax + b) = a2 cos ax b+ +	



�
�

2
2
π

y3 = + a3 sin (ax + b) = a3 cos ax b+ +	



�
�

3
2
π

.................................................................................

.................................................................................
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yn = d

dx
ax b

n

n cos ( )+  = a ax b
nn cos + +	



�
�

π
2

Similarly, yn =
d

dx
ax b

n

n
sin( )+  = a ax b

nn sin + +	



�
�

π
2

'�� �
�(���� ���������� ���� ���� ���� �� ���� �
� ���� ���� ���� �� ���

Consider the function y = eax sin (bx + c)
y1 = eax·b cos (bx + c) + aeax sin (bx + c)

= eax [b cos (bx + c) + a sin (bx + c)]
To rewrite this in the form of sin, put

a = r cos φ, b = r sin φ, we get
y1 = eax [r sin φ cos (bx + c) + r cos φ sin (bx + c)]
y1 = reax sin (bx + c + φ)

Here, r = a b2 2+ and φ = tan–1(b/a)

Differentiating again w.r.t. x, we get
y2 = raeax sin (bx + c + φ) + rbeax cos (bx + c + φ)

Substituting for a and b, we get
y2 = reax. r cos φ sin (bx + c + φ) + reax r sin φ cos (bx + c+ φ)
y2 = r2eax [cos φ sin (bx + c + φ) + sin φ cos (bx + c + φ)]

= r2 eax sin (bx + c + φ + φ)
∴ y2 = r2 eax sin (bx + c+ 2φ)
Similarly, y3 = r3eax sin (bx + c + 3φ)

......................................................

yn = d

dx
e bx c

n

n
ax sin( )+  = r e bx c nn ax sin ( )+ + φ

In similar way, we obtain

yn =
d
dx

e bx c
n

n
ax cos( )+  = r e bx c nn ax cos ( )+ + φ

!"�#$�� ��� Find the nth derivative of 
1

1 5 6 2− +x x

��$�� Let y =
1

1 5 6 2− +x x
 = 

1
2 1 3 1( )( )x x− −

or y =
2

2 1
3

3 1x x−
−

− (By Partial fraction)

∴ yn = 2 
d

dx

n

n  (2x – 1)–1 – 3 
d

dx

n

n  (3x – 1)–1



4 A TEXTBOOK OF ENGINEERING MATHEMATICS—I

= 2 
( )

( )

−

−



�
�
�

�

�
�
�+

1 2

2 1 1

n n

n

n

x
 – 3 

( )

( )

−

−



�
�
�

�

�
�
�+

1 3

3 1 1

n n

n

n

x
    As

d
dx

ax b
n a

ax b

n

n

n n

n( )
( )

( )
+ =

−

+
−

+
1

1

1

or yn = ( )
( ) ( )

−
−

−
−


�
�

�
�
�

+

+

+

+1
2

2 1
3

3 1

1

1

1

1
n

n

n

n

nn
x x

.

!"�#$��  �� Find the nth derivative of eax cos2 x sin x.

��$�� Let y = eax cos2 x sin x = eax 
( cos )1 2

2
+ x

  sin x

=
1
2

1
2 2

2 2e x e x xax axsin ( cos sin )+
×

=
1
2

1
4

3e x e x xax axsin sin( ) sin+ −� �

or y =
1
4

1
4

3e x e xax axsin sin+

∴ yn = 1
4

1
4

31r e x n r e x nn ax n axsin ( ) sin ( )+ + +φ θ .

where r = a2 1+ ; tan φ = 1/a

and r1 = a2 9+ ; tan θ = 3/a.

!"�#$�� %�� If y = tan–1 
2

1 2

x
x− , find yn. (U.P.T.U., 2002)

��$�� We have y = tan−

−
1

2

2
1

x
x

Differentiating y w.r.t. x, we get

y1 =
1

1
2

1

2
1

2

2 2

+
−

	



�
�

⋅
−

	

�

�
��x

x

d
dx

x
x

 =  
( ) ( )

( )
1

1 2 4

2 1 4
1

2 2

4 2 2

2 2

2 2

−
+ − +

⋅ − +
−

x

x x x

x x
x� �

y1 =
2 1

1

2

1

22

2 2 2
( )

( ) ( ) ( )( )
+

+
=

+
=

+ −
x

x x x i x i

y1 =
1 1 1
i x i x i−

−
+


��

�
�� , (by Partial fractions)

Differentiating both sides (n–1) times w.r. to ‘x’, we get

yn =
1 1 1 1 11 1

i

n

x i

n

x i

n

n

n

n

( ) ( )

( )

( ) ( )

( )

− −

−
−

− −

+



�
�
�

�

�
�
�

− −

=
( ) ( )

( ) ( )
− − −

− − − + −1 1 1n n

i
x i n x i n

=
( ) ( )

(cos sin ) (cos sin )
− −

− − +
−

− − − −1 11n
n n n n

n

i
r i r iθ θ θ θ

(where x = r cos θ, 1 = r sin θ)
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=
( ) ( )

cos sin cos sin
− −

+ − +
− −1 11n nn r

i
n i n n i nθ θ θ θ

yn = 2(–1)n–1 n −1  r–n sin nθ, where r = x2 1+

θ = tan–1 
1
x

	



�
� .

!"�#$�� '�� If y = x log x
x

−
+

1
1

. Show that

yn = (–1)n–2 n −2  
x n

x

x n

xn n
−
−

−
+
+


��

�
��( ) ( )1 1 (U.P.T.U., 2002)

��$�� We have y = x log 
x
x

−
+

1
1

 = x [log(x – 1) – log (x + 1)]

Differentiating w.r. to ‘x’, we get

y1 = log (x – 1) – log (x + 1) + x 
1

1
1

1x x−
−

+

��

�
��

= log (x – 1) – log (x + 1) + 1
1

1
1

1
1

+
−

	



�
� + − +

+
	



�
�x x

or y1 = log (x –1) – log (x + 1) + 
1

1
1

1x x−
+

+
Differentiating (n–1) times with respect to �, we get

yn =
d

dx
x

d

dx
x

d

dx
x

d

dx
x

n

n

n

n

n

n

n

n

−

−

−

−

−

−
−

−

−
−− − + + − + +

1

1

1

1

1

1
1

1

1
11 1 1 1log ( ) log ( ) ( ) ( )

=
d

dx

d
dx

x
d

dx

d
dx

x
n

n

n

n

−

−

−

−−���
���− +���

���
2

2

2

21 1log( ) log( ) + 
( )

( )

( )

( )

− −
−

+
− −

+

− −1 1

1

1 1

1

1 1n n

n

n

x

n

xn

=
d

dx x
d

dx x

n

x

n

x

n

n

n

n

n

n

n

n

−

−

−

−

− −

−
	



�
� −

+
	



�
� +

− −
−

+
− −

+

2

2

2

2

1 11
1

1
1

1 1

1

1 1

1

( )

( )

( )

( )

=
( )

( )

( )

( )

( ) ( )

( )

− −

−
−

− −

+
+

− − −

−

−

−

−

−

−1 2

1

1 2

1

1 1 2

1

2

1

2

1

1n

n

n

n

n

n

n

x

n

x

n n

x
 + 

( ) ( )

( )

− − −

+

−1 1 2

1

1n n n

x n

= ( )
( ) ( )

( )
( )

( )
( )

− −
−

−
−

+
+

−
−

−
−

−
+


��

�
��

−1 2
1

1
1

1
1

1
1

1
2n

n n n nn
x

x

x

x

n

x

n

x

= ( )
( ) ( )

− −
−
−

−
+
+


��

�
��

−1 2
1 1

2n
n nn

x n

x

x n

x .

!"�#$�� )�� Find yn (0) if y = 
x

x

3

2 1−
.

��$�� � We have y =
x

x
x

x
x x x

x x x

3

2

3

2

2

21
1 1

1
1 1

1 1
1

1−
= − +

−
= − + +

− +
+

−
( )( )

( )( )
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or y =
x x

x x x

2 1
1

1
1 1

+ +
+

+
− +( ) ( )( )

y =
x

x x x

2 1 1
1

1
1

1 1
− +
+

+ +
− +� � � �

y = x
x x x

+
+

+
−

−
+


��

�
��

1
1

1
2

1
1

1
1

or y = x + 
1
2

1
1

1
1x x−

+
+


��

�
��

∴ yn = 0 + 
1
2

1

1

1

11 1

( )

( )

( )

( )

−

−
+

−

+



�
�
�

�

�
�
�+ +

n

n

n

n

n

x

n

x

or yn =
( )

( ) ( )

−

−
+

+

��

�
��+ +

1

2
1
1

1
11 1

n

n n

n

x x

At x = 0, yn (0) =
( )

( ) ( )

−

−
+

��
�
��+ +

1

2
1

1
1

11 1

n

n n

n

When n is odd, yn(0) =
( )−

+ = −
1

2
1 1

n n
n

When n is even, yn(0) =
( )−

− + =
1

2
1 1 0

n n
.

EXERCISE 1.1

� � If y = x
x x

2

21 2( ) ( )− +
, find nth derivative of y. (U.P.T.U., 2002)

*���  y
n

x

n

x

n

x
n

n

n

n

n

n

n=
− +

−
+

−

−
+

−

+



�
�
�

�

�
�
�+ + +

( )

( )

( )

( )

( )

( )

1 1

3 1

5 1

9 1

4 1

9 22 1 1

 � Find the nth derivative of 
x

x a x b

2

( )( )− −
. *���  

( )

( ) ( ) ( )

−
− −

−
−


�
�

�
�
�



�
�
�

�

�
�
�+ +

1 2

1

2

1

n

n n

n

a b
a

x a

b

x b

% � Find the nth derivative of tan–1 
1
1

+
−


��

�
��

x
x

.

[*��� ( ) sin sin− −−1 11n nn nθ θ  where θ = cot–1x ]

' � If y = sin3 x, find yn. *���  
3
4 2

1
4

3 3
2

sin . . sinx n x nn+	



�
� − +	



�
�


��

�
��

π π

) � Find nth derivative of tan–1 
x
a

	



�
� . *���  − −− −1 11� �n n nn a nsin sinθ θ
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+ � Find yn, where y = ex.x. *���  e x nx +� �

, � Find yn, when y = 
1
1

−
+

x
x

. *���  
2 1

1 1

( )

( )

−

+



�
�
�

�

�
�
�+

n

n

n

x

- � Find nth derivative of log x2. *���  − − ⋅− −1 1 21� �n nn x

. � Find yn, y = ex sin2 x. *���  
e

x n
x

n

2
1 5 22 1

2− +

�
�

�
�
�−/ cos( tan )

�/ � If y = cos x · cos 2x · cos 3x find yn.

[0����� cos x · cos 2x · cos 3x = 
1
4

6 4 2 1(cos cos cos )x x x+ + +

*���  
1
4

6 6
2

4 4
2

2 2
2

n n nx n x n x ncos cos cos+	



�
� + +	



�
� + +	



�
�


��

�
��


��

�
��

π π π

1.2  LEIBNITZ'S* THEOREM

���������� If u and v be any two functions of x, then

Dn (u.v) = nc0  D
n (u).v + nc1D

n–1(u). D(v) + nc2 D
n–2(u).D2 (v) + ...

 + ncr D
n–r (u).Dr(v) + ... + ncn u. Dn v  ...(i)

(U.P.T.U., 2007)
�
��	��This theorem will be proved by Mathematical induction.
Now, D (u.v) = D (u).v + u.D(v) = 1c0 D (u).v + 1c1 u.D(v) ...(ii)

This�shows that the theorem is true for n = 1.
Next, let us suppose that the theorem is true for, n = m from (i), we have

Dm (u.v) = mc0 D
m(u).v + mc1 D

m–1 (u) D (v) + mc2 D
m–2(u) D2 (v) + ... + mcr

Dm–r(u) Dr (v) + ... + mcm u Dm(v)
Differentiating w.r. to x, we have

Dm+1 (uv) = mc0 D u v D u D v c D u D v D u D vm m m m m+ −⋅ + ⋅ + +1
1

1 2( ) ( ) ( ) ( ) ( ) ( ) ( )� � � �
+ mc2 D u D v D u D v c D u D v D u D vm m m

r
m r r m r r− − − + − ++ + + +1 2 2 3 1 1( ) ( ) ( ). ( ) ... ( ) ( ) ( )� � � �

+ ..... + mcm D u D v uD vm m( ) ( ) ( )⋅ + +1� �
But from Algebra we know that mcr + mcr+1 = m+1cr+1 and mc0 = m+1c0 = 1

∴ Dm+1(uv)  = m m m m m m m mc D u v c c D u D v c c D u D v+ + −⋅ + + ⋅ + + ⋅1
0

1
0 1 1 2

1 2( ) ( ) ( )� � � �
+ ... + m

r
m

r
m r r m

m
mc c D u D v c u D v+ ⋅ + + ⋅+

− + +
+

+
1

1 1
1

1� � ( ) ( ) ... ( )

As m
m

m
mc c= =+

+
1

1 1� �
1 2���	
��(� 3�$$��� ���4���5� ��+'+6�,�+�� was born Leipzig (Germany). He was Newton’s rival in

the invention of calculus. He spent his life in diplomatic service. He exhibited his calculating machine in
1673 to the Royal society. He was linguist and won fame as Sanskrit scholar. The theory of determinants
is said to have originated with him in 1683. The generalization of Binomial theorem into multinomial
theorem is also due to him. His works mostly appeared in the journal ‘Acta eruditorum’ of which he
was editor-in-chief.
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⇒ Dm+1(uv) = m m m m m mc D u v c D u D v c D u D v+ + + + −⋅ + ⋅ + ⋅ +1
0

1 1
1

1
2

1 2( ) ( ) ( ) ( ) ( ) ...

+ ⋅ + + ⋅+
+

− + +
+

+m
r

m r r m
m

mc D u D v c u D v1
1

1 1
1

1( ) ( ) ... ( ) ...(iii)

Therefore, the equation (iii) shows that the theorem is true for n = m + 1 also. But from (2)
that the theorem is true for n = 1, therefore, the theorem is true for (n = 1 + 1) i.e., n = 2, and so
for n = 2 + 1 = 3, and so on. Hence, the theorem is true for all positive integral value of n.

!"�#$�� ��� If y1/m + y–1/m = 2x, prove that
 (x2 – 1) yn+2 + (2n + 1) xyn+1 + (n2 – m2) yn = 0. (U.P.T.U., 2007)

��$�� Given  y1/m + 
1
1y m/ = 2x

⇒ y2/m – 2xy1/m + 1 = 0
or (y1/m)2 – 2x(y1/m) + 1 = 0

⇒ z2 – 2xz + 1 (y1/m = z)

∴ z =
2 4 4

2
1

2
2x x

x x
± −

= ± −

⇒ y1/m = x x± −2 1  ⇒  y = x x
m

± −2 1 ...(i)

Differentiating equation (i) w.r.t. x, we get

y1 = m x x
x

x

m x x

x

m
m

± − ±
−


��

�
��

= ± −

−

−
2

1

2

2

2
1 1

2

2 1

1

1

⇒ y1 =
my

x2 1−
 ⇒  y1 x my2 1− =

or y1
2 (x2 – 1) = m2y2 ...(ii)

Differentiating both sides equation (ii) w.r.t. x, we obtain
2y1y2(x

2 – 1) + 2xy2
1 = 2m2 yy1

⇒ y2 (x2 – 1) + xy1 – m2y = 0
Differentiating n times by Leibnitz's theorem w.r.t. x, we get

Dn (y2) · (x
2 – 1) + nc1 D

n–1y2·D
2(x2 – 1) + nc2 D

n−2 y2
 D2 (x2 − 1) + Dn (y1)x + nc1 D

n–1 (y1) Dx–m2yn
= 0

⇒   yn+2 (x2 – 1) + nyn+1· 2x + 
n n( )−1

2
 yn · 2 + yn+1 · x + nyn – m2yn = 0

⇒   (x2 – 1)yn+2 + (2n + 1) xyn+1 + (n2 – n + n – m2)yn = 0
⇒   (x2 – 1) yn+2 + (2n + 1) xyn+1 (n2 – m2) yn = 0.   0����� #
���(�

!"�#$��  �� Find the nth derivative of ex log x.
��$��Let u = ex and v = log x

Then  Dn (u) = ex and Dn (v) = 
( )− −−1 11n

n

n

x
D ax b

n

ax b
n

n

n( )
( )

( )
+ =

−

+
−

+
1

1

1
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By Leibnitz’s theorem, we have
Dn (ex log x) = Dnex log x + nc1 D

n–1 (ex) D(log x) + nc2 D
n–2 (ex)D2 (log x)

+ ... + ex Dn (log x)

= ex· log x + nex· 
1 1

2
1
2x

n n
e

x
x+ − −	
�

�
��

( )
 + ... + ex 

( )− −−1 11n

n

n

x

⇒ Dn (ex log x) = ex log
( )

...
( )

x
n
x

n n

x

n

x

n

n+ −
−

+ +
− −

�
��

�
�
��

−
1

2

1 1
2

1

.

!"�#$�� %�� Find the nth derivative of x2 sin 3x.
��$�� �Let u = sin 3x and v = x2

∴ Dn(u) = Dn (sin 3x) = 3n sin 3
2

x
n

+	



�
�

π

D(u) = 2x, D2 (v) = 2, D3 (v) = 0
By Leibnitz’s theorem, we have

Dn (x2 sin 3x) = Dn (sin 3x)x2 + nc1 D
n–1 (sin 3x) · D (x2) + nc2 Dn–2(sin 3x) · D2(x2)

= 3n sin 3
2

x
n+	



�
�

π · x2 + n3n–1 sin 3
1

2
x

n+ −	

�

�
��

π
· 2x

+ 
n n( )−1

2
 · 3n–2 sin 3

2
2

2x
n+ −	


�
�
�� ⋅π

= 3nx2 sin 3
2

x
n+	



�
�

π
� 2nx · 3n-1 sin 3

1
2

x
n+ −	


�
�
��

π

+ 3n−2n(n−1) · sin 3
2

2
x

n+ −	

�

�
��

π .

!"�#$�� '�� If y = x log (1 + x), prove that

yn =
( ) ( )

( )

− − +

+

−1 2

1

2n

n

n x n

x
. (U.P.T.U., 2006)

��$�� �Let u = log (1 + x), v = x

Dn (u) =
d

dx
x

n

n log ( )1 +  = 
d
dx

d
dx

x
n

n

−

− +	



�
�

1

1 1log ( )

=
d

dx x

n

n

−

− ⋅
+

1

1

1
1

 = 
d

dx
x

n

n

−

−
−+( )

1

1
11

⇒ Dn (u) =
( )

( )

− −

+

−1 1

1

1n

n

n

x
  and D(v) = 1, D2(v) = 0

By Leibnitz’s theorem, we have

yn = Dn (x log (1 + x) = Dn (log (1 + x)) x + nc1 D
n–1 (log (1 + x)) Dx

= x
( )

( )

( )

( )

− −

+
+

− −

+

− −

−

1 1

1

1 2

1

1 2

1

n

n

n

n

n

x

n n

x
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⇒ yn = (–1)n–2 n −2  
− −

+
+ +

+

��

�
��

x n
x

n x
xn n

( )
( )

( )
( )

1
1

1
1

= (–1)n–2 n −2  
− + + +

+

��

�
��

xn x xn n

x n( )1

= (–1)n–2 n −2  
x n

x n
+
+


��

�
��( )1 . 0����� #
���(�

!"�#$�� )�� If y = a cos (log x) + b sin (log x). Show that

x2y2 + xy1 + y = 0
and x2yn+2 + (2n +1) xyn+1 + (n2 + 1) yn = 0. (U.P.T.U., 2003)

��$�� � Given y = a cos (log x) + b sin (log x)

∴ y1 = – a sin (log x) 
1
x

	



�
� + b cos (log x) 

1
x

	



�
�

or xy1 = – a sin (log x) + b cos (log x)

Again differentiating w.r.t. x, we get

xy2 + y1 = – a cos (log x) 
1
x

	



�
�  – b sin (log x) 

1
x

	



�
�

⇒ x2y2 + xy1 = – {a cos (log x) + b sin (log x)} = – y
⇒ x2y2 + xy1 + y = 0. � 0����� #
���(� ...(i)

Differentiating (i) n times, by Leibnitz’s theorem, we have

   yn+2 · x2 + n yn+1 · 2x + 
n n( )−1

2
 yn · 2 + yn+1 · x + nyn + yn = 0

⇒    x2yn+2 + (2n + 1) xyn+1 + (n2 – n + n + 1) yn = 0

⇒    x2yn+2 + (2n + 1) xyn+1 + (n2 + 1) yn = 0. � � � � � 0����� #
���(�

!"�#$�� +�� If y = (1 – x)–α e–αx, show that
    (1 – x)yn+1 – (n + αx) yn – nαyn–1 = 0.
��$��  Given y = (1 – x)–α. e–αx

Differentiating w.r.t. x, we get
y1 = α (1 – x)–α–1 e–αx – (1 – x)–α e–αx·α

y1 = (1 – x)–α e–αx ·α 
1

1
1

−
−

��
�
��x

 = yα 
x

x1 −

��

�
��

= y1 (1 – x) = αxy

Differentiating n times w.r.t. x, by Leibnitz’s theorem, we get
yn+1 (1 – x) – nyn = αyn· x + nαyn–1

⇒   (1 – x)yn+1 – (n + αx) yn – nαyn–1 = 0.     0����� #
���(�

!"�#$�� ,�� If cos–1 
y
b

	

�

�
��  = log 

x
m

m	



�
� , prove that x2yn+2 + (2n + 1)xyn+1 + (n2 + m2) yn = 0.

��$�� �We have cos–1 
y
b

	

�

�
��  = log 

x
m

m	



�
� = m log 

x
m
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⇒ y = b cos m
x
m

log	



�
�

On differentiating, we have

y1 = – b sin m
x
m

log	



�
� · 

m
x m

2 1
⋅

⇒ xy1 = – mb sin m
x
m

log	



�
�

Again differentiating w.r.t. x, we get

xy2 + y1 = – mb cos m
x
m

log	



�
� m ·

1
x
m

·
1
m

x (xy2 + y1) = – m2b cos m
x
m

log	



�
�  = –m2y

or  x2y2 + xy1 + m2y = 0
Differentiating n times with respect to x, by Leibnitz’s theorem, we get

  yn+2 · x2 + nyn+1 · 2x + n n( )−1
2

· 2yn + xyn+1 + nyn + m2yn = 0

⇒  x2yn+2 + (2n + 1) xyn+1 + (n2 – n + n + m2)yn = 0
⇒   x2yn+2 + (2n + 1) xyn+1 + (n2 + m2) yn = 0. 0����� #
���(�

!"�#$�� -�� If y = (x2 – 1)n, prove that (U.P.T.U., 2000, 2002)
 (x2 – 1)yn+2 + 2xyn+1 – n (n+1)yn = 0

Hence, if  Pn = 
d

dx

n

n  (x2 – 1)n, show that 
d

dx
x

dP
dx

n( – )1 2���
��� + n(n + 1) Pn = 0.

��$�� Given y = (x2 – 1)n

Differentiating w.r. to x, we get

y1 = n(x2 – 1)n–1. 2x = 
2 1

1

2

2

nx x

x

n( )

( )

−
−

⇒ (x2 – 1) y1 = 2nxy

Again differentiating, w.r.t. x, we obtain
(x2 – 1) y2 + 2xy1 = 2nxy1 + 2ny

Now, differentiating n times, w.r.t. x by Leibnitz's theorem

(x2 – 1)yn+2 + 2nxyn+1 + 
2 1

2
n n( )−

yn + 2xyn+1 + 2nyn = 2nxyn+1 + 2n2yn + 2nyn

or (x2 – 1)yn+2 + 2xyn+1 (n+1 – n) + (n2 – n + 2n – 2n2 – 2n)yn = 0
or (x2 – 1) yn+2 + 2xyn+1 – (n2 + n)yn = 0

⇒ (x2 – 1) yn + 2 + 2xyn+1 − n(n + 1) yn = 0. � 0����� #
���(� ...(i)
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�����(� #
��� Let y = (x2 – 1)n

∴ Pn = d

dx

n

n
y = yn

Now

d
dx

x
d
dx

yn( )1 2−���
��� =

d
dx

x yn( )1 2
1− +� �

= (1 – x2)yn+2 – 2xyn+1 = – ( )x y xyn n
2

2 11 2− ++ +

⇒
d

dx
x

d
dx

Pn( )1 2−���
��� = – n n yn( )+1 [Using equation (i)]

or
d

dx
x

dP
dx

n( )1 2−���
���  + n (n + 1)yn = 0.   0����� #
���(�

!"�#$�� .�� Find the nth derivative of y = xn–1 log x at x = 1
2

.

��$�� � Differentiating

y1 = (n – 1) xn–1–1 log x + xn–1 
1
x

or y1 =
( ) logn x x

x
x

x

n n− ⋅
+

− −1 1 1

 ⇒  xy1 = (n – 1)y + xn–1

Differentiating (n–1) times by Leibnitz's theorem, we get

xyn + n–1c1 yn-1 = (n – 1)yn–1 + n −1 d
dx

x n n n
n

n
n

−

−
− = − − = −

1

1
1 1 2 2 1 1( )( )... .

⇒ xyn + (n – 1)yn–1 = (n – 1)yn–1 + n −1

⇒ xyn = n −1  i.e. yn = 
n

x

−1

At x =
1
2

yn 
1
2

	

�

�
�� = 2 n −1 .

!"�#$�� �/�� If y = (1 – x2)–1/2 sin–1x, when –1 < x < 1 and −
π
2

< sin–1x <
π
2

, then show

that (1 – x2)yn+1 – (2n + 1) xyn – n2 yn–1 = 0.

��$�� � Given y = (1 – x2)–1/2 sin–1x

Differentiating

y1 = – 
1
2

 (1 – x2)–3/2 (–2x) sin–1x + (1 – x2)–1/2·
1

1 2− x

y1 =
x x x

x x
( ) sin

( ) ( )
1

1
1

1

2
1
2 1

2 2
−

−
+

−

− −
 = 

xy

x

+
−

1

1 2( )

⇒ y1 (1–x2) = xy + 1
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Differentiating n times w.r.t. x, by Leibnitz's theorem, we get

  yn+1 (1 – x2) + nyn (–2x) + n n( )−1
2

 yn–1 · (–2) = xyn + nyn–1

     (1 – x2)yn+1 – (2n + 1)xyn – (n2 – n + n)yn–1 = 0
⇒    (1 – x2)yn+1 – (2n + 1)xyn – n2yn–1 = 0.   0����� #
���(�

!"�#$�� ���� If y = xn log x, then prove that

(i) yn+1 = 
n

x
(ii) yn = nyn–1 + n −1� � .

��$�� (i) We have y = xn log x

Differentiating w.r. to x, we get

y1 = nxn–1 · log x + 
x
x

n

⇒ xy1 = nxn . log x + xn

xy1 = ny + xn ...(i)
Differentiating equation (i) n times, we get

xyn+1 + nyn = nyn + n

⇒ yn+1 =
n

x
�
���(�

(ii) yn =
d

dx
x x

d
dx

d
dx

x x
n

n
n

n

n
n. log . log� � = 	


�
�
��

−

−

1

1

=
d

dx
x
x

nx x
n

n

n
n

−

−
−+

	

�

�
��

1

1
1. log

= n
d

dx
x x

d

dx
x

n

n
n

n

n
n

−

−
−

−

−
−+

1

1
1

1

1
1.log .� �

= nyn–1 + n −1� � . �
���(�

As   

  

y
d

dx
x x

y
d
dx

x x

n

n

n
n

n

n

n
n

=

∴ =−

−

−
−

log

log

� �

� �1

1

1
1

EXERCISE 1.2

���(� ���� ���� (�
������� �	� ���� 	�$$������

� � ex log x. *���  e x c
x

c
x

c
x

n c xx n n n n n
n

nlog ... ( )+ ⋅ − ⋅ + ⋅ + + − −
��

�
��


��

�
��

− −
1 2 2 3 3

11 1
2

1
1 1

 � x2 ex. *���  e x nx n nx 2 2 1+ + −( )
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% � x3 log x. *���  
6 1 4

3

( )− −

�
�
�

�

�
�
�−

n

n

n

x

' �
1
1

−
+

x
x

. *���  
2 1

1 1

( )

( )

−

+



�
�
�

�

�
�
�+

n

n

n

x

) � x2 sin 3x.

*���  3n n nx x
n

nx x n n n x n2 1 23
2

2 3 3
1
2

1 3 1 3
2

2sin sin{ ( ) } ( ) sin ( )+	



�
� + ⋅ + −

��
�
�� + − + −���

���

��

�
��

− −π π π

+ � ex (2x + 3)3. ���.  e x n x n x n n nx ( ) ( ) ( )( ) ( )( )2 3 6 2 3 12 1 2 3 8 1 22 2+ + + + − + + − −�  
, � If x = tan y, prove that (U.P.T.U., 2006)

(1 + x2) yn+1 + 2nxyn + n(n–1)yn–1 = 0.
- � If y = ex sin x, prove that y′′–2y′ + 2y = 0.
. � If y = sin (m sin–1x), prove that

(1 – x2)yn+2 – (2n + 1)x · yn+1 + (m2 – n2)yn = 0. (U.P.T.U., 2004, 2002)

�/ � If x = cos h
1
m

y	



�
�


��

�
��

log , prove that (x2 – 1)y2 + xy1 – m2y = 0 and (x2 – 1)yn+2 + (2n + 1)xyn+1

+ (n2 – m2)yn = 0.

�� � If cos–1 
y
b

	

�

�
��  = log 

x
n

n	



�
� , prove that x2yn+2 + (2n + 1)xyn+1 + 2n2yn = 0.

� � If y = etan–1x, prove that (1 + x2)yn+2 + {2(n + 1) x –1}yn+1 + n(n+1)yn = 0.
�% � If sin–1y = 2 log (x + 1), show that

(x + 1)2yn+2 + (2n + 1)(x + 1)yn+1 + (n2 + 4)yn = 0.

�' � If y = C1 x x
n

+ −2 1! "  + C2 x x
n

− −2 1! " , prove that (x2 – 1)yn+2 + (2n + 1)xyn+1 = 0.

�) � If x = cos [log (y1/a)], then show that (1 – x2)yn+2 – (2n + 1) xyn+1 – (n2 + a2) yn = 0.

1.2.1  To Find (yn)0 i.e., nth Differential Coefficient of y, When x = 0

Sometimes we may not be able to find out the nth derivative of a given function in  a compact form
for general value of x but we can find the nth derivative for some special value of x generally
x = 0. The method of procedure will be clear from the following examples:

!"�#$�� ��� Determine yn(0) where y = em.cos–1x.

��$�� We have y = em.cos–1x

Differentiating w.r.t. x, we get ...(i)

y1 = em cos–1x m 
−

−
	

�

�
��

1

1 2x
 ⇒  1 2− x . y1 = – mem cos–1x

or 1 2− x y1 = – my ⇒  (1 – x2)y1
2 = m2y2
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Differentiating again
(1 – x2) 2y1 y2 – 2xy2

1 = 2m2yy1

⇒ (1 – x2)y2 – xy1  = m2y ...(ii)
Using Leibnitz's rule differentiating n times w.r.t. x

(1 – x2)yn+2 – 2nxyn+1 – 
2 1

2
n n( )−

yn – xyn+1 – nyn = m2yn

or (1 – x2)yn+2 – (2n +1)xyn+1 – (n2 + m2)yn = 0

Putting  x = 0
yn+2 (0) – (n2 + m2)yn (0) = 0

⇒ yn+2 (0) = (n2 + m2)yn(0) ...(iii)
replace n by (n – 2)

yn (0) = {(n – 2)2 + m2} yn–2 (0)
replace n by (n – 4) in equation (iii), we get

yn–2 (0) = {(n – 4 )2 + m2} yn–4 (0)

∴ yn(0) = {(n – 2)2 + m2} {(n – 4)2 + m2} yn–4 (0)
���� �� When n is odd:

yn(0) = {(n – 2)2 + m2} {(n – 4)2 + m2} .... (12 + m2)y1 (0) ...(iv)
[The last term obtain putting n = 1 in eqn. (iii)]

Now we have y1 = − ⋅
−

−
e m

x

m xcos 1 1

1 2

At x = 0, y1(0) = −me
mπ
2 ...(v) As cos− =1 0

2
π

Using (v) in (iv), we get

yn(0) = − − + − + +n m n m m me
m

2 4 12 2 2 2 2 2 2� �# $ � �# $ � �....
π

.

���� ��� When n is even:

yn(0) = {(n – 2)2 + m2} {(n – 4)2 + m2} .... (22 + m2)y2 (0) ...(vi)
[The last term obtain by putting n = 2 in (iii)]

From (ii), y2(0) = m2(y)0

∴ y2(0) = m2 emπ/2 ...(vii)              As y = em xcos−1

∴  y(0) = em cos−1 0  = emπ/2

From eqns. (vi) and (vii), we get
yn(0) = {(n – 2)2 + m2} {(n – 4)2 + m2} .... (22 + m2) m2emπ/2.

!"�#$��  �� If y = (sin–1x)2. Prove that yn(0) = 0 for n odd and yn(0) = 2.22.42....(n – 2)2,
n ≠ 2 for n even. (U.P.T.U., 2005, 2008)

��$�� We have y = (sin–1 x)2 ...(i)

On differentiating y1 = 2 sin–1 x · 
1

1 2−x
 ⇒  y x1

21−  = 2 y , As y x= −sin 1� �
Squaring on both sides,

y2
1 (1 – x2) = 4y
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Again differentiating
2(1 – x2) y1 y2 – 2xy1

2 = 4y1

or (1 – x2) y2 – xy1 = 2 ...(ii)

Differentiating n times by Leibnitz’s theorem

(1 – x2) yn+2 – 2nxyn+1 – 
2 1

2
n n−� �

 yn – xyn+1 – nyn = 0

or    (1 – x2) yn+2 – (2n + 1) xyn+1 – n2yn = 0
Putting x = 0 in above equation

yn+2 (0) – n2 yn (0) = 0
⇒ yn+2 (0) = n2 yn(0) ...(iii)

replace n by (n – 2)
yn(0) = (n – 2)2 yn –2 (0)

Again replace n by (n – 4) in (iii) and putting the value of yn–2 (0) in above equation
yn (0) = (n – 2)2 (n – 4)2 yn–4 (0)

���� �� If n is odd, then
yn(0) = (n – 2)2 (n – 4)2 (n – 6)2 ... 12·y1 (0)

But y1(0) = 2 sin–1
 0· 

1

1 0–
 = 0

∴ yn(0) = 0.  0����� #
���(�

���� ���� If n is even, then
yn(0) = (n – 2)2 (n – 4)2 ... 22· y2 (0) ...(iv)

From (ii) y2 (0) = 2
Using this value in eqn. (iv), we get

yn(0) = (n – 2)2 (n – 4)2 .... 22·2

or yn(0) = 2.22.42 ... (n – 2)2, n ≠ 2 otherwise 0. � �
���(�

!"�#$�� %�� If y = x x
m

+ +1 2 , find yn 0).

��$��  Given y = x x
m

+ +1 2 ...(i)

∴ y1 = m x x
x

x

m
+ + +

+


��

�
��

−
1 1

1

2
1

2

=
m x x

x

m
+ +

+

1

1

2

2
 = 

my

x1 2+

or y1 1 2+ x = my

Squaring y2
1(1+x2) = m2y2 ...(ii)

Again differentiating, y1
2 (2x) + (1 + x2)2y1y2 = m2·2yy1

or y2 (1 + x2) + xy1 – m2y = 0 ...(iii)

Differentiating n times by Leibnitz’s theorem

 (1 + x2)yn+2+ 2nxyn+1 + 
2 1

2
n n( )−

 yn + xyn+1 + nyn – m2yn = 0
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or  (1 + x2)yn+2 + (2n + 1)xyn+1 + (n2 – m2)yn = 0
Putting x = 0, we get

yn+2 (0) + (n2 – m2) yn(0) = 0
⇒ yn+2 (0) = – (n2 – m2) yn (0) ...(iv)

replace n by n – 2
yn (0) = – { (n – 2)2 – m2} yn–2 (0)

Again replace n by (n – 4) in (iv) and putting yn–2 (0) in above equation

yn(0) = (–1)2 {(n – 2)2 – m2} {(n – 4}2 – m2} yn–4 (0)
���� ��� If n is odd

yn(0) = – {(n – 2)2 – m2} {(n – 4)2 – m2} ... {12 – m2} y1 (0)
But y1(0) = my(0)

or y1(0) = m    (As y (0) = 1)
⇒ yn(0) = {m2 – (n – 2)2}{m2 – (n – 4)2} ... (m2 – 12)·m.
���� ���� If n is even

yn (0) = {m2 – (n – 2)2} {m2 – (n – 4)2}... (m2 – 22) y2 (0)
⇒ yn (0) = {m2 – (n – 2)2} {m2 – (n – 4)2} ... (m2 – 22)·m2.

(As y2 (0) = m2).
!"�#$��'��Find the nth differential coefficient of the function on cos (2 cos–1 x) at the point

x = 0.
��$�� Let y = cos (2 cos–1 x) ...(i)

On diffentiating, y1 = – sin (2 cos–1 x) −

−


�
�
�

�
�
�
�

2

1 2x

or y1 1 2−x = 2 sin (2 cos–1 x)
Squaring on both sides, we get

y2
1 (1 – x2) = 4 sin2 2 1cos− x� �

= 4 1 22 1− −cos cos x� �# $
or y2

1 (1 – x2) = 4 (1 – y2)
Again differentiating w.r.t. x, we get

2y1y2 (1 – x2) – 2xy2
1 = – 8yy1

or y2 (1 – x2) – xy1 + 4y = 0 ...(ii)
Differentiating n times by Liebnitz’s theorem

(1 – x2) yn+2 – 2nxyn+1 – 
2 1

2
n n −� �

 yn – xyn+1 – nyn + 4yn = 0

(1 – x2) yn+2 – (2n + 1) xyn+1 – (n2– 4) yn = 0

Putting x = 0 in above equation, we get

yn+2 (0) – (n2 – 4) yn (0) = 0
or yn+2 (0) = (n2 – 4) yn(0) ...(iii)

Replace n by n – 2, we get
yn (0) = {(n – 2)2 – 4} yn–2 (0)
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Again replace n by (n – 4) in (iii) and putting yn –2 (0) in above then, we get
yn (0) = {(n – 2)2 – 4} {(n – 4)2 – 4} yn – 4 (0)

���� ��� If n is odd
yn (0) = {(n – 2)2 – 4} {(n – 4)2 – 4} .......... (12 – 4) y1 (0)

But y1 (0) = 2 sin (2 cos–1 0) = 2 sin (π) = 0
∴ yn (0) = 0.
���� ���� If n is even

yn (0) = {(n – 2)2 – 4}{(n – 4)2 – 4} .......... {22 – 4} y2 (0)
yn (0) = 0

Hence for all values of n, even or odd,
yn (0) = 0.

!"�#$�� )�� Find the nth derivative of y = x2 sin x at x = 0. (U.P.T.U., 2008)
��$�� We have y = x2 sin x = sin x. x2 ...(i)
Differentiate n times by Leibnitz’s theorem, we get

yn = nC0
 Dn (sin x). x2 + nC1

 Dn–1 (sin x) D(x2) + nC2
 Dn–2 (sin x) D2 (x2) + 0

= x2 . sin x
n+	


�
�
��

π
2

 + 2nx . sin x
n+ −	


�
�
��

1
2

π  + n(n – 1) sin x
n+ −	


�
�
��

2
2

π

= x2 sin x
n+	


�
�
��

π
2

 + 2nx sin x
n

+ −	

�

�
��

π π
2 2

 + n(n – 1) sin x
n+ −	


�
�
��

π π
2

= x2 sin x
n

+	

�

�
��

π
2

 – 2nx cos x
n

+	

�

�
��

π
2

 – n(n – 1) sin x
n

+	

�

�
��

π
2

yn = (x2 – n2 + n) sin x
n

+	

�

�
��

π
2

 – 2nx cos x
n

+	

�

�
��

π
2

Putting x = 0, we obtain

yn (0) = (n – n2) sin
nπ
2

.

!"�#$�� +�� If y = sin (a sin–1 x), prove that

(1 – x2)yn+2 – (2n + 1)xyn+1 – (n2 – a2)yn = 0

Also find nth derivative of y at x = 0. [U.P.T.U. (C.O.), 2007]
��$�� We have y = sin(a sin–1 x)
Differentiating w.r.t. x, we get

y1 = cos(a sin–1 x). 
a

x1 2−
...(i)

or y1 1 2− x = a cos(a sin–1 x)

Squaring on both sides, we obtain
y1

2 (1 – x2) = a2 cos2 (a sin–1 x) = a2 [1 – sin2 (a sin–1 x)]
or y1

2 (1 – x2) = a2 (1 – y2) ...(ii)
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Differentiating again, we get
2y1 y2 (1 – x2) – 2xy1

2 = – 2 a2yy1

or y2 (1 – x2) – xy1 = – a2y ...(iii)
Differentiating n times by Leibnitz’s theorem

(1 – x2)yn+2 – 2nxyn+1 −
−2 1

2
n n� �  yn – xyn+1 – nyn = – a2yn

or    (1 – x2)yn+2 – (2n + 1)xyn+1 – (n2 – a2)yn = 0 ...(iv)

Putting x = 0 in relation (iv), we get

yn+2 (0) – (n2 – a2)yn (0) = 0
or yn+2 (0) = (n2 – a2)yn (0) ...(v)

Replace n by (n – 2) in relation (v), we get

yn (0) = {(n – 2)2 – a2}yn–2 (0)

Again replace n by (n – 4) in equation (v) and putting yn–2 (0) in above relation, we get

yn (0) = {(n – 2)2 – a2} {(n – 4)2 – a2}yn–4 (0)

���� ��� When n is odd:
yn (0) = {(n – 2)2 – a2} {(n – 4)2 – a2} ..... {12 – a2}y1 (0) ...(vi)

[The last term in (vi) obtain by putting n = 1 in equation (v)]
Putting x = 0, in equation (i), we get

y1 (0) = cos(a sin–1 0). a = cos 0 . a ⇒  y1 (0) = a

Hence, yn (0) = {(n – 2)2 – a2} {(n – 4)2 – a2} ..... {12 – a2}. a

���� ���� When n is even:
yn (0) = {(n – 2)2 – a2} {(n – 4)2 – a2} ..... {22 – a2}y2 (0).

Putting x = 0 in (iii), we get
[The last term obtain by putting n = 2 in equation (v)]

y2 (0) = – a2 y(0) = – a2 x0 = 0 (As y(0) = 0)

Hence, yn (0) = 0.

EXERCISE 1.3

� � If y = tan–1 x, find the value of y7 (0) and y8 (0). [*��� 6  and 0.]

 � If y = ea sin–1 x, prove that (1 – x2) yn + 2 – (2n + 1)xyn + 1 – (n2 + a2) yn = 0 and hence find the
value of yn when x = 0.

*��� n is odd, yn (0) = n a− +2 2 2� �# $  n a− +4 2 2� �# $  ... (32 + a2) (12 + a2)a n is even,

yn (0) = n a− +2 2 2� �# $ n a− +4 2 2� �# $ ...... (42 + a2)(22 + a2) a2.

% � If log y = tan–1x, show that (1 + x2) yn + 2 + {2(n + 1)x – 1} yn + 1 + n (n + 1) yn = 0 and hence
find y3, y4 and y5 at x = 0. [U.P.T.U. (C.O.), 2003]

*���� y3 (0) = – 1, y4 (0) = – 1, y5 (0) = 5
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' � If f (x) = tan x, then prove that

fn (0) – nc2 fn – 2 (0) + nc4 f
n – 4 (0) – ....... = Sin 

nπ
2

	

�

�
�� .

) � If y = sin–1x, find yn (0).

*����n is odd, yn (0) = (n – 2)2 (n – 4)2 .... 52 . 32 . 1 n is even, yn (0) = 0.

+ � Find yn (0) when y = sin (m sin h–1 x).

*����n is odd, yn (0) = –1� �
n−	


�
�
��

1
2  n m− +2 2 2� �# $ n m− +4 2 2� �# $ .... (12 + m2) m · n

is even, yn = (0) = 0.

, � If y = log x x+ +
��

�
��1 2

2

# $ , show that

yn + 2 (0) = – n2 yn (0) hence find yn (0).

*����n is odd, yn (0), = 0 n is even yn(0) = −
−

1
2

2� �
n

 (n – 2)2 (n – 4)2 .... 42 22.2.

PARTIAL DIFFERENTIATION
Introduction

Real world can be described in mathematical terms using parametric equations and functions such
as trigonometric functions which describe cyclic, repetitive activity; exponential, logrithmic and
logistic functions which describe growth and decay and polynomial functions which approximate
these and most other functions.

The problems in computer science, statistics, fluid dynamics, economics etc., deal with func-
tions of two or more independent variables.

1.3  FUNCTION OF TWO VARIABLES

If f (x, y) is a unique value for every x and y, then f is said to be a function of the two independent
variables x and y and is denoted by

z = f (x, y)

Geometrically the function z = f (x, y) represents a surface.
The graphical representation of function of two variables is shown in Figure 1.1.

y

O
x

(x,y)
�

z = (x,y)���

z

����� ���
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1.4   PARTIAL DIFFERENTIAL COEFFICIENTS

The partial derivative of a function of several variables is the ordinary derivative with respect to
any one of the variables whenever, all the remaining variables are held constant. The difference
between partial and ordinary differentiation is that while differentiating (partially) with respect to
one variable, all other variables are treated (temporarily) as constants and in ordinary differentia-
tion no variable taken as constant,

��	��������� Let z = f (x, y)

Keeping y constant and varying only x, the partial derivative of z w.r.t. ‘x’ is denoted by 
∂
∂

z
x

and is defined as the limit

∂
∂

z
x

= Lim
δx→0

 
f x x y f x y

x

+ −δ
δ

, ,% & % &

Partial derivative of z, w.r.t. y is denoted by 
∂
∂

z
y  and is defined as

∂
∂

z
y

= Lim
δy→0

 
f x y y f x y

y

, ,+ −δ
δ

% & % &
.

7��������The partial derivative 
∂
∂

z
x

 is also denoted by 
∂
∂

f
x

 or fx similarly 
∂
∂

z
y  is denoted

by 
∂
∂

f
y  or fy. The partial derivatives for higher order are calculated by successive differentiation.

Thus,
∂
∂

2

2

z

x
 = 

∂
∂

2

2

f

x
= fxx, 

∂
∂

2

2

z

y
 = 

∂
∂

2

2

f

y
 = fyy

∂
∂ ∂

2z
x y  = 

∂
∂ ∂

2 f
x y

= fxy, 
∂
∂ ∂

2z
y x

 = 
∂
∂ ∂

2 f
y x

 = fyx and so on.

Geometrical interpretation of Geometrical interpretation of Geometrical interpretation of Geometrical interpretation of Geometrical interpretation of 
∂
∂

z
x

 and  and  and  and  and 
∂
∂

z
y :::::

Let z = f(x, y) represents the equation of a surface in xyz-
coordinate system. Suppose APB is the curve which a plane
through any point P on the surface � to the xz-plane, cuts. As
point P moves along this curve APB, its coordinates z and x
vary while y remains constant. The slope of the tangent line at
P to APB represents the rate at which z-changes w.r.t. x.

Hence,
∂
∂

z
x

 = tan θ (slope of the curve APB at the point P)

and
∂
∂

z
y

 = tan φ (slope of the curve CPD at point P)

Z

X

�
B D

�

YO
P

A

����� �� 
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!"�#$�� �� Verify that 
∂
∂ ∂

2u
x y

 = 
∂
∂ ∂

2u
y x

 where u(x, y) = loge 
x y

xy

2 2+	

�

�
��

(U.P.T.U., 2007)

��$�� We have u(x, y) = loge 
x y

xy

2 2+	

�

�
��

⇒ u(x, y) = log (x2 + y2) – log x – log y ...(i)

Differentiating partially w.r.t. x, we get

∂
∂
u
x

=
2

2 2
x

x y+
 – 1

x

Now differentiating partially w.r.t. y.

∂
∂ ∂

2u
y x

= – 
4

2 2 2

xy

x y+� �
...(A)

Again differentiate (i) partially w.r.t. y, we obtain

∂
∂
u
y

=
2

2 2

y

x y+� �
 – 

1
y

Next, we differentiate above equation w.r.t. x.

∂
∂ ∂

2u
x y

= –
4

2 2 2

xy

x y+� �
...(B)

Thus, from (A) and (B), we find

∂
∂ ∂

2u
x y

=
∂
∂ ∂

2u
y x

. � 0����� #
���(�

!"�#$��  � If f = tan–1
y
x

	

�

�
�� , verify that 

∂
∂ ∂

2 f
y x

 = 
∂
∂ ∂

2 f
x y

.

��$�� We have f = tan–1 
y
x

	

�

�
�� ...(i)

Differentiating (i) partially with respect to x, we get

∂
∂

f
x

=
1

1
2

+ 	

�

�
��

y
x

 
–y

x2
	

�

�
��  = 

–y

x y2 2+

	

�

�
��

...(ii)

Differentiating (i) partially with respect to y, we get
∂
∂

f
y

=
1

1
2

+ 	

�

�
��

y
x

 
1
x

 = 
x

x y2 2+
...(iii)

Differentiating (ii) partially with respect to y, we get

∂
∂ ∂

2 f
y x

=
∂
∂

−
+

	

�

�
��y

y

x y2 2  = 
x y y y

x y

2 2

2 2 2

2+ −

+

� �� � % &% &

� �

–1 –
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=
y x

x y

2 2

2 2 2
−

+� �
...(iv)

Differentiating (iii) partially with respect to x, we get

∂
∂ ∂

2 f
x y

=
∂
∂ +

�
��

�
��x

x

x y2 2  = 
x y x x

x y

2 2

3 2 2

1 2+ −

+

� �	 
 	 


� �

=
y x

x y

2 2

2 2 2

−

+� �
...(v)

∴  From eqns. (iv) and (v), we get 
∂
∂ ∂

2 f
y x

 = 
∂
∂ ∂

2 f
x y

. � ������ ���	�
�

������� �� If u(x + y) = x2 + y2, prove that 
∂
∂

− ∂
∂

�
��

�
��

u
x

u
y

2

 = 4 1 − ∂
∂

− ∂
∂

�
��

�
��

u
x

u
y

.

����� Given  u =
x y

x y

2 2+
+

∴
∂
∂
u
x

=
x y x x y

x y

+ − +

+

� �	 
 � �	 

� �

2 12 2

2  = 
x xy y

x y

2 2

2

2+ −

+� �

and
∂
∂
u
y =

x y y x y

x y

+ − +

+

� � � � � �	 

� �

2 12 2

2  = 
y xy x

x y

2 2

2

2+ −

+� �

∴
∂
∂
u
x

 + 
∂
∂
u
y

=
4

2

xy

x y+� �

or 1 – 
∂
∂
u
x

 – 
∂
∂
u
y

= 1
4

2

2

2−
+

=
−
+

xy

x y

x y

x y( )

( )

( )
...(i)

and
∂
∂
u
x

 – 
∂
∂
u
y

=
x xy y y xy x

x y

2 2 2 2

2

2 2+ − − + −

+

� � � �
� �

=
2 2 2

2

x y

x y

−

+

� �
� �

 = 
2 x y

x y

−
+
� �
� � ...(ii)

∴ From (ii), we get

∂
∂

− ∂
∂

�
��

�
��

u
x

u
y

2

=
4 2

2

x y

x y

−

+

� �
� �

 = 4 1 −
∂
∂

−
∂
∂

�
��

�
��

u
x

u
y

, from (i). � � ������ ���	�
�
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������� �� If u = sin–1 x
y

�
��
�
��

 + tan–1 
y
x
�
��
�
�� , show that x 

∂
∂
u
x

 + y 
∂
∂
u
y

 = 0.

����� Given  u = sin–1 
x
y

�
��
�
��

 + tan–1 
y
x
�
��
�
�� ...(i)

∴
∂
∂
u
x

=
1

1
2

−
�
��
�
��


��
��

�
��
��

x
y

. 
1
y

 + 
1

1
2

+ ���
�
��

y
x

. −���
�
��

y

x2

or x 
∂
∂
u
x

= x

y x

yx

x y2 2 2 2
−

−
+� �

...(ii)

and from (i),
∂
∂
u
y

=
1

1

1

1

1
2 2 2

−
�
��
�
��


��
��

�
��
��

�
��

�
��

+
+ ���
�
��

⋅
x
y

x
y y

x

x
–

or y 
∂
∂
u
y

= −
−

+
+

x

y x

xy

x y2 2 2 2
� �

...(iii)

Adding (ii) and (iii), we get x ∂
∂
u
x

 + y 
∂
∂
u
y

 = 0. ������ ���	�
�

������� �� If f(x, y) = x2 tan–1 
y
x
�
��
�
��  – y2 tan–1 

x
y

�
��
�
��  then prove that 

∂
∂ ∂

2 f
x y

 = 
∂
∂ ∂

2 f
y x

.

����  
∂
∂

f
x

= 2x · tan–1 
y
x
�
��
�
��  + x2 · 

1

1
2

+ ���
�
��

y
x

 × −���
�
��

y

x2
 – y2 · 

1

1
2

+
�
��
�
��

x
y

· 
1
y

�
��
�
��

or  
∂
∂

f
x

= 2x · tan–1 
y
x
�
��
�
��  – 

yx

x y

2

2 2+
 – 

y

x y

3

2 2+
 = 2x tan–1 

y
x
�
��
�
��  – y

Differentiating both sides with respect to y, we get

 
∂
∂ ∂

2 f
y x = 2x · 

1

1
2

+ ���
�
��

y
x

· 
1
x
�
��
�
��  –1 = 

2 2

2 2

x

x y+
 –1 = 

x y

x y

2 2

2 2

−
+

...(i)

Again  
∂
∂

f
y

= x2 · 
1

1
2

+ ���
�
��

y
x

· 
1
x

 – 2y tan–1 
x
y

�
��
�
��  – y2 · 

1

1
2

+
�
��
�
��

x
y

· −
�
��

�
��

x
y2

or
∂
∂

f
y

=
x

x y

3

2 2+
 – 2y tan–1 

x
y

�
��
�
��  + 

xy

x y

2

2 2+
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=
x x y

x y

2 2

2 2

+

+
� �

 – 2y tan–1 
x
y

�
��
�
��  = x – 2y tan–1 

x
y

�
��
�
�� .

Differentiating both sides with respect to x, we get

 
∂

∂ ∂

2 f
x y = 1 – 2y 

1

1
2

+
�
��
�
��

x
y

 
1
y

�
��
�
��  = 1 – 

2 2

2 2
y

x y+
 = 

x y

x y

2 2

2 2

−
+

...(ii)

Thus, from (i) and (ii), we get

∂
∂ ∂

2 f
x y

=
∂
∂ ∂

2 f
y x

. � ������ ���	�
�

������� �� If V = (x2 + y2 + z2)–1/2, show that

∂
∂

2

2

V

x
 + 

∂
∂

2

2

V

y  + 
∂
∂

2

2

V

z
 = 0.

����� Given  V = (x2 + y2 + z2)–1/2. ...(i)

∴  
∂
∂
V
x

= – 
1
2

 (x2 + y2 + z2)–3/2 2x = – x (x2 + y2 + z2)–3/2

∴
∂
∂

2

2

V

x
= – x x y z x x y z–

–5/ –3/ .3
2

2 12 2 2 2 2 2 2 2
+ + ⋅��

���
+ + + ⋅�

��
�
��� � � �

= 3x2 (x2 + y2 + z2)–5/2 – (x2 + y2 + z2)–3/2

= (x2 + y2 + z2)–5/2 [3x2 – (x2 + y2 + z2)]

or
∂
∂

2

2

V

x
= (x2 + y2 + z2)–5/2 (2x2 – y2 – z2) ...(ii)

Similarly from (i), we can find

 
∂
∂

2

2
V

y = (x2 + y2 + z2)–5/2 (2y2 – x2 – z2) ...(iii)

and
∂
∂

2

2

V

z
= ( x2 + y2 + z2)–5/2 (2z2 – x2 – y2) ...(iv)

Adding (ii), (iii) and (iv), we get

 
∂
∂

2

2

V

x
 + 

∂
∂

2

2
V

y  + 
∂
∂

2

2

V

z
= (x2 + y2 + z2)–5/2 [(2x2 – y2 – z2) + (2y2 – x2 – z2)  + (2z2 – x2 – y2)]

= (x2 + y2 + z2)–5/2 [0] = 0.  ������ ���	�
�

������� �� If u = f (r), where r2 = x2 + y2, show that

∂
∂

2

2

u

x
 + 

∂
∂

2

2

u

y  = f ′′  (r) + 
1
r

 f ′  (r). (U.P.T.U., 2001, 2005)
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����� Given  r2 = x2 + y2 ...(i)
Differentiating both sides partially with respect to x, we have

2r 
∂
∂

r
x

= 2x or 
∂
∂

r
x

 = 
x
r

...(ii)

Similarly,
∂
∂

r
y =

y
r

...(iii)

Now, u = f(r)

∴
∂
∂
u
x

= f ′ (r). 
∂
∂

r
x

 = f ′ (r) · 
x
r

, from (ii)

Again differentiating partially w.r.to x, we get

∂
∂

2

2

u

x
=

∂
∂x

f r x
r

′�
��

�
��

	 

 = 

r f r xf r r x xf r r x

r

′ + ′′ ∂ ∂ ′ ∂ ∂	 
 	 
� � 	 
� �. / – /1
2

or
∂
∂

2

2

u

x
=

1
2r

 rf r x f r
x
r

f r′ + ′′ − ′
�
�
�

�
�
�	 
 	 
 	 
2

2

, from (ii).

Similarly,
∂
∂

2

2

u

y =
1
2r

 rf r y f r
y
r

f r′ + ″ ′
�
�
��

�
�
��

	 
 	 
 	 
2
2

–

Adding,
∂
∂

2

2

u

x
 + 

∂
∂

2

2
u

y
=

1
2r

 2 2 2
2 2

rf r x y f r
x y

r
f r′ + + ″ −

+
′

�

�
�
�

�

�
�
�	 
 � � 	 
 � � 	 


=
1
2r

 [2rf ′(r) + r2f ″(r) – rf ′(r)], from (i)

=
1
r

 f ′(r) + f ″(r). � ������ ���	�
�

������� �� If u = log (x3 + y3 + z3 – 3xyz); show that

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��x y z

2

u = – 
9

2
x y z+ +� �

. (U.P.T.U., 2003)

����� Given  u = log (x3 + y3 + z3 – 3xyz).

∴  
∂
∂
u
x

=
3 3

3

2

3 3 3

x yz

x y z xyz

−
+ + −

...(i)

Similarly,
∂
∂
u
y

=
3 3

3

2

3 3 3

y xz

x y z xyz

−
+ + –

...(ii)

and
∂
∂
u
z

=
3 3

3

2

3 3 3

z xy

x y z xyz

−
+ + –

. ...(iii)
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Adding eqns. (i), (ii) and (iii), we get

∂
∂
u
x

 + 
∂
∂
u
y  + 

∂
∂
u
z

=
3

3

2 2 2

3 3 3

x y z xy yz zx

x y z xyz

+ + − −

+ + −

–� �

=
3 2 2 2

2 2 2

x y z xy yz zx

x y z x y z xy yz zx

+ + − −

+ + + + − − −

–� �
� �� �

As + + – 3 = + +a b c abc a b c a b c ab bc ca3 3 3 2 2 2	 
( )+ + − − −

or
∂
∂
u
x

 + 
∂
∂
u
y

 + 
∂
∂
u
z

=
3

x y z+ +
. ...(iv)

Now,
∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��x y z

2

u =
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

∂
∂

+
∂
∂

+
∂
∂

�
��

�
��x y z x y z
u

=
∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��x y z

u
x

u
y

u
z  = 

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
�� + +
�
��

�
��x y z x y z

3
,  from (iv)

= 3 
∂
∂ + +
�
��

�
��

+ ∂
∂ + +
�
��

�
��

+ ∂
∂ + +
�
��

�
��

�
�
�
�

�
�
�
�x x y z y x y z z x y z

1 1 1

= 3 −
+ +

−
+ +

−
+ +

�

�
�
�

�

�
�
�

1 1 1
2 2 2

x y z x y z x y z� � � � � �
 = 

−

+ +

9
2

x y z� �
.

������ ���	�
�

������� �� If u = tan–1 
xy

x y1 2 2+ +� �
, show that

∂
∂ ∂

2u
x y

=
1

1 2 2 3 2
+ +

⋅
x y� �

/

����� Given  u = tan–1 
xy

x y1 2 2+ +
⋅

� �

∴  
∂
∂
u
y

= 1

1 12 2 2 2+ + +�
��

�
��x y x y/� �� �

 × x 
√ + + − + +

+ +

�

�

�
�
�

�

�

�
�
�

−
1 1

1
2

1 2

1

2 2 2 2 1

2 2

x y y x y y

x y

� � � �
� �

.
/2

= x
x y x y1 2 2 2 2+ + +

. 
1

1

2 2 2

2 2

+ + −

√ + +

x y y

x y

� �
� �
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or
∂
∂
u
y

=
x

x y

x

x y

x

y x y1 1

1

1 1 1
2 2

2

2 2 2 2 2+ +
+

+ +
=

+ + +� �� � � � � � � �
.

Again differentiating partially w.r.to x

∂
∂ ∂

2u
x y

=
∂
∂ + + +

�

�

�
�
�

�

�

�
�
�

=
+

∂
∂ + +

�

�

�
�
�

�

�

�
�
�x

x

y x y y x
x

x y1 1

1

1 12 2 2 2 2 2� � � � � � � �

=
1

1

1 1
1
2

1 2

12

2 2 2 2 1 2

2 2+

+ + − + +

+ +

�

�

�
�
�

�

�

�
�
�

−

y

x y x x y x

x y� �
� � � �

� �

/

=
1

1

1

1
2

2 2 2

2 2 3+

+ +

+ +y

x y x

x y� �
� �
� �

.
–

/2  = 
1

1 2 2 3
+ +x y� �

/2 . � ������ ���	�
�

������� ��� If 
x

a u

2

2 +
 + 

y

b u

2

2 +
 + 

z
c u

2

2 +
 = 1, show that

∂
∂
�
��
�
�� + ∂

∂
�
��
�
��

+ ∂
∂
�
��
�
��

u
x

u
y

u
z

2 2 2

 = 2 x
u
x

y
u
y

z
u
z

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��
. (U.P.T.U., 2002)

����� We have

x
a u

y

b u
z

c u

2

2

2

2

2

2+
+

+
+

+
= 1 ...(i)

where u is a function of x, y and z
Differentiating (i) partially with respect to x, we get

=
2

2

2

2 2

2

2 2

2

2 2
x

a u
x

a u

y

b u

z

c u+
−

+
+

+
+

+

�

�

�
�
�

�

�

�
�
�� � � � � �

∂
∂
u
x

 = 0

or
∂
∂
u
x

=
2 2

2 2 2 2 2 2 2 2 2

x a u

x a u y b u z c u

/

/ / /

+

+ + + + +�
��

�
��

� �

� � � � � �
 = 

2 2

2 2 2

x a u

x a u

/

/

+

+�
��

�
��∑

� �

� �

Similarly,
∂
∂
u
y

=
2 22

2 2 2

2

2 2 2

y b u

x a u

u
z

z c u

x a u

/

/
;

/

/

+

+�
��

�
��

∂
∂

=
+

+�
��

�
��∑ ∑

� �

� �

� �

� �
Adding with square

 
∂
∂
�
��
�
�� + ∂

∂
�
��
�
��

+ ∂
∂
�
��
�
��

u
x

u
y

u
z

2 2 2

= 
4 2 2 2 2 2 2 2 2 2

2 2 2 2

x a u y b u z c u

x a u

/ / /

/

+ + + + +�
��

�
��

+��
���

�
��

�
��∑

� � � � � �

� �



DIFFERENTIAL CALCULUS-I 29

or
∂
∂
�
��
�
�� + ∂

∂
�
��
�
��

+ ∂
∂
�
��
�
��

u
x

u
y

u
z

2 2 2

= 4
2 2 2

x a u/ +�
��

�
��∑ � �

...(ii)

Also, x
∂
∂
u
x

 + y
∂
∂
u
y

 + z
∂
∂
u
z

=
1 2 2 2

2 2 2

2

2

2

2

2

2
x a u

x

a u

y

b u

z

c u/ +�
��

�
��

+
+

+
+

+

�

�
�
�

�

�
�
�∑ � � � � � � � �

=
2

2 2 2
x a u/ +�
��

�
��∑ � �

 [1], from (i) ...(iii)

From (ii) and (iii), we have

∂
∂
�
��
�
��

u
x

2

 + 
∂
∂
�
��
�
��

u
y

2

 + 
∂
∂
�
��
�
��

u
z

2

= 2 x
u
x

y
u
y

z
u
z

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
�� . � ������ ���	�
�

������� ��� If xx yy zz = c, show that at x = y = z,

∂
∂ ∂

2z
x y  = – (x log ex)–1. Where z is a function of x and y.

����� Given xx.yy.zz = c, where z is a function of x and y.
Taking logarithms, x log x + y log y + z log z = log c. ...(i)
Differentiating (i) partially with respect to x, we get

= x
x

x z
z

z
z
x

1
1

1
1�

��
�
�� +�

��
�
��

+ �
��
�
�� +�

��
�
��

∂
∂

log log� � � �  = 0

or
∂
∂

z
x

= −
+
+

1

1

log

log

x

z

� �
� � ...(ii)

Similarly, from (i), we have 
∂
∂

z
y  = – 

1

1

+
+

log

log

y

z

� �
� � ...(iii)

∴
∂
∂ ∂

2z
x y =

∂
∂

∂
∂
�
��
�
��x

z
y  = 

∂
∂

−
+
+

�
��

�
��

�
�
�
�

�
�
�
�x

y
z

1
1

log
log

, from (iii)

or
∂
∂ ∂

2z
x y = – (1 + log y) · 

∂
∂x

 [(1 + log z)–1]

= – (1 + log y) · – log1
12+ ⋅ ⋅

∂
∂

�
��

�
��

−
z

z
z
x

� �

or
∂
∂ ∂

2z
x y =

1

1
2

+

+

log

log

y

z z

� �
� �

 · −
+
+

�
��

�
��


��
��

�
��
��

1
1

log
log

x
z

, from (iii)

∴ At x = y = z, we have  
∂
∂ ∂

2z
x y  = – 

1

1

2

3

+

+

log

log

x

x x

� �
� �
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⇒
∂
∂ ∂

2z
x y = −

1
1x x+ log� �  = – 

1
x e xelog log+� �  = (As log e e = 1)

= – 
1

x exlog	 
  = – x exlog 	 
� �−1 . � ������ ���	�
�

������� ��� If u = log (x3 + y3 – x2y – xy2) then show that

∂
∂

2

2

u

x
 + 2

∂
∂ ∂

2u
x y  + 

∂
∂

2

2
u

y
 = −

+

4
2x y� �

.

����� We have u = log (x3 + y3 – x2y – xy2)

∂
∂
u
x

=
3 22 2

3 3 2 2

x xy y

x y x y xy

− −
+ − −� �

...(i)

∂
∂

u
y =

3 22 2

3 3 2 2

y x xy

x y x y xy

− −
+ − −� �

...(ii)

Adding (i) and (ii), we get

∂
∂
u
x

 + 
∂
∂
u
y

=
3 2 3 22 2 2 2

3 3 2 2

x xy y y x xy

x y x y xy

− − + − −

+ − −

� � � �
� �

=
2

2

2

2 2

x y

x y x y xy

−

+ +

� �
� � � �–

∂
∂
u
x

 + 
∂
∂
u
y

=
2

2

2

x y

x y x y

−

+ −

� �
� �� �

 = 
2

x y+� � ... (iii)

Now,
∂
∂

2

2

u

x
 + 2 

∂
∂ ∂

2 u
x y

+ 
∂
∂

2

2

u

y
=

∂
∂

+ ∂
∂

�
��

�
��x y

2

 u

=
∂
∂

+ ∂
∂

�
��

�
��x y  

∂
∂

+ ∂
∂

�
��

�
��x y  u

=
∂
∂

+
∂
∂

�
��

�
��x y

 . 
2

x y+
 (from iii)

= 2 
∂
∂x

 
1

x y+
�
��

�
��  + 2

∂
∂y  

1
x y+
�
��

�
��

= – 
2

2
x y+� �

  – 
2

2
x y+� �

 = – 
4

2
x y+� �

.  ������ ���	�
�

������� ��� If u = exyz, show that

∂
∂ ∂ ∂

3u
x y z = (1 + 3xyz + x2y2z2)exyz.
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����� We have u = exyz ∴  
∂
∂
u
z

 = exyz.xy

∂
∂ ∂

2u
y z =

∂
∂y  (exyz·xy) = exyz x2yz + exyz.x

or
∂
∂ ∂

2u
y z = (x2yz + x) exyz

Hence
∂

∂ ∂ ∂

3u
x y z = (2xyz + 1) exyz + (x2yz + x) exyz·yz

= (1 + 3xyz + x2y2z2) exyz. � ������ ���	�
�

������� ��� If u = log r, where r2 = (x – a)2 + (y – b)2 + (z – c)2, show that

∂
∂

2

2

u
x

 + 
∂
∂

2

2

u

y
 + 

∂
∂

2

2

u
z

 = 
1
2r

.

����� Given r2 = (x – a)2 + (y – b)2 + (z – c)2, ...(i)
Differentiating partially with respect to x, we get

2r 
∂
∂

r
x

= 2 (x – a) or 
∂
∂

r
x

 = 
x a

r
−�

��
�
�� . ...(ii)

Similarly,
∂
∂

r
y =

y b

r

−� �
 and 

∂
∂

r
y  = 

z c

r

−	 


Now, u = log r.

∴
∂
∂
u
x

=
1
r

 
∂
∂

r
x

 = 
1
r

x a
r
−�

��
�
�� , from (ii)

or
∂
∂
u
x

=
x a
r
−
2

∴
∂
∂

2

2

u

x
=

∂
∂x

 
x a

r

−�
��

�
��2  = 

r x a r r x

r

2

4

1 2	 
 	 
 � �− − ∂ ∂/

or
∂
∂

2

2

u

x
=

r x a

r

2 2

4
2− −	 


, from (ii)

Similarly,
∂
∂

2

2

u

y =
r y b

r

2 2

4

2− −� �
; 

∂
∂

2

2

u

z
 = 

r z c

r

2 2

4
2− −( )

.

∴
∂
∂

2

2

u

x
 + 

∂
∂

2

2

u

y  + 
∂
∂

2

2

u

z
=

3 22 2 2 2

4

r x a y b z c

r

− − + − + −	 
 � � 	 
� �

=
3 22 2

4

r r

r
−

, from (i) = 
1
2r

. ������ ���	�
�
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������� ��� If u = x2 tan–1 (y/x) – y2 tan–1 (x/y), prove that

∂
∂ ∂

2u
y x

=
x y

x y

2 2

2 2
−

+
.

����� Given u = x2 tan–1 (y/x) – y2 tan–1 (x/y).
Differentiating partially with respect to x, we get

 
∂
∂
u
x

= x
y x

y

x
x

y
x

y
x y y

2 −

+
⋅ −���

�
�� + �

��
�
�� − ⋅

+
⋅1

1
2

1

1

1
2 2

1 2
2

/
tan

/� � � �

= – 
x y

x y

2

2 2+
 – 

y

x y

3

2 2+
 + 2x tan–1 

y
x

= – 
y x y

x y

2 2

2 2

+

+

� �
� �

 + 2x tan–1 
y
x
�
��
�
��  = – y + 2x tan–1 

y
x
�
��
�
��

Again differentiating partially with respect to y, we get

 
∂
∂ ∂

2u
y x

=
∂
∂y

– tan–1y x
y
x

+ �
��
�
��

�
�

��
�

2  = – 1 + 2x 
1

1

1
2

+ ���
�
��

⋅
y
x

x

= – 1 + 
2 2

2 2
x

x y+
 = 

x y

x y

2 2

2 2

−
+

.  ������ ���	�
�

������� ��� If z = f (x – by) + φ (x + by), prove that

b2 ∂
∂

2

2

z
x

=
∂
∂

2

2
z

y
.

����� Given z = f (x – by) + φ (x + by) ...(i)

∴
∂
∂

z
x

= f ′ (x – by) + φ′ (x + by)

and  
∂
∂

2

2

z

x
= f ″ (x – by) + φ″ (x + by). ...(ii)

Again from (i),
∂
∂

z
y = – bf ′ (x – by) + bφ′ (x + by)

and
∂
∂

2

2

z

y = b2f ″ (x – by) + b2φ′′ (x + by) = b2 
∂
∂ ′

2

2

z

x
 from (ii). ���������	�
�

������� ��� If u (x, y, z) = log (tan x + tan y + tan z). Prove that

sin 2x 
∂
∂
u
x

 + sin 2y 
∂
∂
u
y  + sin 2z 

∂
∂
u
z

 = 2. (U.P.T.U., 2006)

����
∂
∂
u
x

=
sec

tan tan tan

2 x
x y z+ +
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∂
∂
u
y

=
sec

tan tan tan

2 y
x y z+ +

 
∂
∂
u
z

=
sec

tan tan tan

2 z
x y z+ +

∴ sin 2x 
∂
∂
u
x

 + sin 2y 
∂
∂
u
y  + sin 2z 

∂
∂
u
z

=
sin sec sin sec sin sec

tan tan tan
2 2 22 2 2x x y y z z

x y z
+ +

+ +

=
2 tan tan tan

tan tan tan

x y z

x y z

+ +
+ +

� �
� �

= 2. � ������ ���	�
�

EXERCISE 1.4

�� Find 
∂

∂ ∂ ∂

3u
x y z  if u = ex2+y2+z2. ����  8xyzu

�� Find the first order derivatives of

(i) u = xxy. ����  
∂
∂

= + ∂
∂

=
�
�
�

�
�
�+u

x
x y x y

u
y

x xxy xylog ; log� � 1

(ii) u = log x x y+ −�
�

�
�

2 2 ����  
∂
∂

=
−

∂
∂

= − − + −�
�

�
�

�

�
�
�

�

�
�
�

− −u
x x y

u
y

y x y x x y
1

2 2

2 2
1
2 2 2

1

� �

�� If u = sin–1 
x y

x y

−

+

�
��

�
��

, show that 
∂
∂
u
x

 = – 
y
x

 
∂
∂
u
y

.

�� If u = ex (x cos y – y sin y), prove that 
∂
∂

2

2

u

x
 + 

∂
∂

2

2

u

y
 = 0.

�� If u = a log (x2 + y2) + b tan–1 
y
x
�
��
�
�� , prove that 

∂
∂

2

2

u

x
 + 

∂
∂

2

2
u

y
 = 0.

�� If z = tan (y – ax) + (y + ax)3/2, prove that 
∂
∂

2

2

z

x
 – a

z

y
2

2

2

∂
∂

 = 0.

�� If u = 

x y z

x y z

2 2 2

1 1 1
, prove that 

∂
∂
u
x

 + 
∂
∂
u
y  + 

∂
∂
u
z

 = 0.
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�� If u = 2(ax + by)2 – (x2 + y2) and a2 + b2 = 1, find the value of 
∂
∂

2

2

u

x
 + 

∂
∂

2

2
u

y
. [����� 0]

�� If u = log (x2 + y2 + z2), find the value of 
∂
∂ ∂

2u
y z

. ����  
−

+ +

�

�

�
�
�

�

�

�
�
�

4
2 2 2 2

yz

x y z� �

��� If u = x y z2 2 2
1
2+ +� � , then prove that 

∂
∂

2

2

u

x
 + 

∂
∂

2

2

u

y  + 
∂
∂

2

2

u

z
 = 

2
u

.

��� If z = f (x + ay) + φ (x – ay), prove that 
∂
∂

2

2

z

y
 = a2 ∂

∂

2

2

z

x
.

��� If u = cos–1 x y x y− +� � � �/ , prove that x
u
x

∂
∂  + y

∂
∂
u
y

 = 0.

��� If u = log (x2 + y2), show that 
∂
∂

2

2

u

x
 + 

∂
∂

2

2

u

y
 = 0.

��� If u = x2y + y2z + z2x, show that 
∂
∂
u
x

 + 
∂
∂
u
y  + 

∂
∂
u
z

 = (x + y + z)2.

��� Prove that f (x, t) = a sin bx. cos bt satisfies 
∂
∂

2

2

f

x
 = b2 

∂
∂

2

2

f

t
.

��� If u = rm, where r = x y z2 2 2+ +  find 
∂
∂

2

2

u

x
 + 

∂
∂

2

2

u

y  + 
∂
∂

2

2

u

z
. [���� m (m + 1)rm−2]

��� If u = (x2 + y2 + z2)–1, prove that 
∂
∂

2

2

u

x
 + 

∂
∂

2

2

u

y
 + 

∂
∂

2

2

u

z
 = 2 (x2 + y2 + z2)–2.

��� If θ = tn e
r

t
−

2

4 , find the value of n, when 
1
2r

∂
∂r

 r
r t

2 ∂θ
∂

�
��

�
�� =

∂θ
∂

. ����  n = −�
��

�
��

3
2

��� For n = 2 or – 3 show that u = rn (3 cos2 θ – 1) satisfies the differential equation

∂
∂r

 r
u
r

2 ∂
∂

�
��

�
��  + 

1
sinθ

∂
∂θ

 sin θ
∂
∂θ

�
��

�
��

u
 = 0.

��� If u = eaθ cos (a log r), show that 
∂
∂
�
��

�
��

2

2
u

r
 + 

1
r

 
∂
∂
u
r

 + 
1
2r

 
∂
∂θ

2

2
u

 = 0.

��� If e

z

x y
−

−2 2� �  = (x – y), show that y
z
x

∂
∂

 + x
∂
∂

z
y

 = x2 – y2.

[����  Solve for z = (y2 – x2) log (x – y)].

��� If u = 
1
r

 and r2 = (x – a)2 + (y – b)2 + (z – c)2, prove that 
∂
∂

2

2

u

x
 + 

∂
∂

2

2

u

y  + 
∂
∂

2

2

u

z
 = 0.
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��� If u (x, y, z) = cos 3x cos 4y sin h 5z, prove that 
∂
∂

2

2

u

x
 + 

∂
∂

2

2
u

y  + 
∂
∂

2

2

u

z
 = 0.

��� If x2 = au + bv; y2 = au – bv, prove that 
∂
∂
�
��
�
��

∂
∂
�
��
�
�� =

∂
∂
�
��
�
��

∂
∂
�
��
�
��

u
x

x
u

v
y

y
vy v x u

1
2

.

��� If x = r cos θ, y = r sin θ, find 
∂
∂
�
��
�
��

x
r θ

, 
∂
∂θ
�
��
�
��

x

r,
 

∂θ
∂
�
��
�
��x y,

∂θ
∂
�
��
�
��y

x,

 
∂
∂
�
��
�
��

y
x r

.

[�����cos θ, – r sin θ, –r –1 sin θ, r –1 cos θ, – cot θ.]

1.5  HOMOGENEOUS FUNCTION

A polynomial in x and y i.e., a function f (x, y) is said to be homogeneous if all its terms are of
the same degree. Consider a homogeneous polynomial in x and y

f (x, y) = a0x
n + a1 xn−1 y + a2 xn-2y2 + ..... + an y

n

= xn a a
y
x

a
y
x

a
y
xn

n

0 1 2

2

+ �
��
�
�� + �

��
�
�� + + �

��
�
��

�

�
�
�

�

�
�
�

...

or f (x, y) = xn F 
y
x
�
��
�
��

Hence every homogeneous function of x and y of degree n can be written in above form.
!"#�  Degree of Homogeneous function = degree of numerator – degree of denominator.

Remark 1:Remark 1:Remark 1:Remark 1:Remark 1: If f (x, y) = a0x
n + a1x

n+1 . y–1 + a2x
n+2 . y–2 + ...... + anx

n+n
 y –n

= x a a
x
y

a
x
y

a
x
y

n
n

n

0 1 2

2

+ +
�
��
�
��

+ +
�
��
�
��


��
��

�
��
��

....

⇒ f (x, y) = xn F
x
y

�
��
�
�� ; degree = n

Remark 2:Remark 2:Remark 2:Remark 2:Remark 2: If f (x, y) = a0y
–n + a1y

–n–1 . x + ...... + any
–n–n

 . xn

= y a a
x
y

a
x
y

n
n

n

0 1+
�
��
�
��

+ +
�
��
�
��


��
��

�
��
��

... .

⇒ f (x, y) = y–n F
x
y

�
��
�
�� ; degree = –n

Another forms are also possible i.e.,

f (x, y) = yn F
x
y

�
��
�
�� ; f (x, y) = yn F(y/x)
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1.6  EULER’S THEOREM ON HOMOGENEOUS FUNCTIONS

���������  If f is a homogeneous function of x, y of degree n then

x 
∂
∂

f
x

 + y 
∂
∂

f
y = nf. (U.P.T.U., 2006)

$���%�� Since f is a homogeneous function

∴ f (x, y) = xn F 
y
x
�
��
�
�� ...(i)

Differentiating partially w.r.t. x and y, we get

∂
∂

f
x

= nxn−1 F 
y
x
�
��
�
��  + xn F′ 

y
x
�
��
�
��  

−�
��
�
��

y

x2 ...(ii)

∂
∂

f
y = xn F′

y
x
�
��
�
��  

1
x
�
��
�
�� ...(iii)

Multiplying (ii) by x and (iii) by y and adding, we have

x
∂
∂

f
x

 + y 
∂
∂

f
y

= nxn F 
y
x
�
��
�
��  – xn−1 y F′ 

y
x
�
��
�
��  + xn−1 y F′ 

y
x
�
��
�
��

= nxn F 
y
x
�
��
�
��

⇒ x 
∂
∂

f
x

 + y 
∂
∂

f
y

= n f    (from (i)).

In general if f (x1, x2, ..., xn) be a homogeneous function in x1, x2, ..., xn then x1 
∂
∂

f
x1

+ x2 
∂
∂

f
x2

+ ... + xn 
∂

∂
f

xn
 = nf.

&�������'� �� If f is a homogeneous function of degree n, then

x2 
∂
∂

2

2

f

x
 + 2xy 

∂
∂ ∂

2 f
x y

 + y2 
∂
∂

2

2

f

y
 = n (n –1)f.

$���%�� We have

x 
∂
∂

f
x

 + y 
∂
∂

f
y = n f ...(i)

Differentiating (i) w.r.t. x and y respectively, we get

∂
∂
f
x

 + x 
∂
∂

2

2

f

x
 + y 

∂
∂ ∂

2 f
x y

= n 
∂
∂

f
x

...(ii)

and   x 
∂
∂ ∂

2 f
y x

 + 
∂
∂
f
y  + y 

∂
∂

2

2

f

y
= n 

∂
∂

f
y

...(iii)

Multiplying (ii) by x and (iii) by y and adding, we have

x2 
∂
∂

2

2

f

x
 + 2xy 

∂
∂ ∂

2 f
x y  + y2 

∂2

2

f

xy  + x 
∂
∂

f
x

 + y 
∂
∂

f
y

 = n x
f
x

y
t
y

∂
∂

+
∂
∂

�
��

�
��
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⇒ x2 
∂
∂

2

2

f

x
 + 2xy 

∂
∂ ∂

2 f
x y  + y2 

∂
∂

2

2

f

y = n2f − nf = n (n – 1) f

������� �� Verify Euler’s theorem for the function

f (x, y) = ax2 + 2hxy + by2.

����� Here the given function f (x, y) is homogeneous of degree n = 2. Hence the Euler’s
theorem is

x 
∂
∂

f
x

 + y 
∂
∂

f
y

= 2f ...(i)

Now, we are to prove equation (i) as follows:

∂
∂

f
x

= 2 ax + 2 hy, 
∂
∂

f
y  = 2hx + 2by

∴ x 
∂
∂

f
x

 + y 
∂
∂

f
y = 2ax2 + 2hxy + 2hxy + 2by2

= 2(ax2 + 2 hxy + by2) = 2f

⇒ x 
∂
∂

f
x

 + y ∂
∂

f
y

= 2f, which proves equation (i).

������� �� Verify Euler’s theorem for the function u = xn sin 
y
x
�
��
�
�� .

����� Since u is homogeneous function in x and y of degree n, hence we are to prove that

x 
∂
∂
u
x

 + y 
∂
∂
u
y = nu ...(i)

We have u = xn sin 
y
x
�
��
�
��

∴
∂
∂
u
x

= nxn–1 sin 
y
x
�
��
�
��  + xn cos 

y
x
�
��
�
�� −���

�
��

y

x2

or x 
∂
∂
u
x

= nxn sin 
y
x
�
��
�
��  – xn–1 y cos 

y
x
�
��
�
�� ...(ii)

Similarly, y 
∂
∂
u
y

= yxn–1 cos 
y
x
�
��
�
�� ...(iii)

Adding (ii) and (iii), we get

 x 
∂
∂
u
x

 + y 
∂
∂
u
y = nxn sin 

y
x
�
��
�
��

⇒ x 
∂
∂
u
x

 + y 
∂
∂
u
y = nu

which verifies Euler’s theorem.
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Example 3.Example 3.Example 3.Example 3.Example 3. If u = sin–1 
x y

x y

−

+

w

y
x

z

|
{ , show by Euler’s theorem that

∂
∂
u
x

= – 
y
x

 
∂
∂
u
y

·

Sol. Sol. Sol. Sol. Sol. We have u = sin–1 
x y

x y

−

+

w

y
x

z

|
{  ⇒ sin u = 

x y

x y

−

+

Let f = sin u = 
x y

x y

−

+
Here, f is a homogeneous function in x and y

where, degree n =
1
2

 – 
1
2

 = 0

∴ By Euler’s theorem, we have

x 
∂
∂

f
x

 + y 
∂
∂

f
y

= 0. f = 0

or x 
∂
∂x

(sin u) + y 
∂
∂y  (sin u) = 0 As = sinf u

or x cos u · 
∂
∂
u
x

 + y cos u 
∂
∂
u
y = 0

⇒ x 
∂
∂
u
x

 + y 
∂
∂
u
y

= 0

⇒
∂
∂
u
x

= −
y
x

∂
∂
u
y

.   Hence proved.Hence proved.Hence proved.Hence proved.Hence proved.

Example 4.Example 4.Example 4.Example 4.Example 4. If u = log [(x4 + y4)/ (x + y)], show that

x
u
x
∂
∂  + y 

∂
∂
u
y

 = 3. (U.P.T.U., 2000)

Sol. Sol. Sol. Sol. Sol. We have u = loge 
x y

x y

4 4+
+  ⇒ eu = 

x y
x y

4 4+
+

Let f = eu = 
x y

x y

4 4+
+

Here the function f is a homogeneous function in x and y of degree, n = 4 – 1 = 3
∴ By Euler’s theorem

x 
∂
∂

f
x

 + y 
∂
∂

f
y = nf = 3f

⇒ x 
∂
∂x

 (eu) + y 
∂
∂y  (eu) = 3f
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⇒ x
u
x

y
u
y

∂
∂

+ ∂
∂

F
HG

I
KJ  eu = 3eu

⇒ x 
∂
∂
u
x  + y 

∂
∂
u
y

= 3. Hence proved.

Example 5. Verify Euler’s theorem for

u = sin–1 
x
y

F
HG
I
KJ  + tan–1 

y
x
F
HG
I
KJ . (U.P.T.U., 2006)

Sol. Here u is a homogeneous function of degree,
n = 1 – 1 = 0; hence by Euler’s theorem

x 
∂
∂
u
x

 + y 
∂
∂
u
y

= 0

Now,
∂
∂
u
x

=
1

1

1 1

1
2 2 2

−
F
HG
I
KJ

⋅ +
+ FHG
I
KJ

−FHG
I
KJ

x
y

y y
x

y
x

or x 
∂
∂
u
x =

x

y x2 2−
 – 

xy

x y2 2+
...(i)

and
∂
∂
u
y =

1

1
2

−
F
HG
I
KJ

x
y

. −
F
HG
I
KJ

x
y2

 + 
1

1
2

+ FHG
I
KJ

y
x

. 
1
x
F
HG
I
KJ

or y 
∂
∂
u
y

=
−

−
+

+

x

y x

xy

x y2 2 2 2e j
...(ii)

Adding (i) and (ii), we get

x 
∂
∂
u
x

 + y 
∂
∂
u
y

= 0, hence Euler’s theorem is verified.

Example 6. If u = x sin–1 
x
y

F
HG
I
KJ  + y sin–1 

y
x
F
HG
I
KJ , find the value of

x2 
∂
∂

2

2
u

x
 + 2xy 

∂
∂ ∂

2u
x y

  + y2  
∂
∂

2

2
u

y
. (U.P.T.U., 2007)

Sol. We have

u = x sin–1 
x
y

F
HG
I
KJ  + y sin–1 

y
x
F
HG
I
KJ

∴
∂
∂
u
x

= sin–1 
x
y

F
HG
I
KJ  + 

x

x
y

1
2

2−

 
1
y

F
HG
I
KJ  + y · 

1

1
2

2−
y

x

 −FHG
I
KJ

y

x2
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⇒ x 
∂
∂
u
x = x sin–1 

x
y

F
HG
I
KJ  + 

x

y x

2

2 2−
 – 

y

x y

2

2 2−
...(i)

and ∂
∂
u
y

= x · 
1

1
2

2− x
y

 −
F
HG
I
KJ

x
y2  + sin–1 

y
x
F
HG
I
KJ  + y

y

x

x
1

1

1
2

2−

F
HG
I
KJ

⇒ y 
∂
∂
u
y = – 

x

y x

2

2 2−
 + y sin–1 

y
x
F
HG
I
KJ  + 

y

x y

2

2 2−
...(ii)

Adding (i) and (ii), we get

x 
∂
∂
u
x  + y 

∂
∂
u
y = x sin–1 

x
y

F
HG
I
KJ  + y sin–1 

y
x
F
HG
I
KJ  = u ...(iii)

Differentiating (iii) partially w.r.t. x and y respectively.

∂
∂
u
x  + x 

∂
∂

2

2
u

x
 + y 

∂
∂ ∂

2u
x y

=
∂
∂
u
x  ⇒ x 

∂
∂

2

2
u

x
 + y 

∂
∂ ∂

2u
x y

 = 0 ...(iv)

and x 
∂

∂ ∂

2u
y x

 + 
∂
∂
u
y

 + y ∂
∂

2

2
u

y
=

∂
∂
u
y

 ⇒ y 
∂
∂

2

2
u

y
 + x 

∂
∂ ∂

2u
x y

= 0 ...(v)

Multiplying equation (iv) by x and (v) by y and adding, we get

x2 
∂
∂

2

2
u

x
 + 2xy 

∂
∂ ∂

2u
x y

 + y2 
∂
∂

2

2
u

y
  = 0.

Example 7. If u = tan–1 
x y
x y

3 3+
− , prove that x 

∂
∂
u
x

 + y 
∂
∂
u
y

 = sin 2u and evaluate

x2 
∂
∂

2

2
u

x
 + 2xy 

∂
∂ ∂

2u
x y

 + y2  
∂
∂

2

2
u

y
.

Sol. We have

u = tan–1 
x y
x y

3 3+
−  ⇒ tan u = 

x y
x y

3 3+
−

∴ Let f = tan u = 
x y
x y

3 3+
−

Since f (x, y) is a homogeneous function of degree
n = 3 – 1 = 2

By Euler’s theorem, we have

x 
∂
∂

f
x

 + y 
∂
∂

f
y

= nf ⇒ x 
∂
∂x  (tan u) + y 

∂
∂y

 (tan u) = 2 tan u

⇒ x 
∂
∂
u
x

 · sec2 u + y 
∂
∂
u
y

 · sec2 u = 2 tan u
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or x 
∂
∂
u
x  + y 

∂
∂
u
y

= 2 
tan
sec

u

u2  = sin 2u.  Proved. ...(i)

Differentiating (i) partially w.r.t. x, we get

x 
∂
∂

2

2
u

x
 + 

∂
∂
u
x

 + y 
∂

∂ ∂

2u
x y

= 2 cos 2u . 
∂
∂
u
x

or x 
∂
∂

2

2
u

x
 + y 

∂
∂ ∂

2u
x y

= (2 cos 2u –1) 
∂
∂
u
x

Multiplying by x, we obtain

x2 
∂
∂

2

2
u

x
 + xy 

∂
∂ ∂

2u
x y

= x (2 cos 2u –1) 
∂
∂
u
x ...(ii)

Again differentiating equation (i) partially w.r.t. y, we get

x 
∂

∂ ∂

2u
y x

 + y 
∂
∂

2

2
u

y
 + 

∂
∂
u
y

= 2 cos 2u 
∂
∂
u
y

or y 
∂
∂

2

2
u

y
 + x 

∂
∂ ∂

2u
y x

= (2 cos 2u – 1) 
∂
∂
u
y

or y2 
∂
∂

2

2
u

y
 + xy 

∂
∂ ∂

2u
x y

= y ( 2 cos 2u – 1) 
∂
∂
u
y (multiply by y) ...(iii)

Adding (ii) and (iii), we get

x2 
∂
∂

2

2
u

x
 + 2xy 

∂
∂ ∂

2u
x y

 + y2 
∂
∂

2

2
u

y
= ( 2cos 2u – 1) x

u
x

y
u
y

∂
∂

+ ∂
∂

F
HG

I
KJ

= (2cos 2u – 1) sin 2u, (from (i))
= (2sin 2u cos 2u – sin 2u)
= sin 4u – sin 2u

= 2 cos 
4 2

2
u u+F
HG

I
KJ  . cos 

4 2
2

u u−F
HG

I
KJ .

Hence, x2 
∂
∂

2

2
u

x
 + 2xy 

∂
∂ ∂

2u
x y  + y2 

∂
∂

2

2
u

y  = 2 cos 3u · cos u.

Example 8. If z = xm f
y
x
F
HG
I
KJ  + xn g 

x
y

F
HG
I
KJ , prove that

x2 
∂
∂

2

2
z

x
 + 2xy 

∂
∂ ∂

2z
x y

  + y2  
∂
∂

2

2
z

y
 + mnz = (m + n – 1) x

z
x

y
z
y

∂
∂

+ ∂
∂

F
HG

I
KJ ·

Sol. Let u = xm f 
y
x
F
HG
I
KJ , v = xn g 

x
y

F
HG
I
KJ

then z = u + v ...(i)
Now, u is homogeneous function of degree m. Therefore with the help of (Corollary 1, on

page 36), we have
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x2 
∂
∂

2

2
u

x
 + 2xy 

∂
∂ ∂

2u
x y

 + y2 
∂
∂

2

2
u

y
= m (m – 1) u ...(ii)

Similarly for v = xn g 
x
y

F
HG
I
KJ , we have

x2 
∂
∂

2

2
v

x
 + 2xy 

∂
∂ ∂

2v
x y  + y2 

∂
∂

2

2
v

y = n (n – 1) v ...(iii)

Adding (ii) and (iii), we get

x2 
∂

∂

2

2x
 (u + v) + 2xy 

∂
∂ ∂

2

x y  (u + v) + y2 
∂

∂y2  (u + v) = m (m – 1) u + n (n – 1) v

⇒ x2 
∂
∂

2

2
z

x
 + 2xy 

∂
∂ ∂

2z
x y  + y2 

∂
∂

2

2
z

y = m (m – 1) u + n (n – 1) v (As z = u + v). ...(iv)

Again from Euler’s theorem, we get

x 
∂
∂
u
x  + y 

∂
∂
u
y = m u and x 

∂
∂
v
x  + y 

∂
∂
v
y  = nv

Adding x
∂
∂x  (u + v) + y 

∂
∂y  (u + v) = mu + nv

⇒ x 
∂
∂
z
x  + y 

∂
∂
z
y = mu + nv ...(v)

Now, m (m –1) u + n (n – 1) v = (m2 u + n2v) – (mu + nv)
= m (m + n) u + n (m + n) v – mn (u + v) – (mu + nv)
= (mu + nv) (m + n) − (mu + nv) − mnz
= (mu + nv) (m + n – 1) – mnz

= (m + n –1) x
z
x

y
z
y

∂
∂

+ ∂
∂

F
HG

I
KJ  – mnz, from (v)

Putting this value in equation (iv), we get

x2 
∂
∂

2

2
z

x
 + 2xy 

∂
∂ ∂

2z
x y  + y2 

∂
∂

2

2
z

y = (m + n –1) x
z
x

y
z
y

∂
∂

+ ∂
∂

F
HG

I
KJ  – mnz

⇒  x2 
∂
∂

2

2
z

x
 + 2xy 

∂
∂ ∂

2z
x y  + y2 

∂
∂

2

2
z

y  + mnz = (m + n –1) x
z
x

y
z
y

∂
∂

+ ∂
∂

F
HG

I
KJ . Hence proved.

Example 9. If u = sin–1 
x y z

x y z

+ +

+ +

L

N
MM

O

Q
PP

2 3
8 8 8

, show that

x 
∂
∂
u
x  + y 

∂
∂
u
y  + z 

∂
∂
u
z  + 3 tan u = 0. (U.P.T.U., 2003)
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Sol. We have u = sin–1 
x y z

x y z

+ +

+ +

L

N
MM

O

Q
PP

2 3
8 8 8

⇒ sin u =
x y z

x y z

+ +

+ +

L

N
MM

O

Q
PP

2 3
8 8 8

, let f = sin u

∴ Degree of homogeneous function f, n = 1 – 4 = – 3, from Euler’s theorem, we have

x 
∂
∂

f
x

 + y 
∂
∂

f
y  + z 

∂
∂
f
z

= – 3 sin u

⇒ x 
∂
∂x  (sin u) + y 

∂
∂y (sin u) + z 

∂
∂z  (sin u) = – 3 sin u

or x
u
x

y
u
y

z
u
z

∂
∂

+ ∂
∂

+ ∂
∂

F
HG

I
KJ  cos u = – 3 sin u

or x 
∂
∂
u
x  + y 

∂
∂
u
y  + z 

∂
∂
u
z  + 3 tan u = 0.  Hence proved.

Example 10. If V = loge sin 
π 2

2 2

2 2
1
2

2 2
1
3

x y zx

x xy yz z

+ +

+ + +

R
S
||

T
||

U
V
||

W
||

e j

e j
, find the value of

x 
∂
∂
V
x  + y 

∂
∂
V
y  + z 

∂
∂
V
z , when x = 0, y = 1, z = 2.

Sol. We have V = log sin 
π 2

2 2

2 2
1
2

2 2
1
3

x y zx

x xy yz z

+ +

+ + +

R
S
||

T
||

U
V
||

W
||

e j

e j

∴ eV = sin
π 2

2 2

2 2
1
2

2 2
1
3

x y zx

x xy yz z

+ +

+ + +

R
S
||

T||

U
V
||

W||

e j
e j

or sin–1 (eV) =
π 2

2 2

2 2
1
2

2 2
1
3

x y zx

x xy yz z

+ +

+ + +

R
S
||

T
||

U
V
||

W
||

e j

e j

Let f = sin–1 (ev) =
π 2

2 2

2 2
1
2

2 2
1
3

x y zx

x xy yz z

+ +

+ + +

R
S
||

T
||

U
V
||

W
||

e j

e j

Since f is a homogeneous function ∴ n = 1 – 
2
3  = 

1
3
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By Euler’s theorem, we get

x 
∂
∂

f
x

 + y 
∂
∂

f
y

 + z 
∂
∂
f
z

=
1
3  f

⇒   x 
∂
∂x  (sin–1 eV) + y 

∂
∂y

 (sin–1 eV) + z 
∂
∂z  (sin–1 eV) = 

1
3  sin–1 eV

⇒ x
V
x

y
V
y

z
V
z

∂
∂

+ ∂
∂

+ ∂
∂

F
HG

I
KJ  

1

1 2

×

−

F
HG

I
KJ

e

e

V

V =
1
3  sin–1 eV

⇒ x 
∂
∂
V
x

 + y 
∂
∂
V
y  + z 

∂
∂
V
z

= 1 2− e
e

V

V  × 
1
3

 sin–1 eV ...(i)

Now, eV
x
y
z

e j =
=
=

0
1
2

= sin 
π

2 2×
RST
UVW  = 

1
2 , e2V = 

1
2

and sin−
=
=
=

1
0
1
2

eV
x
y
z

e j =
π
4

Putting all these values in equation (i), we get

x 
∂
∂
V
x

 + y 
∂
∂
V
y

 + z 
∂
∂
V
z

=
1 1 2

1
2

−
 × 

1
3  × 

π
4  = 

1 2
1 2

 × 
π
12

⇒ x 
∂
∂
V
x

 + y 
∂
∂
V
y

 + z 
∂
∂
V
z

=
π
12 .

Example 11. If u = x3y2 sin–1 
y
x
F
HG
I
KJ , show that

x 
∂
∂
u
x  + y 

∂
∂
u
y = 5u and x2 

∂
∂

2

2
u

x
 + 2xy 

∂
∂ ∂

2u
x y

 + y2 
∂
∂

2

2
u

y  = 20u.

Sol. u = x3y2 sin–1 
y
x
F
HG
I
KJ

= x5 
y
x
F
HG
I
KJ

2

 sin–1 
y
x
F
HG
I
KJ  = x5 F 

y
x
F
HG
I
KJ F

y
x

y
x

y
x

F
HG
I
KJ = FHG
I
KJ

−
2

1sin

∴ u is a homogeneous function of degree 5 i.e., n = 5

By Euler’s theorem, we get x 
∂
∂
u
x  + y 

∂
∂
u
y  = 5u. Proved.

Next, we know that (from Corollary 1, on page 36)

x2 
∂
∂

2

2
u

x
 + 2xy 

∂
∂ ∂

2u
x y  + y2 

∂
∂

2

2
u

y = n (n – 1) u = 5 (5 – 1) u

or x2 
∂
∂

2

2
u

x
 + 2xy 

∂
∂ ∂

2u
x y

 + y2 
∂
∂

2

2
u

y
= 20 u. Hence proved.
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�������� 	
� If u = x f1 
y
x

F
HG

I
KJ  + f2 

y
x

F
HG

I
KJ , prove that

x2 
∂
∂

2

2

u

x
 + 2xy 

∂
∂ ∂

2u
x y

 + y2 
∂
∂

2

2
u

y
 = 0.

���� Let u1 = x f1 
y
x

F
HG

I
KJ  and u2 = x0f2 

y
x

F
HG

I
KJ , then u = u1 + u2

Since u1 is a homogeneous function of degree one. So by Corollary 1 on page 36, we get

x2 
∂
∂

2
1
2

u

x
 + 2xy 

∂
∂ ∂

2
1u

x y  + y2 
∂
∂

2
1
2

u
y = 1 (1 – 1) = 0 ...(i)

and u2 is also a homogeneous function of degree 0

∴ x2 
∂
∂

2
2

2

u
x

 + 2xy 
∂
∂ ∂

2
2u

x y  + y2 
∂
∂

2
2

2

u

y = 0 ...(ii)

Adding (i) and (ii), we get

x2 
∂
∂

2

2x
 (u1 + u2) + 2xy 

∂
∂ ∂

2

x y
 (u1 + u2) + y2 

∂
∂

2

2y
 (u1 + u2) = 0

⇒ x2 
∂
∂

2

2

u

x
 + 2xy 

∂
∂ ∂

2u
x y

 + y2 
∂
∂

2

2

u

y
= 0. ������ ������

�������� 	��� If u = sin–1 (x3 + y3)2/5, evaluate 
x u

x
xy

u
x y

y
u

y

2 2

2

2
2

2

22
∂
∂

+ ∂
∂ ∂

+ ∂
∂

.

���� Given u = sin–1 (x3 + y3)2/5

sin u = (x3 + y3)2/5 = x6/5 1
3

3

2 5

+
F
HG

I
KJ

y

x

Let f = sin u

∴ f = x6/5 1
3

3

2 5

+
F
HG

I
KJ

y

x
...(i)

which is homogeneous of degree n = 
6
5

. By Euler’s theorem

x
f
x

y
f
y

∂
∂

+
∂
∂

=
6
5

f

⇒ x
x

u y
y

u
∂
∂

+ ∂
∂

sin sinb g b g = 6
5

sin u

or x
u
x

u y
u
y

u
∂
∂

+ ∂
∂

cos cos = 6
5

sin u

x
u
x

y
u
y

∂
∂

+ ∂
∂

=
6
5

tanu ...(ii)
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Differentiating (ii) w.r. to ’x‘, we get

∂
∂

+ ∂
∂

+ ∂
∂ ∂2

u
x

x
u

x
y

u
x y

2 2

=
6
5

2sec .u
u
x

∂
∂

Multiplying by x

x
u
x

x
u

x
xy

u
x y

∂
∂

+ ∂
∂

+ ∂
∂ ∂

2
2

2

2

=
6
5

2sec .u x
u
x

∂
∂

...(iii)

Differentiating (ii) w.r. to ‘y’, we get

x u
y x

u
y

y u
y

∂
∂ ∂

+ ∂
∂

+ ∂
∂

2 2

2 =
6
5

2sec u u
y

∂
∂

Multiplying by y

y u
y

y u
y

xy u
x y

∂
∂

+ ∂
∂

+ ∂
∂ ∂

2
2

2

2
=

6
5

2sec .u y
u
y

∂
∂

...(iv)

Adding (iii) and (iv), we get

x u
x

xy u
x y

y u
y

2
2

2

2
2

2

22∂
∂

+ ∂
∂ ∂

+ ∂
∂

= x
u
x

y
u
y

u
∂
∂

+ ∂
∂

F
HG

I
KJ −F
HG

I
KJ

6
5

12sec

or x u
x

xy u
x y

y u
y

2
2

2

2
2

2

22∂
∂

+ ∂
∂ ∂

+ ∂
∂

= 6
5

6
5

12tan secu u−F
HG

I
KJ As x

u
x

y
u
y

u
∂
∂

+ ∂
∂

= 6
5

tan

Example 14. If u = 3x4 cot–1 
y
x
F
HG
I
KJ  + 16y4 cos–1 

x
y

F
HG
I
KJ  then prove that

x u
x

xy u
x y

y u
y

∂
∂

+ ∂
∂ ∂

+ ∂
∂

2

2

2
2

2

22 = 12u.

Sol. The given function is homogeneous function of degree 4. By Euler’s theorem, we have

x
u
x

y
u
y

∂
∂

+
∂
∂

= 4u ...(i)

Differentiating (i) w.r. to x, we get

∂
∂

+ ∂
∂

+ ∂
∂

u
x

x u
x

y u
y

2

2

2

2 = 4 ∂
∂
u
x

or x u
x

x u
x

xy u
y

∂
∂

+ ∂
∂

+ ∂
∂

2
2

2

2

2 = 4x u
x

∂
∂

...(ii)

Differentiating (i) w.r. to y, we get

x u
x y

u
y

y u
y

∂
∂ ∂

+ ∂
∂

+ ∂
∂

2 2

2 = 4 ∂
∂
u
y

or xy u
x y

y u
y

y u
y

∂
∂ ∂

+ ∂
∂

+ ∂
∂

2
2

2

2 = 4y
u
y

∂
∂ ...(iii)
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Adding (ii) and (iii), we get

x u
x

xy u
x y

y u
y

2
2

2

2
2

2

22∂
∂

+ ∂
∂ ∂

+ ∂
∂

= 3 x
u
x

y
u
y

∂
∂

+ ∂
∂

F
HG

I
KJ

or x u
x

xy u
x y

y u
y

2
2

2

2
2

2

22∂
∂

+ ∂
∂ ∂

+ ∂
∂

= 3 × 4u = 12u. Hence proved.

EXERCISE 1.5

 Verify Euler’s theorem

1. x y2 2− . 2. x y x y
1
4

1
4

1
5

1
5+

F
HG

I
KJ +
F
HG

I
KJ . 3. cos–1 

x
y

F
HG
I
KJ  + cot–1 

y
x
F
HG
I
KJ.

4. x y
1
3

4
3

−  tan–1 
y
x
F
HG
I
KJ. 5.

xy
x y+b g . 6. cos–1 

x
y

F
HG
I
KJ  + cot–1 

y
x
F
HG
I
KJ .

7. If u = loge

x y
x y

4 4+
+

F
HG

I
KJ , show that x 

∂
∂
u
x  + y 

∂
∂
u
y  = 3. (U.P.T.U., 2000)

8. If u = x y
1
4

1
4+

FH IK  x y
1
5

1
5+

F
H

I
K , show that x 

∂
∂
u
x  + y 

∂
∂
u
y  = 

9
20  u [U.P.T.U. (AG), 2005]

9. If z = x4y2 sin–1 
x
y

F
HG
I
KJ  + log x – log y, show that x 

∂
∂
z
x  + y 

∂
∂
z
y

 = 6x4y2 sin–1 
x
y

F
HG
I
KJ .

[U.P.T.U. (C.O.)., 2003]

10. If u = x3 + y3 + z3 + 3xyz; show that x 
∂
∂
u
x

 + y 
∂
∂
u
y

 + z 
∂
∂
u
z

 = 3u.

11. If u = cos–1 
x y
x y

−
+
L
NM
O
QP

, prove that x 
∂
∂
u
x  + y 

∂
∂
u
y  = 0.

12. If u = log [(x2 + y2)/(x + y)], prove that x 
∂
∂
u
x  + y 

∂
∂
u
y  = 1. (U.P.T.U., 2008)

13. If u = sin–1 {(x2 + y2)/(x + y)}, show that x 
∂
∂
u
x  + y 

∂
∂
u
y  = tan u.

14. If u = sin–1 {(x + y)/( x  + y )}. Show that x 
∂
∂
u
x  + y 

∂
∂
u
y   = 

1
2  tan u.

15. If u = tan–1 [(x2 + y2)/(x + y)], then prove that x 
∂
∂
u
x  + y 

∂
∂
u
y   = 

1
2  sin 2u.

16. If u is a homogeneous function of degree n, show that

(a) x 
∂
∂

2

2
u

x
 + y 

∂
∂ ∂

2u
x y  = (n – 1) 

∂
∂
u
x

. (b) y 
∂
∂

2

2
u

y
 + x 

∂
∂ ∂

2u
x y  = (n – 1) 

∂
∂
u
y

.
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17. If u = f 
y
x
F
HG
I
KJ , show that x 

∂
∂
u
x  + y 

∂
∂
u
y

 = 0.

18 . If u = sin–1 
x y

x y

1
4

1
4

1
6

1
6

+

+

L

N
MMM

O

Q
PPP

, prove that x2 
∂
∂

2

2
u

x
 + 2xy 

∂
∂ ∂

2u
x y  + y2 

∂
∂

2

2
u

y
  = 

1
144  tan u [tan2u – 11].

19 . Prove that x 
∂
∂
u
x  + y 

∂
∂
u
y  = 

5
2  tan u if u = sin–1 

x y

x y

3 3+
+

F
HG

I
KJ .

20 . Verify Euler’s theorem for f = 
z

x y+
 + 

y
z x+

 + 
x

y z+
.

21 . If u = y2 ey x  + x2 tan–1 
x
y

F
HG
I
KJ , show that x 

∂
∂
u
x  + y 

∂
∂
u
y  = 2u and x2 

∂
∂

2

2
u

x
 + 2xy 

∂
∂ ∂

2u
x y +

y2 
∂
∂

2

2
u

y  = 2u.

22. If x y+e j  sin2 u = x y
1
3

1
3+ , prove that x2 ∂

∂

2

2
u

x
 + 2xy

∂
∂ ∂

2u
x y

 + y2 ∂
∂

2

2
u

y
 = 

tanu
12

13
12 12

2

+
F
HG

I
KJ

tan u
.

23 . If u = tan–1 
y
x

2F
HG
I
KJ , show that x2 

∂
∂

2

2
u

x

24 . If f (x, y) = 
1
2x

 + 
1
xy

 + 
log logx y

x y

−
+2 2 , show that x 

∂
∂

f
x

 + y 
∂
∂

f
y  + 2f (x, y) = 0.

25 . If u = sec–1 {(x3 + y3) / (x + y)}, show that x 
∂
∂
u
x  + y 

∂
∂
u
y  = 2 cot u.

1.7 TOTAL DIFFERENTIAL COEFFICIENT

Let z = f (x, y) ...(i)

where x = φ (t) and y = ψ (t), then z can be expressed as a function of t alone by substituting the
values of x and y in terms of t from the last two equations in equation (i).

And we can find the ordinary differential coefficient 
dz
dt , which is called total differential

coefficient of z with respect to t. Since it is very difficult sometimes to express z in terms of t alone

by eliminating x and y. So we are now to find 
dz
dt  without actually substituting the values of x

and y in terms of t in z = f (x, y).
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Let δx, δy and δz be the increaments in x, y and z corresponding to a small increament δt in
the value of t.
then z + δz = f (x + δx, y + δy) ...(ii)
where x + δx = φ (t + δt), y + δy = ψ (t + δt)

Now,
dz
dt = Lim

δt→0  
δ
δ
z
t  = Lim

δt→0
f x x y y f x y

t
+ + −δ δ

δ
, ( , )b g

 (from ii)

= Lim
δt→0  

f x x y y f x x y f x x y f x y
t

+ + − + + + −δ δ δ δ
δ

, ( , ) ( , ) ( , )b g
{Adding and subtracting f (x + δx, y)}

= Lim
δt→0  

f x x y y f x x y

t

+ + − +δ δ δ
δ

, ( , )b g
 + Lim

δt→0  
f x x y f x y

t
+ −δ

δ
, ( , )b g

= Lim
δt→0

f x x y y f x x y
y

y
t

+ + − +
⋅

L
N
MM

O
Q
PP

δ δ δ
δ

δ
δ

, ,b g b g
 + Lim

δt→0  
f x x y f x y

x
x
t

+ −
⋅

L
N
MM

O
Q
PP

δ
δ

δ
δ

, ,b g b g

Also, as δt → 0, δx → 0, δy → 0

∴
dz
dt

= Lim Lim
δ δ

δ
δ

δ
δt t

f x y
y

y
t

f x y
x

x
t→ →

∂
∂

L
N
MM

O
Q
PP +

∂
∂

L
N
MM

O
Q
PP0 0

, ,b g b g

=
∂

∂
+

∂
∂

⋅
f x y

y
dy
dt

f x y
x

dx
dt

, ,b g b g

∴
dz
dt

=
∂
∂
z
x

 
dx
dt

 + 
∂
∂
z
y

 
dy
dt

...(iii) (As z = f (x, y))

In general
dz
dt =

∂
∂

z
x1

 
dx
dt

1  + 
∂

∂
z

x2
 

dx
dt

2  +....+ 
∂

∂
z

xn
 

dx
dt

n

The above relation can be also written as

dz =
∂
∂
z
x dx + 

∂
∂
z
y  dy  , which is called total differential of z.

Corollary: If z = f (x, y) and suppose y is the function of x, then f is a function of one
independent variable x. Here y is intermediate variable. Identifying t with x in (iii), we get

dz
dx =

∂
∂
z
x  

dx
dx  + 

∂
∂
z
y  

dy
dx

 ⇒  
dz
dx

 = 
∂
∂
z
x

 + 
∂
∂
z
y

 
dy
dx

 .

1.7.1  Change of Variables
Let z = f (x, y) where x = φ (s, t) and y = ψ (s, t) then z is considered as function of s and t.

Now the derivative of z with respect s is partial but not total. Keeping t constant the
equation (iii) modified as

∂
∂
z
s

=
∂
∂

f
x

 · 
∂
∂
x
s

 + 
∂
∂

f
y

 · 
∂
∂
y
s

...(A)
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In a similar way, we get

∂
∂
z
t

=
∂
∂

f
x

 · 
∂
∂
x
t

 + 
∂
∂

f
y

∂
∂
y
t

· ...(B)

The equations (A) and (B) are known as chain rule for partial differentiation.

Example 1. Find the total differential coefficient of x2 y w.r.t. x when x, y are connected by
x2 + xy + y2 = 1.

Sol. Let z = x2 y ...(i)
Then the total differential coefficient of z

dz
dx =

∂
∂
z
x · 

dx
dx  + 

∂
∂
z
x · 

dy
dx

 = 
∂
∂
z
x  + 

∂
∂
z
y · 

dy
dx

...(ii)

From (i) 
∂
∂
z
x  = 2xy, 

∂
∂
z
y  = x2 and we have

x2 + xy + y2 = 1 ...(iii)
Differentiating w.r.t. x, we get

2x + 
dy
dx

 x + y + 2y 
dy
dx

= 0

(2x + y) + (x + 2y) 
dy
dx

= 0

⇒
dy
dx

= – 
2

2
x y

x y
+

+
Putting these values in equation (ii), we get

dz
dx = 2xy + x2 −

+
+

F
HG

I
KJ

2
2

x y
x y  = 2xy – 

x x y

x y

2 2

2

+
+
b g
b g .

Example 2. If f (x, y) = 0, φ (y, z) = 0, show that

∂
∂

f
y  

∂φ
∂z  

dz
dx =

∂
∂

f
x

. 
∂φ
∂y

·

Sol. We have f (x, y) = 0 ...(i)
φ (y, z) = 0 ...(ii)

From (i)
df
dx

=
∂
∂

f
x

 + 
∂
∂

⋅
f
y

dy
dx

 = 0 ⇒ 
dy
dx

 = −

∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ

f
x

f
y

From (ii)
d
dy
φ

=
∂φ
∂y

 + 
∂φ
∂

⋅
z

dz
dy

 = 0 ⇒ 
dz
dy

 = −

∂φ
∂
F
HG
I
KJ

∂φ
∂
F
HG
I
KJ

y

z
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Multiplying these two results, we get

dz
dx =

∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ

f
x

f
y

 × 

∂φ
∂
F
HG
I
KJ

∂φ
∂
F
HG
I
KJ

y

z

or
∂
∂

f
y

 
∂φ
∂z

 
dz
dx

=
∂
∂

⋅ ∂φ
∂

f
x y

·  Hence proved.

Example 3. If u = u 
y x
xy

z x
xz

− −F
HG

I
KJ, , show that

 x2 
∂
∂
u
x

 + y2 
∂
∂
u
y + z2 

∂
∂
u
z

= 0. (U.P.T.U., 2005)

Sol. Let s =
y x
xy
−

 = 
1
x

 – 
1
y

 and t = 
z x
zx
−

 = 
1
x

 – 
1
z

So
∂
∂
s
x = – 

1
2x

, 
∂
∂
s
y  = 

1
2y

, 
∂
∂

t
x  = − ∂

∂
=1 1

2 2x

t
z z

, , 
∂
∂

t
y

 = 0

∂
∂

s
z = 0

Since u = u(s, t)

∴
∂
∂
u
x =

∂
∂

⋅ ∂
∂

+ ∂
∂

⋅ ∂
∂

u
s

s
x

u
t

t
x

⇒
∂
∂
u
x =

∂
∂
u
s  – 1

2x
F
HG
I
KJ  + 

∂
∂
u
t  −FHG

I
KJ

1
2x

or x2 
∂
∂
u
x = – 

∂
∂
u
s  – 

∂
∂
u
t ...(i)

Next,
∂
∂
u
y

=
∂
∂
u
s

 
∂
∂
s
y

 + 
∂
∂
u
t

 
∂
∂

t
y

or
∂
∂
u
y =

1
2y  

∂
∂
u
s  + 0 ⇒ y2 

∂
∂
u
y  = 

∂
∂
u
s ...(ii)

and
∂
∂
u
z =

∂
∂
u
s  

∂
∂
s
z  + 

∂
∂
u
t  

∂
∂

t
z  = 0 + 

1
2z

 
∂
∂
u
t

⇒ z2 
∂
∂
u
z =

∂
∂
u
t ...(iii)

Adding (i), (ii) and (iii), we get

x2 
∂
∂
u
x  + y2 

∂
∂
u
y  + z2 

∂
∂
u
z = – 

∂
∂
u
s  – 

∂
∂
u
t  + 

∂
∂
u
s  + 

∂
∂
u
t  = 0. Hence proved.

Example 4. Prove that 
∂
∂

2

2
u

x
 + 

∂
∂

2

2
u

y
 = 

∂
∂ξ

2

2
u

 + 
∂
∂η

2

2
u

, where

 x = ξ cos α – η sin α, y = ξ sin α + η cos α.
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Sol. We have x = ξ cos α – η sin α, y = ξ sin α + η cos α.

∴
∂
∂ξ
x

= cos α, 
∂
∂η

x
 = – sin α and 

∂
∂ξ
y

 = sin α, 
∂
∂η
y

 = cos α

Now, Let u = u (x, y)

⇒
∂
∂ξ
u

=
∂
∂
u
x · 

∂
∂ξ
x

 + 
∂
∂
u
y · 

∂
∂ξ
y

 =  cos α 
∂
∂
u
x

 + sin α 
∂
∂
u
y

...(i)

and
∂
∂η
u

=
∂
∂
u
x · 

∂
∂η

x
 + 

∂
∂
u
y

· 
∂
∂η
y

 = – sin α 
∂
∂
u
x  + cos α 

∂
∂
u
y

...(ii)

Again
∂
∂ξ

2

2
u

=
∂
∂ξ  

∂
∂ξ
F
HG
I
KJ

u
 = cos sin cos sinα α α α∂

∂
+ ∂

∂
F
HG

I
KJ

∂
∂

+ ∂
∂

F
HG

I
KJx y

u
x

u
y

⇒
∂
∂ξ

2

2
u

= cos2α 
∂
∂

2

2
u

x
 + 2 sin α cos α 

∂
∂ ∂

2u
x y  + sin2α 

∂
∂

2

2
u

y ...(iii)

and
∂
∂η

2

2
u

=
∂

∂η  
∂
∂η
F
HG
I
KJ

u
 = – sin cos – sin cosα α α α∂

∂
+ ∂

∂
F
HG

I
KJ

∂
∂

+ ∂
∂

F
HG

I
KJx y

u
x

u
y

∂
∂η

2

2
u

= sin2α 
∂
∂

2

2
u

x
 – 2 sin α cos α 

∂
∂ ∂

2u
x y  + cos2α 

∂
∂

2

2
u

y ...(iv)

Adding (iii) and (iv), we get

∂
∂ξ

2

2
u

 + 
∂
∂η

2

2
u

=
∂
∂

2

2
u

x
· (cos2α + sin2α) + (cos2α + sin2α) 

∂
∂

2

2
u

y

=
∂
∂

2

2
u

x
 + 

∂
∂

2

2
u

y
.   Hence proved.

Example 5. If u = f (y – z, z – x, x – y), show that

 ∂
∂
u
x

 + 
∂
∂
u
y

 + 
∂
∂
u
z

  = 0. (U.P.T.U., 2003)

Sol. Let r = y – z, s = z – x, t = x – y
Then u = f (r, s, t)

∴
∂
∂
u
x =

∂
∂
f
r

· ∂
∂
r
x

 + 
∂
∂
f
s

·
∂
∂
s
x

 + 
∂
∂
f
t

·
∂
∂

t
x

⇒
∂
∂
u
x =

∂
∂

f
r

 × 0 + 
∂
∂
f
s

 (–1) + 
∂
∂
f
t

 (1) As ∂
∂

= ∂
∂

= − ∂
∂

=r
x

s
x

t
x

0 1 1, ,

⇒
∂
∂
u
x

= – 
∂
∂
f
s

 + 
∂
∂
f
t

...(i)

∂
∂
u
y =

∂
∂
f
r

·
∂
∂
r
y

 + 
∂
∂
f
s

·
∂
∂
s
y

 + 
∂
∂
f
t

·
∂
∂

t
y

=
∂
∂
f
r

 (1) + 
∂
∂
f
s

 (0) + 
∂
∂
f
t

 (–1) As 
∂
∂

= ∂
∂

= ∂
∂

= −r
y

s
y

t
y

1 0 1, ,

⇒
∂
∂
u
y =

∂
∂
f
r

 – 
∂
∂
f
t

...(ii)
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and
∂
∂
u
z =

∂
∂
f
r

·
∂
∂
r
z  + 

∂
∂
f
s

·
∂
∂
s
z  + 

∂
∂
f
t

·
∂
∂

t
z

=
∂
∂
f
r

 (–1) + 
∂
∂
f
s

 (1) + 
∂
∂
f
t

 (0) As ∂
∂

= − ∂
∂

= ∂
∂

=r
z

s
z

t
z

1 1 0, ,

⇒
∂
∂
u
z

= – 
∂
∂
f
r

 + 
∂
∂
f
s

...(iii)

Adding equations (i), (ii) and (iii), we get

∂
∂
u
x  + 

∂
∂
u
y  + 

∂
∂
u
z = 0.   Hence proved.

Example 6. If x = r cos θ, y = r sin θ, show that

 
∂
∂
r
x =

∂
∂
x
r

 ; 
∂
∂θ
x

r  = r 
∂θ
∂x

 and find the value of 
∂
∂

2

2
θ

x
 + 

∂
∂

2

2
θ

y
·

Sol. We have x = r cos θ, y = r sin θ

⇒ r2 = x2 + y2 and θ = tan–1 
y
x
F
HG
I
KJ

∴ 2r · 
∂
∂
r
x

= 2x ⇒ 
∂
∂
r
x  = x

r
 = 

r
r

cosθ
 = cos θ ...(i)

and we have x =  r cos θ ⇒ 
∂
∂
x
r  = cos θ ...(ii)

From equations (i) and (ii), we get
∂
∂
r
x =

∂
∂
x
r .   Hence proved.

Now,
∂
∂θ
x

= – r sin θ ⇒ 
1
r  

∂
∂θ
x

 = – sin θ ...(iii)

and
∂θ
∂x =

1

1
2

2+
y

x

 −FHG
I
KJ

y

x2  = – 
y

x y2 2+
 = – 

r

r

sin θ
2

= – 
1
r  sin θ ⇒ r 

∂θ
∂x  = – sin θ ...(iv)

From equations (iii) and (iv), we obtain
1
r  

∂
∂θ
x

= r 
∂θ
∂x .   Hence proved.

Since
∂θ
∂x = – 

y

x y2 2+
 ⇒ 

∂
∂

2

2
θ

x
 = 

y x

x y

×

+

2
2 2 2e j

 ⇒ 
∂
∂

2

2
θ

x
 = 

2
2 2 2

xy

x y+e j
...(v)

and
∂θ
∂y =

1

1
2

2+
y

x

 
1
x
F
HG
I
KJ  = 

x

x y2 2+e j  ∴ 
∂
∂

2

2
θ

y
 = – 

2
2 2 2

xy

x y+e j
...(vi)

Adding equations (v) and (vi), we get

∂
∂

2

2
θ

x
 + 

∂
∂

2

2
θ

y = 0.
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Example 7. If φ (x, y, z) = 0, show that

∂
∂
F
HG
I
KJ

y
z x

 
∂
∂
F
HG
I
KJ

z
x y

 
∂
∂
F
HG
I
KJ

x
y

z
 = – 1. (U.P.T.U., 2004)

Sol. We have φ (x, y, z) = 0
Keeping y as constant, differentiate partially w.r.t. x, we get

∂φ
∂
F
HG
I
KJx  + 

∂φ
∂
F
HG
I
KJz ·

∂
∂
F
HG
I
KJ

z
x y

= 0

⇒
∂
∂
F
HG
I
KJ

z
x y

= – 

∂φ
∂
F
HG
I
KJ

∂φ
∂
F
HG
I
KJ

x

z

...(i)

Next, keeping z as constant, differentiate partially w.r.t. y, we obtain

∂φ
∂x  

∂
∂
F
HG
I
KJ

x
y

z

 + 
∂φ
∂y = 0

⇒ ∂
∂
F
HG
I
KJ

x
y

z

= −

∂φ
∂
F
HG
I
KJ

∂φ
∂
F
HG
I
KJ

y

x

...(ii)

Similarly,
∂
∂
F
HG
I
KJ

y
z x

= – 

∂φ
∂
F
HG
I
KJ

∂φ
∂
F
HG
I
KJ

z

y

...(iii)

Multiplying equations (i), (ii) and (iii), we get

∂
∂
F
HG
I
KJ

y
z x

 
∂
∂
F
HG
I
KJ

z
x y

 
∂
∂
F
HG
I
KJ

x
y

z
= –1.  Hence proved.

Example 8. If x + y = 2eθ cos φ and x – y = 2i eθ sin φ, show that

 
∂
∂θ

2

2
V

 + 
∂
∂φ

2

2
V

 = 4xy 
∂
∂ ∂

2V
x y

· (U.P.T.U., 2001)

Sol. We have x + y = 2eθ cos φ
x – y = 2ieθ sin φ

Adding 2x = 2 (eθ) (cos φ + i sin φ)
x = eθ + i φ ...(i)

and subtracting, we get y = eθ – i φ ...(ii)

Let V = V (x, y)

∴
∂
∂θ
V

=
∂
∂
V
x  · 

∂
∂θ
x

 + 
∂
∂
V
y  · 

∂
∂θ
y

∂
∂θ
V

= x ∂
∂
V
x

 + y 
∂
∂
V
y

As = = ,+∂
∂θ

∂
∂θ

= =−x
e x

y
e yi iθ φ θ φ
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∴
∂
∂θ

2

2
V

=
∂
∂θ  

∂
∂θ
F
HG
I
KJ

V
 = x

x
y

y
∂
∂

+ ∂
∂

F
HG

I
KJ  x

V
x

y
V
y

∂
∂

+ ∂
∂

F
HG

I
KJ

⇒
∂
∂θ

2

2
V

= x2 
∂
∂

2

2
V

x
 + y2 

∂
∂

2

2
V

y
 + 2xy ∂

∂ ∂

2V
x y

 + x
V
x

y
V
y

∂
∂

+ ∂
∂

F
HG

I
KJ ...(iii)

Now
∂
∂φ
V

=
∂
∂
V
x

 · 
∂
∂φ
x

 + 
∂
∂
V
y

 
∂
∂φ
y

 = 
∂
∂
V
x

 (ix) + 
∂
∂
V
y

 (–iy) As = =∂
∂φ

∂
∂φ

=
x

ix
y

iy–

⇒
∂
∂φ
V

= i x
V
x

y
V
y

∂
∂

− ∂
∂

F
HG

I
KJ

Next
∂
∂φ

2

2
V

=
∂

∂φ  
∂
∂φ
F
HG
I
KJ

V
 = i x

x
y

y
∂

∂
− ∂

∂
F
HG

I
KJ i x

V
x

y
V
y

∂
∂

− ∂
∂

F
HG

I
KJ

= − ∂
∂

+ ∂
∂

− ∂
∂ ∂

+ ∂
∂

+ ∂
∂

F
HG

I
KJx

V
x

y
V

y
xy

V
x y

x
V
x

y
V
y

2
2

2
2

2

2

2
2

∂
∂φ

2

2
V

= – x2 
∂
∂

− ∂
∂

+ ∂
∂ ∂

− ∂
∂

− ∂
∂

2

2
2

2

2

2
2

v

x
y

v

y
xy

v
x y

x
v
x

y
v
y ...(iv)

Adding equations (iii) and (iv), we get

∂
∂θ

2

2
V

 + 
∂
∂φ

2

2
V

= 4xy 
∂
∂ ∂

2V
x y

.  Hence proved.

Example 9. If x = r cos θ, y = r sin θ, z = f (x, y), prove that
∂
∂
z
x  = 

∂
∂
z
r  cos θ – 

1
r  

∂
∂θ
z

 sin θ ; 
∂
∂
z
y

 = 
∂
∂
z
r

 sin θ + 
1
r  

∂
∂θ
z

 cos θ.

Prove also that  
∂

∂ ∂

2 r n

x y

n .cos θe j
 = – n (n – 1) rn – 2 · sin (n – 2) θ.

Sol. Here z is a function of x and y where x and y are functions of r and θ.

∴ We have
∂
∂
z
x =

∂
∂
z
r ·

∂
∂
r
x  + 

∂
∂θ
z

·
∂θ
∂x ...(i)

and  
∂
∂
z
y =

∂
∂
z
r ·

∂
∂
r
y  + 

∂
∂θ
z

·
∂θ
∂y ...(ii)

Now, x = r cos θ, y = r sin θ, so r2 = x2 + y2 and θ = tan–1 
y
x
F
HG
I
KJ .

Then,
∂
∂
r
x = cos θ, 

∂
∂
r
y  = sin θ, 

∂θ
∂x  = – 

sinθ
r  and 

∂θ
∂y  = 

cosθ
r

Substituting these values in equations, (i) and (ii), we have

∂
∂
z
x = cos θ 

∂
∂
z
r  – 

1
r  sin θ 

∂
∂θ
z .  Hence proved. ...(iii)

and
∂
∂

z
y = sin θ 

∂
∂
z
r  + 

1
r  cos θ 

∂
∂θ
z .  Hence proved. ...(iv)
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Again substituting rn cos nθ for z in (iv), we get
∂
∂y  (rn cos nθ) = sin θ ·

∂
∂r  (rn cos nθ) + 

cosθ
r  

∂
∂θ  (rn cos nθ)

= sin θ (nrn – 1 cos nθ) + 
cosθ

r  (– rnn sin nθ)

= nrn−1(cos nθ sin θ − cos θ sin nθ)

or
∂

∂

r n

y

n cos θe j
= nrn–1 sin (θ – nθ) ...(v)

Now,
∂

∂ ∂

2 r n

x y

n cos θe j
=

∂
∂x

∂

∂

L

N
MM

O

Q
PP

r n

y

n cos θe j

=
∂
∂x

nr nn– sin1 1 −a fθ , from (v) = n 
∂
∂x

r nn– sin1 1 −a fθ

= n
r

r n
r

r nn ncos sin sin sinθ θ θ θ∂
∂

− − ∂
∂θ

−L
NM

O
QP

− −1 11 1a f{ } a f{ }

= n n r n
r

r n nn ncos sin – sin cosθ θ θ θ− − − −L
NM

O
QP

− −1 1 1 12 1a f a f a f a f
= – n (n –1) rn–2 [sin (n – 1)θ cos θ – cos (n – 1) θ sin θ]
= – n (n – 1) rn-2 sin (n – 2) θ. Hence proved.

Example 10.  If u = f (x, y) and x = r cos θ, y = r sin θ, prove that

∂
∂

2

2
u

x
 + 

∂
∂

2

2
u

y
 = 

∂
∂

2

2
u

r
 + 

1
2r

 ∂
∂θ

2

2
u  + 

1
r

 
∂
∂
u
r

·

Or

Transform 
∂
∂
F
HG
I
KJ

2

2
u

x  + 
∂
∂

F
HG
I
KJ

2

2
u

y  = 0 into polars and show that u = (Arn + Br–n) sin nθ satisfies

the above equation.
Sol. We know x = r cos θ, y = r sin θ ...(i)

∴ r2 = x2 + y2 ...(ii)

and θ = tan–1 
y
x
F
HG
I
KJ ...(iii)

From (ii), we get 2r 
∂
∂
r
x  = 2x or 

∂
∂
r
x  = 

x
r  = 

r
r

cosθ
, from (i)

or
∂
∂
r
x = cos θ ...(iv)

Similarly,
∂
∂
r
y  = 

y
r

=
r

r
sinθ

 = sin θ ...(v)

Also from (iii),
∂θ
∂x =

1

1
2

+ FHG
I
KJ

y
x

· −FHG
I
KJ

y

x2  = – 
y

x y2 2+
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or
∂θ
∂x = – 

r

r

sin θ
2  = – 

sinθ
r ...(vi)

and
∂θ
∂y =

1

1
2

+ FHG
I
KJ

y
x

·
1
x
F
HG
I
KJ  = 

x

x y2 2+
 = 

r

r

cosθ
2  = 

cosθ
r

...(vii)

Now, we know
∂
∂
u
x =

∂
∂
u
r ·

∂
∂
r
x  + 

∂
∂θ
u

·
∂θ
∂x

=
∂
∂
u
r  (cos θ) + 

∂
∂θ
u −FHG

I
KJ

sinθ
r , from (iv), (vi)

or
∂
∂x  (u) = cos θ 

∂
∂r  (u) – 

sinθ
r  

∂
∂θ  (u) ...(viii)

Replacing u by 
∂
∂
u
x

∂
∂

2

2
u

x
=

∂
∂x  

∂
∂
F
HG
I
KJ

u
x  = cos θ. 

∂
∂r  

∂
∂
F
HG
I
KJ

u
x

 – 
sinθ

r  
∂
∂θ

∂
∂
F
HG
I
KJ

u
x ,

= cos cos sin sin
cos sinθ θ θ θ

θ θ⋅ ∂
∂

∂
∂

− ∂
∂θ

L
NM

O
QP −

∂
∂θ

∂
∂

− ∂
∂θ

L
NM

O
QPr

u
r r

u
r

u
r r

u

= cos θ cos sinθ θ∂
∂

− ⋅ ∂
∂

⋅ ∂
∂θ

F
HG
I
KJ

L
NMM

O
QPP

2

2
1u

r r r
u  – 

sinθ
r

– sin cos sinθ θ θ∂
∂

+ ⋅ ∂
∂θ ∂

F
HG

I
KJ −

∂
∂θ

⋅ ∂
∂θ

F
HG

I
KJ

L
N
MM

O
Q
PP

u
r

u
r r

u2 1

or
∂
∂

2

2
u

x
= cos θ cos sinθ θ⋅ ∂

∂
− ⋅ ∂

∂ ∂θ
− ∂

∂θ
RST

UVW
L
N
MM

O
Q
PP

2

2

2

2
1 1u

r r
u

r r
u

– 
sinθ

r
– sin cos sin cosθ θ θ θ∂

∂
+ ⋅ ∂

∂ ∂θ
− ∂

∂θ
+ ⋅ ∂

∂θ
F
HG

I
KJ

L
N
MM

O
Q
PP

u
r

u
r r

u u2 2

2
1

or
∂
∂

2

2
u

x
= cos2 θ 

∂
∂

2

2
u

r
 – 

2sin cosθ θ
r  

∂
∂ ∂θ

2u
r  + 

sin2

2
θ

r
∂
∂θ

2

2
u

 + 
sin2 θ

r
 

∂
∂
u
r

+ 
2

2
cos sinθ θ

r
 

∂
∂θ
u

  ...(ix)

Similarly,
∂
∂

2

2
u

y = sin2 θ 
∂
∂

2

2
u

r
 + 

2sin cosθ θ
r  

∂
∂ ∂θ

2u
r

 + 
cos2

2
θ

r
 

∂
∂θ

2

2
u

+ 
cos2 θ

r
 

∂
∂
u
r  – 

2
2

cos sinθ θ
r

  
∂
∂θ
u

...(x)

Adding equations (ix) and (x), we get

∂
∂

2

2
u

x
 + 

∂
∂

2

2
u

y = (cos2 θ + sin2 θ) 
∂
∂

2

2
u

r
 + 

1
2r

 (sin2 θ + cos2 θ) 
∂
∂θ

2

2
u

+ 
1
r  (sin2 θ + cos2 θ) 

∂
∂
u
r  = 

∂
∂

2

2
u

r
 + 

1
2r

 
∂
∂θ

2

2
u

 + 
1
r  

∂
∂
u
r .

Hence proved.
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Or
If u = (Arn + Br–n) sin nθ, then

∂
∂
u
r = n (Arn–1 – Br–n – 1) sin nθ; 

∂
∂θ
u

 = (Arn + Br–n) n cos nθ

and
∂
∂

2

2
u

r
= n [A(n – 1)rn – 2 + B (n + 1) r–n –2] sin nθ;

∂
∂θ

2

2
u

=
∂
∂θ  

∂
∂θ
F
HG
I
KJ

u
 = – (Arn + Br – n) n2 sin nθ

∴
∂
∂

2

2
u

r
 + 

1
2r

 
∂
∂θ

2

2
u

 + 
1
r  

∂
∂
u
r = n[A (n – 1) rn–2 + B (n + 1) r–n–2] sin nθ

– 
1
2r

 (Arn + Br–n)n2 sin n θ + 
1
r

n(Arn–1 – Br–n–1) sin nθ

= [A{n2–n–n2 + n}rn–2 + B(n2 + n – n2 –n)r–n – 2] sin nθ
= 0. Hence proved.

Example 11. If x = r cos θ, y = r sin θ or r2 = x2 + y2, prove that

∂
∂

2

2
r

x
 + 

∂
∂

2

2
r

y  = 
1
r  

∂
∂
F
HG
I
KJ + ∂

∂
F
HG
I
KJ

R
S|
T|

U
V|
W|

r
x

r
y

2 2

·

Sol. Since x = r cos θ and y = r sin θ

∴
∂
∂
r
x =

x
r ; 

∂
∂
r
y  = 

y
r

; 
∂
∂

2

2
r

x
 = 

r x
r

2 2

3
−

; 
∂
∂

2

2
r

y  = 
r y

r

2 2

3

−
,

Adding
∂
∂

2

2
r

x
 + 

∂
∂

2

2
r

y =
r x

r

2 2

3

−e j
 + 

r y

r

2 2

3

−e j
 = 

2 2 2 2

3

r x y

r

− +e j

=
2 2 2

3
r r

r
−

, ä x2 + y2 = r2

or
∂
∂

2

2
r

x
 + 

∂
∂

2

2
r

y =
1
r ...(i)

Also,
1
r

∂
∂
F
HG
I
KJ + ∂

∂
F
HG
I
KJ

R
S|
T|

U
V|
W|

r
x

r
y

2 2

=
1
r

x
r

y
r

F
HG
I
KJ + FHG
I
KJ

R
S|
T|

U
V|
W|

2 2

 = 
1
r

x y
r

2 2

2
+F

HG
I
KJ

=
1
r

r

r

2

2

F
HG
I
KJ , ä x2 + y2 = r2

=
1
r  = 

∂
∂

2

2
r

x
 + 

∂
∂

2

2
r

y , from (i) Hence proved.

Example 12. If V = f (2x – 3y, 3y – 4z, 4z – 2x), compute the value of 6Vx + 4Vy + 3Vz.

(U.P.T.U., 2008)
Sol. Let r = 2x – 3y, s = 3y – 4z, t = 4z – 2x

∴ V = f(r, s, t)



DIFFERENTIAL CALCULUS-I 59

Vx =
∂
∂

=
∂
∂

⋅ ∂
∂

+
∂
∂

⋅ ∂
∂

+
∂
∂

⋅ ∂
∂

V
x

f
r

r
x

f
s

s
x

f
t

t
x

=
∂
∂

⋅ +
∂
∂

⋅ +
∂
∂

−
f
r

f
s

f
t

2 0 2a f As = ∂
∂

= ∂
∂

= ∂
∂

= −r
x

s
x

t
x

2 0 2, ,

⇒ Vx = 2fr – 2ft ...(i)

Vy =
∂
∂

=
∂
∂

⋅ ∂
∂

+
∂
∂

⋅ ∂
∂

+
∂
∂

⋅ ∂
∂

V
y

f
r

r
y

f
s

s
y

f
t

t
y

=
∂
∂

− +
∂
∂

+
∂
∂

⋅
f
r

f
s

f
t

3 3 0a f a f As 
∂
∂

= − ∂
∂

= ∂
∂

=r
y

s
y

t
y

3 3 0, ,

⇒ Vy = – 3fr + 3fs ...(ii)
Similarly

Vz = 4fr – 4fs ...(iii)
Multiplying (i), (ii) and (iii) by 6, 4, 3 respectively and adding, we get

6Vx + 4Vy + 3Vz = 12fr – 12ft – 12fr + 12fs + 12fr – 12fs

⇒ 6Vx + 4Vy + 3Vz = 0.  Hence Proved.

Example 13. If u = x log xy, where x3 + y3 + 3xy = 1, find 
du
dx

. [U.P.T.U. (C.O.), 2005]

Sol. By total differentiation, we know that

du
dx

=
∂
∂

⋅ + ∂
∂

⋅ = ∂
∂

+ ∂
∂

⋅u
x

dx
dx

u
y

dy
dx

u
x

u
y

dy
dx

...(i)

we have u = x log xy

∂
∂
u
x

= log xy + 
1
y

y⋅  = log xy + 1 ...(ii)

∂
∂
u
y

=
x
xy

x
x
y

a f = ...(iii)

Also, given that
x3 + y3 + 3xy = 1

Differentiating w.r.t. ‘x’, we get

3x2 + 3y2 
dy
dx

 + 3y + 3x
dy
dx

= 0

⇒ (x2 + y) + (x + y2) 
dy
dx

= 0

or
dy
dx

= −
+

+

x y

x y

2

2

e j
e j

...(iv)

Using (ii), (iii) and (iv) in (i), we get

du
dx

= (1 + log xy) −
+

+

F
HG
I
KJ

x
y

x y
x y

2

2
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Example 14. If x = u + v + w, y = vw + wu + uv, z = uvw and f is a function of x, y, z, show

that u
f
u

v
f
v

w
f
w

x
f
x

y
f
y

z
f
z

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

2 3 .

Sol. Let f = f(x, y, z)

∂
∂

f
u

=
∂
∂

⋅ ∂
∂

+
∂
∂

⋅
∂
∂

+
∂
∂

∂
∂

f
x

x
u

f
y

y
u

f
z

z
u

=
∂
∂

+ +
∂
∂

+
∂
∂

f
x

w v
f
y

vw
f
z

a f   As
∂
∂

=
∂
∂

= + ∂
∂

=x
u

y
u

w v
z
u

vw1, ,a f

or u
f
u

∂
∂

= u
f
x

u w v
f
y

uvw
f
z

∂
∂

+ +
∂
∂

+
∂
∂

a f ...(i)

∂
∂

f
v

=
∂
∂

⋅ ∂
∂

+
∂
∂

⋅
∂
∂

+
∂
∂

⋅ ∂
∂

f
x

x
v

f
y

y
v

f
z

z
v

=
∂
∂

+ +
∂
∂

+
∂
∂

f
x

u w
f
y

uw
f
z

a f  As
∂
∂

=
∂
∂

= + ∂
∂

=x
v

y
v

u w
z
v

uw1, ,a f

or v
f
v

∂
∂

= v
f
x

v u w
f
y

uvw
f
z

∂
∂

+ +
∂
∂

+
∂
∂

a f ...(ii)

Similarly

w
f
w

∂
∂

= w
f
x

w u v
f
y

uvw
f
z

∂
∂

+ +
∂
∂

+
∂
∂

a f ...(iii)

Adding (i), (ii) and (iii), we get

u
f
u

v
f
v

w
f
w

∂
∂

+
∂
∂

+
∂
∂

= u v w
f
x

vw wu uv
f
y

uvw
f
z

+ +
∂
∂

+ + +
∂
∂

+
∂
∂

a f a f2 3

or u
f
u

v
f
v

w
f
w

∂
∂

+
∂
∂

+
∂
∂

= x
f
x

y
f
y

z
f
z

∂
∂

+
∂
∂

+
∂
∂

2 3 .  Proved.

Example 15. If by the substitution u = x2 – y2, v = 2xy, f(x, y) = φ(u, v) show that

∂
∂

+
∂
∂

2

2

2

2

f

x

f

y
= 4(x2 + y2) 

∂
∂

+ ∂
∂

F
HG

I
KJ

2

2

2

2
φ φ

u v
.

Sol. We have f(x, y) = φ(u, v)
Differentiating partialy w.r.t. ‘x’.

∂
∂

f
x

=
∂φ
∂

⋅
∂
∂

+
∂φ
∂

⋅
∂
∂

=
∂φ
∂

+
∂φ
∂u

u
x v

v
x

x
u

y
v

2 2 As ∂
∂

= ∂
∂

=u
x

x v
x

y2 2,

∂
∂

2

2

f

x
=

∂
∂

∂
∂
F
HG
I
KJ = ∂

∂
∂φ
∂

+ ∂φ
∂

F
HG

I
KJx

f
x x

x
u

y
v

2 2

=
∂

∂
∂φ
∂

+ ∂φ
∂

F
HG

I
KJ

∂
∂

+ ∂
∂

∂φ
∂

+ ∂φ
∂

F
HG

I
KJ ⋅

∂
∂u

x
u

y
v

u
x v

x
u

y
v

v
x

2 2 2 2



DIFFERENTIAL CALCULUS-I 61

= 2 2 2 2 2 2
2

2

2 2 2

2x
u

y
u v

x x
v u

y
v

y
∂
∂

+ ∂
∂ ∂

F
HG

I
KJ + ∂

∂ ∂
+ ∂

∂
F
HG

I
KJ

φ φ φ φ
. .

or
∂
∂

2

2

f

x
= 4 8 42

2

2

2
2

2

2x
u

xy
u v

y
v

∂
∂

+
∂

∂ ∂
+

∂
∂

φ φ φ
...(i)

Again differentiating f(x, y) partially w.r. to y

∂
∂

f
y

=
∂φ
∂

⋅ ∂
∂

+ ∂φ
∂

∂
∂

= − ∂φ
∂

+ ∂φ
∂u

u
y v

v
y

y
u

x
v

2 2  As
∂
∂

= − ∂
∂

=u
y

y
v
y

x2 2,

∂
∂

2

2
f

y
=

∂
∂

− ∂φ
∂

+ ∂φ
∂

F
HG

I
KJy

y
u

x
v

2 2

=
∂

∂
− ∂φ

∂
+ ∂φ

∂
F
HG

I
KJ

∂
∂

+ ∂
∂

− ∂φ
∂

+ ∂φ
∂

F
HG

I
KJ

∂
∂u

y
u

x
v

u
y v

y
u

x
v

v
y

2 2 2 2

= − ∂
∂

+ ∂
∂ ∂

F
HG

I
KJ − + − ∂

∂ ∂
+ ∂

∂
F
HG

I
KJ2 2 2 2 2 2

2

2

2 2 2

2y
u

x
u v

y y
u v

x
v

x
φ φ φ φb g a f

or
∂
∂

2

2

f

y
= 4 8 42

2

2

2
2

2

2y
u

xy
u v

x
v

∂
∂

−
∂

∂ ∂
+

∂
∂

φ φ φ
...(ii)

Adding (i) and (ii), we get

∂
∂

+
∂
∂

2

2

2

2
f

x

f

y
= 4 42 2

2

2
2 2

2

2x y
u

x y
v

+ ∂
∂

+ + ∂
∂

e j e jφ φ

= 4 2 2
2

2

2

2x y
u v

+ ∂
∂

+ ∂
∂

F
HG

I
KJe j φ φ

. Hence Proved.

Example 16. If x2 + y2 + z2 – 2xyz = 1, show that dx

x

dy

y

dz

z1 1 1
0

2 2 2−
+

−
+

−
= .

Sol. We have
x2 + y2 + z2 – 2xyz = 1

or x2 – 2xyz + y2 z2 = 1 – y2 – z2 + y2 z2

(x – yz)2 = (1 – y2) (1 – z2)

or (x – yz) = 1 12 2− −y ze j e j ...(i)

Again y2 – 2xyz + z2 x2 = 1 – x2 – z2 + z2 x2

or (y – zx)2 = (1 – x2) (1 – z2)

or (y – zx) = 1 12 2− −x ze j e j ...(ii)

Similarly (z – xy) = 1 12 2− ⋅ −x ye j e j ...(iii)

Let u h x2 + y2 + z2 – 2xyz – 1 = 0



62 A TEXTBOOK OF ENGINEERING MATHEMATICS—I

By total differentiation, we get

du =
∂
∂

+
∂
∂

+
∂
∂

=
u
x

dx
u
y

dy
u
z

dz 0

or (2x – 2yz)dx + (2y – 2zx)dy + (2z – 2xy)dz = 0 

As
∂
∂

= −

∂
∂

= −

∂
∂

= −

u
x

x yz

u
y

y zx

u
z

z xy

2 2

2 2

2 2

or (x – yz)dx + (y – zx)dy + (z – xy)dz = 0 ...(iv)
Putting (i), (ii) and (iii) in equation (iv), we get

1 1 1 1 1 1 02 2 2 2 2 2− − + − − + − − =y z dx x z dy x y dze j e j e j e j e j e j.

Dividing by 1 1 12 2 2− − −x y ze j e j e j , we get

dx

x

dy

y

dz

z1 1 12 2 2−
+

−
+

−
 = 0. Hence proved.

EXERCISE 1.6

1 . Find 
dy
dx

 if xy + yx = c. A ns.  
 log 

 log  +  -1

dy
dx

yx y y

x x xy

y x

y x= −
+L

NMM
O
QPP

L
N
MM

O
Q
PP

−1

2 . If u = x log xy, where x3 + y3 + 3xy = 1, find du
dx

. A ns.  
du
dx

xy
x
y

x y

y x
= + + −

+
+

L
NMM

O
QPP

L
N
MM

O
Q
PP1

2

2log
( )

( )
b g

3 . If u = x2 y, where x2 + xy + y2 = 1, find du
dx

. A ns.  
x

du
d

xy x
x y

x y
= −

+
+

L
N
MM

O
Q
PP

L
N
MM

O
Q
PP2

2

2
2 b g
b g

4 . If V is a function of u, v where u = x – y and v = x – y, prove that

x 
∂
∂

2

2
V

x
 + y 

∂
∂

2

2
V

y
 = (x + y) 

∂
∂

+ ∂
∂

F
HG

I
KJ

2

2

2

2
V

u
xy

V

v
.

5 . Transform the Laplacian equation 
∂
∂

2

2
u

x
 + 

∂
∂

2

2
u

y  = 0 by change of variables from x, y to r, θ

when x = er cos θ, y = er sin θ. Ans.  e u
r

ur− ∂
∂

+ ∂
∂θ

F
HG

I
KJ =

L
N
MM

O
Q
PP

2
2

2

2

2 0

6 . Find 
du
dx , if u = x log xy where x3 + y3 + 3xy = 1. Ans.  du

dx
xy

x
y

x y
x y

= + −
+

+

L
NMM

O
QPP

1
2

2log .
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7 . If the curves f (x, y) = 0 and φ (x, y) = 0 touch, show that at the point of contact

∂
∂

f
x

·
∂φ
∂y

 = 
∂
∂

f
y

· ∂φ
∂x

.

8 . Find 
dy
dx

, when (cos x)y = (sin y)x. A ns.  
dy
dx

y x y
x x y

=
+

−
L
NM

O
QP

tan log sin
log cos cot

9 . If x = r cos θ, y = r sin θ, prove that

∂
∂

2

2
r

x
· 

∂
∂

2

2
r

y  = 
∂

∂ ∂
F
HG
I
KJ

2 2
r

y x .

10 . If z is a function of x and y and x = eu + e–v, y= e–u –ev prove that

∂
∂
z
u

 – 
∂
∂
z
v  = x 

∂
∂
z
x

 – y 
∂
∂
z
y

.

11 . If u = log (tan x + tan y + tan z) prove that

(sin 2x) 
∂
∂
u
x  + (sin 2y) 

∂
∂
u
y  + (sin 2z) 

∂
∂
u
z = 2.

12 . If u = 3 (lx + my + nz)2 – (x2 + y2 + z2) and l2 + m2 + n2 = 1, show that

∂
∂

2

2
u

x
 + 

∂
∂

2

2
u

y
 + 

∂
∂

2

2
u

z
 = 0.

13 . If u = x2 + 2xy – y log z, where x = s + t2, y = s – t2, z = 2t, find

∂
∂
u
s , 

∂
∂
u
t  at (1, 2, 1). A ns.  

s
=8 – 4∂

∂
= ∂

∂
L
NM

O
QP

u u
t

t8,

14 . If u = x2 – y2 + sin yz, where y = ex and z = log x, find du
dx

.

A ns.  2 –x e e e x x
x

x x xe j e j+ +F
HG

I
KJ

L
NM

O
QPcos log log

1

15 . If z = z(u, v), u = x2 – 2xy – y2 and v = y, show that (x + y) ∂
∂

+ −
∂
∂

=
z
x

x y
z
y

b g 0  is equivalent

to ∂
∂

=
z
v

0.

CURVE TRACING
Introduction
It is analytical method in which we draw approximate shape of any curve with the help of
symmetry, intercepts, asymptotes, tangents, multiple points, region of existence, sign of the first
and second derivatives. In this section, we study tracing of standard and other curves in the
cartesian, polar and parametric form.
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 1.8   PROCEDURE FOR TRACING CURVES IN CARTESIAN FORM

The following points should be remembered for tracing of cartesian curves:

1.8.1  Symmetry
(a) Symmetric about x-axis: If all the powers of y occurring in the equation are even then the
curve is symmetrical about x-axis.

Example.
x
a

2

2  + 
y

b

2

2 = 1, y2 = 4ax. (U.P.T.U., 2008)

(b) Symmetric about y-axis: If all the powers of x occurring in the equation are even then
the curve is symmetrical about y-axis.

Example. x2 = 4ay, x4 + y4 = 4x2y2.
(c) Symmetric about both x- and y-axis: If only even powers of x and y appear in equation

then the curve is symmetrical about both axis.
Example. x2 + y2 = a2. (U.P.T.U., 2008)
(d) Symmetric about origin: If equation remains unchanged when x and y are replaced by

– x and – y.
Example. x5 + y5 = 5a2x2y.
Remark: Symmetry about both axis is also symmetry about origin but not the converse (due

to odd powers).
(e) Symmetric about the line y = x : A curve is symmetrical about the line y = x, if on

interchanging x and y its equation does not change.

Example. x3 + y3 = 3axy. (U.P.T.U., 2008)
(f) Symmetric about y = – x : A curve is symmetrical about the line y = – x,  if the equation

of curve remains unchanged by putting x = – y and y = – x in equation.

Example. x3 – y3 = 3axy. (U.P.T.U., 2008)

1.8.2  Regions
(a) Region where the curve exists: It is obtained by solving y in terms of x or vice versa. Real
horizontal region is defined by values of x for which y is defined. Real vertical region is defined
by values of y for which x is defined.

(b) Region where the curve does not exist: This region is also called imaginary region, in
this region y becomes imaginary for values of x or vice versa.

1.8.3  Origin and Tangents at the Origin
If there is no constant term in the equation then the curve passes through the origin otherwise not.

If the curve passes through the origin, then the tangents to the curve at the origin are
obtained by equating to zero the lowest degree terms.

Example. The curve a2y2 = a2x2 – x4, lowest degree term (y2 – x2) equating to zero gives
y = ± x as the two tangents at the origin.

1.8.4  Intercepts
(a) Intersection point with x- and y-axis: Putting y = 0 in the equation we can find points where
the curve meets the x–axis. Similarly, putting x = 0 in the equation we can find the points where
the curve meets y-axis.



DIFFERENTIAL CALCULUS-I 65

(b) Points of intersection: When curve is symmetric about the line y = ± x, the points of
intersection are obtained by putting y = ± x in given equation of curve.

(c) Tangents at other points say (h, k) can be obtained by shifting the origin to these points
(h, k) by the substitution x = x + h, y = y + k and calculating the tangents at origin in the new
xy plane.

Remark. The point where dy/dx = 0, the tangent is parallel to x-axis. And the point where
dy/dx = ∞, the tangent is vertical i.e., parallel to y-axis.

1.8.5  Asymptotes
If there is any asymptotes then find it.

(a) Parallel to x-axis: Equate the coefficient of the highest degree term of x to zero, if it is
not constant.

(b) Parallel to y-axis: Equate the coefficient of the highest degree term of y to zero, if it is
not constant.

Example. x2y – y – x = 0
highest power coefficient of x i.e., x2 = y
Thus asymptote parallel to x-axis is y = 0
Similarly asymptote parallel to y-axis are x2 – 1 = 0 ⇒ x = ± 1.

(c) Oblique asymptotes (not parallel to x-axis and y-axis): The asymptotes are given by

y = mx + c, where m = lim
x

y
x→ ∞

F
HG
I
KJ  and c = lim

x → ∞  (y – mx).

(d) Oblique asymptotes (when curve is represented by implicit equation f (x, y) = 0):
The asymptotes are given by y = mx + c where m is solution of φn(m) = 0 and c is the solution of

cφ′n(m) + φn–1(m) = 0 or c = 
−

′
−φ

φ
n

n

m
m
1a f
a f . Here φn(m) and φn–1(m) are obtained by putting x = 1 and

y = m in the collection of highest degree terms of degree n and in the collection of the next highest
degree terms of degree (n – 1).

1.8.6  Sign of First Derivatives dy/dx (a ≤≤≤≤≤ x ≤≤≤≤≤ b)

(a) 
dy
dx

> 0 , then curve is increasing in [a, b].

(b) 
dy
dx

< 0 , then curve is decreasing in [a, b].

(c) If 
dy
dx

= 0 , then the point is stationary point where maxima and minima can occur.

1.8.7  Sign of Second Derivative 
£ ´

£³

P

P
 (a ≤≤≤≤≤ x ≤≤≤≤≤ b)

(a) 
d y

dx

2

2 0> , then curve is convex or concave upward (holds water).

(b) 
d y

dx

2

2 0< , then the curve is concave or concave downward (spills water).
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1.8.8  Point of Inflexion
A point where d2y/dx2 = 0 is called an inflexion point where the curve changes the direction of
concavity from downward to upward or vice versa.

Example 1. Trace the curve y = x3 – 3ax2.
Sol. 1. Symmetry: Here the equation of curve do not hold

any condition of symmetry. So there is no symmetry.
2. Origin: Since there is no constant add in equation so the

curve passes through the origin. The equation of tangent at origin
is y = 0 i.e., x-axis (lowest degree term).

3. Intercepts: Putting y = 0 in given equation, we get
x3 – 3ax2 = 0 ⇒ x = 0, 3a

Thus, the curve cross x-axis at (0, 0) and (3a, 0) .
4. There is no asymptotes.

5. 
dy
dx

 = 3x2 – 6ax.

For stationary point 
dy
dx

 = 0 = 3x2 – 6ax = 0 ⇒ x = 0, 2a.

6. 
d y

dx

2

2  = 6x – 6a, 
d y

dx x

2

2
0

F
HG
I
KJ =

 = – 6a < 0 (concave) and ymax = 0 and 
d y

dx x a

2

2
2

F
HG
I
KJ =

 = 12a – 6a

= 6a > 0 (convax) and ymin. = – 4a3.

7. Inflexion point: 
d y

dx

2

2  = 0 ⇒ 6x – 6a = 0 ⇒ x = 0, a.

8. Region: – ∞ < x <∞ since y is defined for all x.
9. Sign of derivative

Interval Sign of y Quadrant Sign of y′′′′′ Nature of curve
– ∞ < x < 0 y < 0 III y′ > 0 increasing
0 < x < 2a y < 0 IV y′ < 0 decreasing
2a < x < 3a y < 0 IV y′ > 0 increasing
3a < x < ∞ y > 0 I y′ > 0 increasing
Using the above calculations. We draw the graph in Figure 1.3.

Example 2. Trace the curve y2 (a – x) = x3, a > 0. (U.P.T.U., 2006)
Sol.  1. Symmetry: Since y has even power so the curve

is symmetric about x-axis.
2. Origin: The curve passes through the origin.
3. Tangent at origin: The coefficient of lowest degree

term is y2 = 0 or y = 0 and y = 0 i.e., there is a cusp at the
origin.

4. Intercepts: Putting x = 0, then y = 0 ⇒ origin is the
only point where the curve meets the co-ordinate axes.

5. Asymptotes: Asymptotes parallel to y-axis obtained
by equating to zero the highest degree term of y i.e., (x – a) =
0 ⇒ x = a.

m
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Fig. 1.4
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6 . Region:  y2 = 
x

a x

3

−
 this shows that the values of x > a, y is imaginary. So the curve does

not exist x > a. Similarly, the curve does not exist when x < 0.
Here the curve only for 0 ≤ x < a.
7. Sign of derivation:

dy
dx

 = ± 
x

a
x

a x a x

1
2 3

2
−FH
I
K

− −( )
, in the first quadrant for 0 ñ x < a, 

dy
dx

 > 0, curve increasing in the first

quadrant.
The shape of figure is shown in the (Fig. 1.4).

Example 3. Trace the following curve and write its asymptotes. (U.P.T.U., 2003)
x3 + y3 = 3axy.

Sol. 1. Symmetry: Interchage x and y. Then equation of curve remain unchanged.
∴ The curve is symmetric about the line y = x.
2. Origin: The curve passes through origin.
3. Tangent at origin: The coefficient of lowest degree term is x = 0 or y = 0

∴ x = 0 and y = 0 are tangents at origin.
4. Intercepts: Putting y = x, we get

2x3 = 3ax2 ⇒  2x3 – 3ax2 = 0
⇒ x2 (2x – 3a) = 0

⇒ x = 0 and x = 
3
2
a

At x = 0, y = 0 and at x = 
3
2
a

, y = 
3
2
a

Thus, points of intersection are (0, 0) and 
3
2

3
2

a a
,FH
I
K

along the line y = x.
5. Asymptotes: Since the coefficients of highest

powers of x and y are  constants, there are no asymptotes
parallel to x-and y-axis.

Putting x = 1 and y = m in highest degree term
(x3 + y3), we get

φ3(m) = 1 + m3 = 0
⇒ m = –1 (Real solution)
Again putting x = 1 and y = m

in next highest degree term (– 3axy), we get

c =
−

=
3

3 2
am

m
a
m

a f

At m = –1, c = – a.

Asymptotes y = mx + c ⇒ y = –x–a or y + x + a = 0.
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6 . Derivative: 
dy
dx

 = 
ay x

y ax

−
−

2

2  ⇒  
dy
dx a a

F
HG
I
KJ F
H

I
K

3
2

3
2

,
 =  – 1 i.e., the tangent at 

3
2

3
2

a a
,FH
I
K  making

an angle 135° with x-axis.

7 . Region: When both x and y are negative simultaneously equation of curve is not satisfied
(–x)3 + (–y)3 = 3a (–x) (–y) ⇒ – (x3 + y3) = 3axy

⇒  There is no part of the curve exists in 3rd quadrant
The shape of the curve is shown in Fig. 1.5.

Example 4. Trace the curve x y a
2
3

2
3

2
3+ =  (Astroid).

Sol.  We have x y a
2
3

2
3

2
3+ =  ⇒ x

a
y
a

F
H
I
K + FHG

I
KJ =

2 3 2 3

1

or
x
a

y
a

2

2

1 3 2

2

1 3

1
F
HG
I
KJ +
F
HG
I
KJ = ...(i)

1 . Symmetry: Since there are even powers of x and y so the curve is symmetric about both
axis.

2. Origin: Since there is constant term so the curve does not passes through the origin.
3. Intercept: Putting y = 0, we get x = ± a.

⇒ The curve cross x-axis at (a, 0) and (–a, 0)
Similarly, putting x = 0 then y = ± a i.e., the curve cross y-axis at (0, a) and (0, –a).

4. Derivative: 
dy
dx

 = – y
x
F
HG
I
KJ

1
3  ⇒ 

dy
dx a

F
HG
I
KJ ( , )0

 = 0 i.e., tangent

at (a, 0) is along x-axis and 
dy
dx a

F
HG
I
KJ ( , )0

 = – ∞ = tan −FH
I
K

π
2  i.e.,

tangent at (0, a) is y-axis.

5. Region: y

a

2

2

1
3F

HG
I
KJ  = 1 – x

a

2

2

1
3F

HG
I
KJ

∴ if 
x
a

> 1  i.e., x > a, we have 
y

a

2

2 0<  i.e., y2 < 0 = y is

imaginary, so the curve does not exist for x > a. Similarly, the curve does not exist for x < – a and
y > a, y < – a.

6. Asymptotes: No asymptotes.
The shape of the figure is shown in the Fig. 1.6.

Example 5. Trace the curve x2y2 = a2 (y2 – x2).
Sol. 1. Symmetry: The curve is symmetric about both axis.
2. Origin: The curve passes through origin.
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3 . Tangents: The tangents at the origin y2 – x2 = 0. i.e.,
y = ± x.

4. Intercepts: Cross the line at origin i.e., (0, 0).
5. Region: y2 = a2x2/(a2 – x2) this shows that the curve

does not exist for x2 > a2 i.e., for x > a and x < – a.
6. As x → a, y2 → ∞ and as x → – a, y2 → ∞
The shape of the curve is shown in Fig. 1.7.

Example 6. Trace the curve y2 (a + x) = x2 (b – x),
(Strophoid).

Sol. 1. Symmetry: There is only even power of y so
the curve is symmetric about x-axis.

2. Origin: The curve passes through the origin.
3. Tangents at origin: The lowest degree term is

ay2 – bx2

∴  tangents are ay2 – ax2 = 0 ⇒  y = ± 
b
a

 x.

4. Intercepts: Putting y = 0,  so x2 (b – x) = 0
⇒ x = 0, b
The curve meets x-axis at (0, 0) and (b, 0). y-intercept:

put x = 0 then y = 0. So (0, 0) is the y-intercept.
5. Asymptotes: Asymptotes parallel to y-axis is

x + a = 0 ⇒ x = – a.

6. Region:  y = ±  x
b x
a x

−
+

, y becomes imaginary

when x > b and x < – a. Thus curve exist only in the region
– a < x < b.

7.  Derivative: 
dy
dx

 = 
( )

( ) ( )/
− − + +

+ −
2 3 2
2

2

3 2
x ax bx ab

a x b x
 ⇒ 

dy
dx b

F
HG
I
KJ ( , )0

 = ∞ = tan
π
2

Thus, the tangent at (b, 0) is parallel to y-axis.
Therefore from above calculations, we draw the curve (Fig. 1.8) of given equation.

Example 7. Trace the curve y2 (x2 + y2) + a2 (x2 – y2) = 0.
Sol. 1. Symmetry: The curve is symmetric about both axis.
2. Origin: Curve passes through origin.
3. Tangents at origin: The tangents at the origin are x2 – y2 = 0 or y = ± x.
4. Intercepts: At x-axis = (0, 0)

At y-axis ⇒  y4 – a2y2 = 0 (put x = 0)
y2 (y2 – a2) = 0

⇒ y = ± a, 0
Thus, the curve cross y-axis at (0, a) and (0, – a) and  (0, 0).
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5 . Tangent at new point (0, – a) and (0, a)
Putting y = y + a, we get

 (y + a)2 x y a a x y a2 2 2 2 2+ + + − +( ) ( )  = 0

∴  The tangent at the new points are y = 0, y = 0
i.e., parallel to x-axis.

6 . Region: x2 = y2 (a2 – y2)/(a2 + y2)
The curve does not exist when y2 > a2

or  y > a and y < – a
∴  The curve exist in the region when – a < y < a.

7 . No asymptotes: The shape of the curve shown in Fig. 1.9.
Example 8. Trace the curve x2y2 = a2 (x2 + y2).
Sol. 1. Symmetry: Curve is symmetric about both axis.
2. Origin: Curve passes through the origin. Tangnt at (0, 0)  are x2 + y2 = 0 ⇒ y = ± ix, which

give imaginary tangents. So (0, 0) is a conjugate point.
3. The curve does not cross the axis.
4. Asymptotes: Asymptotes are x = ± a and y = ± a.
5. Region: y2 = a2x2/(x2 – a2). If x2 < a2 i.e., x < ± a

then y is imaginary i.e., the curve does not exist when
x < a and x < – a.

Similarly does not exist when y < a and y < – a
6. y2 → ∞ as x → a and x2 → ∞ as y → a
∴  The shape of the curve is shown in Fig. 1.10.

Example 9. Trace the curve (x2 – a2) (y2 – b2) = a2b2.

Sol. The given curve is (x2 – a2) (y2 – b2) = a2b2

or  x2y2 – b2x2 – a2y2 = 0  or x2y2 = b2x2 + a2y2

1. Symmetry about both the axes.

2. (0, 0) satisfies the equation of the curve.
Tangents at the origin are a2y2 + b2x2 = 0, which give
imaginary tangents. So (0, 0) is a conjugate point.

3. The curve does not cross the axes.

4. Equating the coefficients of highest powers of
x and y we find that x = ± a and y = ± b are the asymptotes.

5. Solving for y, we get y2 = 
b x

x a

2 2

2 2−
.

∴ If x2 < a2 i.e., x is numerically less than a, y2 is
negative i.e., y is imaginary i.e., the curve does not exist
between the lines x = − a and x = a.

Similarly arguing we find that the curve does not exist between the lines y = – b and y = b.

6. y2 → ∞ as x → a and x2 → ∞ as y → a.

With the above data, the shape of the curve is as shown in Fig. 1.11.
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�������� 	
�� Trace the curve y2 (a – x) = x2 (a + x).

��� �� Symmetry about x-axis.

�� Passes through (0, 0), the tangents are y2 = x2 or y = ±x. Tangents being real and distinct,
node is expected at the origin.

�� Curve crosses the x-axis at (– a, 0) and (0, 0). Shifting the origin to (–a, 0) and equating
the lowest degree terms to zero, we get new y-axis as the tangent at the new origin.

�� x = a is the asymptote.

�� For x < – a, the curve does not exist. Similarly for x > a, the curve does not exist.

�� As x → a, y2 → ∞.

�� No point of inflexion.

∴   Shape of the curve is as shown in Fig. 1.12.

Y

x 
=

 a
(a, 0)

XOX�

(–a, 0)

Y�

����� 	�	�

EXERCISE 1.7

	 � Trace the curve y2 (2a – x) = x3  �� x y
1
2

1
2+  = a

1
2 (U.P.T.U. (C.O.), 2003)

(U.P.T.U., 2004)

���� O 

Tangent 

Asymptote

X 

Y

���� y 
= 

x

a/4 (a, 0)
X

Y

O

a/4

(0, a)
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� �
x
a

y
b

�
�
�
� + ���

�
��

2
3

2
3

 = 1 � � x6 + y6 = a2x2y2

����
O

Y

X
(a, 0)

(0, –b)

–b

–a
b

a

–(a, 0)

(0, b)

����      x

y = –x y = x
Y

� � a2y2 = x3 (2a – x) � � 9ay2 = x(x – 3a)2

���� XO

Y

(2a, 0)
���� X

O

Y

3a

� � a4y2 = a2 x4 – x6 � � xy2 = 4a2 (2a – x)

����� � � � X
O

Y

(a, 0)

(–a, 0)

–a a
���� X

O

Y

2a

(2a, 0)

� � y3 = x(a2 – x2) 	
 � y = 8a3/(x2 + 4a2)

���� X
O

Y

(a, 0)

(–a, 0)
����

X
O

Y

Asymptote

A(0, 2a)

x1 x2

y = 2a
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 1.9   POLAR CURVES

The general form (explicit) of polar curve is r = f(θ) or θ = f(r) and the implicit form is F(r, θ) = 0.
����� ��!

	���"���#�"!�(a) If we replace θ�by −θ, the equation of the curve remains unchanged then
there is symmetry about initial line  θ = 0 (usually the positive x-axis in cartesian form).

��������� r = a (1 ± cos θ).
(b) If we replace θ�by π − θ, the equation of the curve remains unchanged, then there is a

symmetry about the line  θ = 
π
2

 (passing through the pole and � to the initial line) which is usually

the positive y-axis in cartesian).

��������� r = a sin 3θ.
(c) There is a symmetry about the pole (origin) if the equation of the curve remains unchanged

by replacing r into – r.

��������� r2 = a cos 2θ.
(d) Curve is symmetric about pole if f(r, θ) = f(r, θ + π)

��������� � r = 4 tan θ.

(e) Symmetric about θ = 
π
4

i.e., (y = x), if f(r, θ) = f r,
π θ
2

−�
�

�
�

(f) Symmetric about θ = 
3
4
π

 i.e., (y = – x), if f (r, θ) = f r,
3
2
π

θ−�
�

�
�

� � ����$�����%!�If r = f(θ1) = 0 for some θ = θ1 = constant then curve passes through the
pole (origin) and the tangent at the pole (origin) is θ = θ1.

��������� r = a (1 + cos θ) = 0, at θ = π.

� � ���#� &� ��#�����#��! Points of intersection of the curve with initial line and line

θ = 
π
2

 are obtained by putting θ = 0 and θ = 
π
2

.

� � '����! If r2 is negative i.e., imaginary for certain values of θ then the curve does not
exist for those values of θ.

� � ��"��##�! If lim r
θ α→

 = ∞ then an asymptote to the curve exists and is given by equation

r sin (θ – α) = f ′(α)

where α is the solution of 
1

f( )θ  = 0.

� � (�����#� �#� ��"� ���#� $�)� θθθθθ%!� Tangent at this is obtained from tan φ = rd
dr

θ
,  where

φ is the angle between radius vector and the tangent.
�� ��##����&����#�! Solve the equation for r and consider how r varies as θ varies from

0 to ∞ or 0 to – ∞. The corresponding values of r and θ give a number of points. Plot these points.
This is sufficient for tracing of the curve. (Here we should observe those values of θ for which r
is zero or attains a minimum or maximum value).
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�������� 	�� Trace the curve r2 = a2 cos 2θ (U.P.T.U., 2000, 2008)
���� 	���"���#�"!�Since there is no change in the curve when θ replace by – θ. So the curve

is symmetric about initial line.
� � ���! Curve passes through the pole when r2 = a2 cos 2θ = 0

i.e., cos 2θ = 0 ⇒  2θ = ± 
π
2

 or θ = ± 
π
4

Hence, the straight lines θ = ± 
π
4

 are the tangents

at origin to the curve.
� � *�#�����#��! Putting θ = 0

∴   r2 = a2 ⇒  r = ± a the curve meets initial line
to the points (a, 0) and (–a, π).

� � As θ varies from 0 to π, r varies as given below:
θ =  0 30 45 90 135 150 180
r2 = a2 a2/2 0 – a2 0 a2/2 a2

←imaginary→

� � '����! The above data shows that curve does
not exist for values of θ which lying between 45º and 135º.

�������� ��� Trace the curve r = a sin 3θ (U.P.T.U., 2002)
���� � 	�� �"���#�"! The curve is not symmetric about the initial line.
� � +�����! Curve passes through the origin

when r = 0
⇒ a sin 3θ = 0
⇒ 3θ = 0, π, 2π, 3π, 4π, 5π

⇒ θ = 0, 
π
3

, 
2
3
π

, π, 
4
3
π

, 
5
3
π

are the tangents at the pole.
� � ��"��##�! No asymptote since r is finite for any value of θ.
� � '����!� Since the maximum value of sin 3θ is 1.

So, 3θ =
π
2

 ,
3
2
π

 ,
5
2
π

, etc.

or θ =
π
6

, 
3
6
π

, 
5
6
π

, etc.

for which r = a (maximum value).
∴   The curve exist in all quadrant about the

lines θ = 
π
6

, 
3
6
π

, 
5
6
π

 at distance r = a.

The shape of the curve is given in the (Fig. 1.14).

X

O

Y

(a, 0)

(–a, )�

� � = – /4

�
�

 =
 

/2
�

�
 =

 
/4

�

�

 =
 –

3
/4

� � = 3 /4

����� 	�	�

O(  = )� �

� � = 11 /4

� � = /2

�
�

 =
 

/6

� � = 7 /6

� � = 2 /3
�

�

 = 5
/6

a a

� � = /3

� � = 3 /2 � � = 5 /3
� � = 4 /3

� = 0

����� 	�	�
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�������� ��� Trace the curve r = aeθ

����  	��No symmetry about the initial line.
� � As θ → ∞ , r → ∞ and r always positive.
�� Corresponding values of θ and r are given below:

θ =  0 π/2 π 3π/2 2π
r = a aeπa/2 aeπa ae3π/2 ae2πa

with the above data the shape of the curve is shown below:
�������� ��� Trace the curve r2 cos 2θ = a2 (Hyperbola)

���� � 	� Symmetry about pole and about the line θ = 
1
2

π .

� � Changing to cartesian the equation becomes

x2 – y2 = a2.
∴   The equation of the asymptotes are y = ± x or

θ = ± 
1
4

π are its polar asymptotes.

� � When θ = 0, r2 = a2 or r = ±a i.e., the points (a, 0)
and (– a, 0) lie on the curve. (Here co-ordinates of the points
are polar coordinates).

� � Solving for r we get r2 = a2/cos 2θ. This shows

that as θ increases from 0 to 
1
4

π, r increases from a to ∞.

� � For values of θ lying between 
1
4

π and 
3
4

π, r2 is

negative i.e., r is imaginary. So the curve does not exist for
1
4

π< θ < 
3
4

π.

�������� ��� Trace the curve r = a cos 2θ.
���� 	� Symmetry about the initial line and the line

θ = 
π
2

 i.e., y-axis.

� � Putting r = 0, cos 2θ = 0 or 2θ = ± 
1
2

π  or

θ = ± 
1
4

π, i.e., the straight lines θ = ± 
1
4

π are the tangents

to the curve at the pole.
� � Corresponding values of θ and r are given below:

θ = 0° 30° 45° 60° 90° 120° 135° 150° 180°

r = a
1
2

a 0 − 1
2

a – a − 1
2

a 0
1
2

a a

Plot these points and due to symmetry about the initial line the other portion can be
traced.

� � = /2

� � = /2

� � = 3 /2

O

� = 0
X

Y

����� 	�	�

� � = 

(a = )�

� � = – /4

O X

� �� = /4

(a = 0)

� � = /2

� � = 3 /2

Y

����� 	�	�

� = 0
� � = 

� = 7 /4�

� = /2�

�
 =

 
/4

�

�
 =

 5
/4

�

� � = 3 /4

a

a

a

a

��= 3 /2�

����� 	�	�
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�������� ���Trace the curve r = a (1 – cos θ)  (cardoid).
���� � 	� �"���#�"! No change in equation when we replace θ by – θ. So the equation of

curve is symmetric about initial line.
� � ���� $�����%! If the curve passes through origin then

r = 0  ⇒  a (1 – cos θ) = 0
⇒ cos θ = 1 = cos 0 ⇒  θ = 0.

Here, the straight line θ = 0 is tangent at origin.
� � *�#�����#��! Putting θ = 0 then r = 0

and putting θ = π, then r = 2a

∴  Intersection points on initial line = (0, 0) and (2a, π).
� � '����! It exists in all quadrant.
� � ��"��##��! No. asymptotes.
� � As θ increases from 0 to π, r also increases from 0 to 2a.

The corresponding values of r and θ given below:
θ =  0 60° 90° 120° 180°

r = a
a
2

a
3
2
a

2a

With the above data the shape of the curve is given in (Fig. 1.18).

�������� ���Trace the curve r = a + b cos θ, when a < b.
����  	�� �"���#�"! The curve is symmetric about initial line.

� � +�����! For origin r = 0 ⇒  a + b cos θ = 0 ⇒  cos θ = −
a
b

� � Corresponding values of θ and r are given below:

θ =  0
π
4

π
3

π
2

2
3
π 3

4
π

π

r = a + b a
b+ ���
�
��2

a
b+ ��
�
�2

a a
b−��
�
�2

a
b−���
�
��2 (a – b)

Let a > 
b
2

 then r is positive for all values of θ from 0 to 
2
3
π

 but r is negative when θ

= 
3
4

π  or π. Here, r must vanish somewhere between θ = 
2
3
π

 and 
3
4
π

. Let θ = α (lying between

2
3
π

 and 
3
4
π

).

For which r = 0 then θ = α is the straight line which is
tangent to the curve at the pole and for values of θ lying between
α and π, r is negative and points corresponding to such values of
θ will be marked in the opposite direction on these lines as r is
negative for them.

Thus in this case a < b, the curve passes through the origin

when θ = α = cos–1 −��
�
�

��	

��

a
b  and form two loops, one inside the

other as shown in the Fig. 1.19.

0 = /2π

θ = 0
(2a, )π

(0, 0)

����� 	�	�

� � = /2
θ

α
 = 

A

� = 2 /3� � = /3�

Oθ π = 

����� 	�	�
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EXERCISE 1.8

	 � Trace the curve � � Trace the curve
r = a (1 + cos θ) r = a sin 2θ

����

Y

(a, /2)�

X
(2a, 0)

O

(a, )�

����� � � �
��= 0

� � = /4

� = 5 /4�

0

� = 7 /4�

� � = /2�

� = 3 /4�

� = �

� � Trace the curve � � Trace the curve

r = 2a cos θ r = 
asin

cos

2 θ
θ

���� X

Y

O Ca

r

A

P (r, )�

�

(a, 0)
a

���� O

Y

A

x = 0

(a, 0)
X

[,��#! Change it in cartesian coordinates,
y2 (x – a) = – x3]

� � Trace the curve � � Trace the curve (U.P.T.U., 2003)
r = 2 (1 – 2 sin θ) r = a cos 2θ

�����

� � = 3 /2

� � = 
O X

� � = /2

����� �
� = 0

x

� � = 5 /4

� � = /4� � = /2� � = 3 /4

� � = 

� � = 3 /2
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� � Trace the curve
r = a (1 + sin θ)

����

� = 0
X

� � = /2

(a, 0)

O

(0, 2a)

Y

(–a, 0)

 [,��#! Change in cartesian form x2 – y2 = a2]

 1.10   PARAMETRIC CURVES

Let x = f1(t) and y = f2(t) be the parametric equations of a curve where t is a parameter.
-�#.�� *!�Eliminate the parameter ‘t’ if possible and we shall get the cartesian equation

of curve which can easily traced.
��������� x = a cos t, y = a sin t ⇒  x2 + y2 = a2.
-�#.�� **!�  When the parameter ‘t’ cannot be eliminated.
	 � �"���#�"! If x = f1(t) is even and y = f2(t) is odd then curve is symmetric about x-axis:

Similarly, if x = f1(t) is odd and y = f2 (t) is even then curve is symmetric about y-axis.
� � +�����! Find ‘t’ for which x = 0 and y = 0.
� � *�#�����#! x-intercept obtained for values of t for which y = 0, y-intercept for values

of t for which x = 0.
� � Determine least and greatest values of x and y.

� � ��"��##��! t t→ 1

lim x(t) = ∞, t t→ 1

lim
y(t) = ∞, then t = t1 is asymptote.

� � (�����#�! 
dy
dx

 = ∞ (vertical tangent) and 
dy
dx

 = 0 (horizontal tangent).

'����/��If the given equations of the curves are periodic functions of t having a common
period, then it is enough to trace the curve for one period.

�������� 	�� Trace the curve
x = a (t – sin t), y = a (1 – cos t) (Cycloid)

���� � 	�� �"���#�"! Since x is odd and y is even so the curve is symmetric about y-axis.
� � +�����!  Putting x = 0 and y = 0, we get

0 = a (t – sin t) ⇒  t = 0
and 0 = a (1 – cos t) ⇒  cos t = 1 ⇒  t = 0, 2π, 4π, etc.

� � Trace the curve
 r2 cos 2θ = a2

����
O (a, 0)

� � = /2 � = /4�

� = 3 /2�

� = �

(a, )�

� = – /4�
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� �
dx
dt

 = a (1 – cos t), 
dy
dt

 = a sin t   ∴   
dy
dx

 = 
dy dt
dx dt

/
/

 = 
a t

a t
sin

( cos )1 −

⇒
dy
dx

=
2 2 2

1 1 2 22

a t t

a t

sin / .cos /

( sin / )− +
 = cot

t
2

Corresponding values of x, y, 
dy
dx

 for different values of t are given below:

t =  0
π
�

π
�

�

π
2π

x = 0 a
π
2

1−�
�

�
� aπ a

3
2

1
π +�

�
�
� 2aπ

y = 0 a 2a a 0

dy
dx

= ∞ 1 0 – 1 – ∞

� � Tangents at y = 0 are vertical and at y = 2a is horizontal. Curve is periodic for period
2π in the interval [0, 2π]. Curve repeats over intervals of [0, 2 aπ] refer Fig. 1.20.

Y

– 4a� – 2a� O 2a� 4a�

2a

����� 	��


�����������Trace the curve x = a cos3 t, y = a sin3 t. (Astroid)
���� 	� dy/dt = 3a sin2 t cos t.

dx/dt = –3a cos2 t sin t

∴
dy
dx

=
dy dt
dx dt

 = 
3

3

2

2

a t t

a t t

sin cos

cos sin−

or
dy
dx

= – tan t.

� � Corresponding values of x, y and dy/dx for different
values of t are given below:

t = 0
π
�

π
2

3
2
π

π
5
4
π 3

2
π 7

4
π

2π

x = a
a

2 2
0

−a

2 2
– a

a

2 2
0

a

2 2
a

y = 0
a

2 2 a
a

2 2 0
−a

2 2 – a
−a

2 2 0

dy
dx

= 0 – 1 – ∞ 1 0 – ∞ 1 1 0

Plotting the above points and observing the inclinations of the tangents at these points
the shape of the curve is as shown in Fig. 1.21.

Y

X

t = /2� (0, a)

A�
A

a

aOX� (–a, 0)

��

B

(a, 0)

t = 0

t = 3 /2�

(0, –a)

Y�

����� 	��	
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�������� �� x = a (t + sin t),
y = a (1 – cos t)

���� � 	� dy/dt = a (sin t);
dx/dt = a (1 + cos t)

∴
dy
dx

=
dy dt
dx dt

 = 
a t

a t
(sin )

( cos )1 +

=
2

2

1

2

1

2
1

2
2

a t t

a t

sin cos

( cos )

or dy|dx = tan 
1
2

t.

� � Corresponding values of x, y and dy/dx for different values of t are given below:

t = – π − 1
2

π 0
1
2

π π

x = – πa  – a (
1
2

π  – 1) 0 a (
1
2

π  + 1) aπ

y = 2a a 0 a 2a

dy/dx = – ∞ – 1 0 1 ∞

EXERCISE 1.9

� (����� #.�� &��0���� � �1��!

	 � x = a sin 2t (1 + cos 2t), y = a cos 2t (1 – cos 2t)

����

C A

O

B

Y

X

� � x = a (t – sin t), y = a (1 + cos t)

����

Y

B
C

t = 2�a� a�

t = �/2

2a
t = 3�/2

XX�
O t = �

Y�

A

Y

B t = –� C
t = �

a� a�

t = –�/2

2a

t = �/2

XX�

O t = 0

Y�

����� 	���
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� � x = a cos t + 
1
2

a  log tan2 
t
2
�
�
�
� , y = a sin t (Tractrix)

����
X

t = –�

B�

a

X�

t = /2�

(0, –a)

O
a

B
Y

(0, a)

t = 0

� � x = 
a t t

t

( )+
+

3

41
, y = 

a t t

t

( )−
+

3

41

���� X

O

Y

(a, 0)(–a, 0)

y = x

y = –x

EXPANSION OF FUNCTION OF SEVERAL VARIABLES

 1.11   TAYLOR'S THEOREM FOR FUNCTIONS OF TWO VARIABLES

Let f(x, y) be a function of two independent variables x and y. If the function f(x, y) and its partial
derivatives up to nth order are continuous throughout the domain centred at a point (x, y). Then

f(a + h, b + k) = f(a, b) + h
f a b

x
k

f a b
y

∂
∂

+
∂

∂

��

�
��

( , ) ( , )

	�
1
2

22
2

2

2
2

2

2h
f a b

x
hk

f a b
x y

k
f a b

y

∂
∂

+
∂

∂ ∂
+

∂
∂


�
�
�

�
�
�
�

( , ) ( , ) ( , )

	


1
3

3 33
3

3
2

3

2
2

3

2
3

3

3h
f a b

x
h k

f a b

x y
hk

f a b

x y
k

f a b

y

∂
∂

+
∂
∂ ∂

+
∂
∂ ∂

+
∂

∂


�
�
�

�
�
�
�
+

( , ) ( , ) ( , ) ( , )
...

Or

f(a + h, b + k) = f(a, b) + h
x

k
y

f a b h
x

k
y

∂
∂

+ ∂
∂


��

�
��

+ ∂
∂

+ ∂
∂


��

�
��

( , )
1
2

2

 f(a, b)

+ 
1
3

3

h
x

k
y

f a b
∂
∂

+ ∂
∂


��

�
��

+( , ) ...
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��&��Suppose P(x, y) and Q (x + h, y + k) be two neighbouring points. Then f (x + h, y + k),
the value of f at Q can be expressed in terms of f and its derivatives at P.

Here, we treat f(x + h, y + k) as a function of single variable x and keeping y as a constant.
Expanded as follows using Taylor's theorem for single variable.*

f(x + h, y + k) = f(x, y + k) + h 
∂ +

∂
+

∂ +
∂

+
f x y k

x
h f x y k

x

( , ) ( , )
...

2 2

22
...(i)

Now expanding all the terms on the R.H.S. of (i) as function of y, keeping x as constant.

f(x + h, y + k) = f x y k
f x y

y
k f x y

y
( , )

( , ) ( , )
...+

∂
∂

+
∂

∂
+



�
�
�

�

�
�
�

2 2

22

+ h
x

f x y k
f x y

y
k f x y

y

∂
∂

+
∂

∂
+

∂
∂

+ …


�
�
�

�

�
�
�

( , )
( , ) ( , )2 2

22

+ 
h

x
f x y k

f x y
y

k f x y

y

2 2

2

2 2

22 2
∂
∂

+
∂

∂
+

∂
∂

+


�
�
�

�

�
�
�
+( , )

( , ) ( , )
... .. .

f(x + h, y + k) = f(x, y) + h
f x y

x
k

f x y
y

∂
∂

+
∂

∂

��

�
��

( , ) ( , )

+ 
1
2

22
2

2

2
2

2

2h
f x y

x
hk

f x y
x y

k
f x y

y

∂
∂

+
∂

∂ ∂
+

∂
∂


�
�
�

�
�
�
�

+
( , ) ( , ) ( , )

...

For any point (a, b) putting x = a, y = b in above equation then, we get

f (a + h, b + k) = f (a, b) + h
f a b

x
k

f a b
y

∂
∂

+
∂

∂

��

�
��

( , ) ( , )

+  
1
2

22
2

2

2

2
2

2

2h
f a b

x
hk

f a b

y
k

f a b

y

∂
∂

+
∂

∂
+

∂
∂


�
�
�

�
�
�
�

+
( , ) ( , ) ( , )

...

Or

f (a + h, b + k) = f (a, b) + h
x

k
y

f a b h
x

k
y

∂
∂

+ ∂
∂


��

�
��

+ ∂
∂

+ ∂
∂


��

�
��

( , )
1
2

2

 f (a, b)

 + 
1
3

3

h
x

k
y

f a b
∂
∂

+ ∂
∂


��

�
��

+( , ) ... ,����� ��1���

��#����#�1�� &��!

Putting a + h = x ⇒  h = x – a
b + k = y ⇒  k = y – b

then f (x, y) = f (a, b) + ( ) ( )x a
x

y b
y

− ∂
∂

+ − ∂
∂


��

�
��

 f (a, b) + 
1
2

 ( ) ( ) ( , ) ...x a
x

y b
y

f a b−
∂
∂

+ −
∂
∂


��

�
��

+
2

  ...(ii)

2� (�"��3�� #.����� &�� ������� 1����4��

f (x + h) = f (x) + h 
∂
∂

+ ∂
∂

+ ∂
∂

+f
x

h f

x

h f

x

2 2

2

3 3

32 3
...
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1.11.1  Maclaurin's Series Expansion
It is a special case of Taylor's series when the expansion is about the origin (0, 0).

So, putting a = 0 and b = 0 in equation (2), we get

f (x, y) = f (0, 0) + x
x

y
y

f x
x

y
y

f
∂
∂

+ ∂
∂


��

�
��

+ ∂
∂

+ ∂
∂


��

�
��

+( , ) ( , ) ...0 0
1
2

0 0
2

�������� 	�� Expand ex cos y about the point 1
4

,
π�

�
�
� (U.P.T.U., 2007)

���� � We have f (x, y) = ex cos y ...(i)

and a = 1, b = 
π
�

 , f 1
4

,
π�

�
�
�  = e cos 

π
�

 = 
e

2

∴   From (1)
∂
∂

f
x

= ex cos y ⇒  
∂ ��

�
�

∂

f

x

1
4

,
π

 = e cos 
π
�

 = 
e

2

∂
∂

f
y = – ex sin y ⇒  

∂ ��
�
�

∂

f

y

1
4

,
π

 = – e sin 
π
�

 = – 
e

2

∂
∂

2

2

f

x
= ex cos y ⇒  

∂ �
�

�
�

∂

2

2

1
4

f

x

,
π

 = 
e

2
, 

∂
∂ ∂

2 f
x y

 = – ex sin y

∂ �
�

�
�

∂ ∂

2 1
4

f

x y

,
π

= – 
e

2
, 

∂
∂

2

2

f

y
 = – ex cos y = – 

e

2
.

By Taylor's theorem, we have

f h k1
4

+ +�
�

�
�,

π
= f h

f

x
k

f

y
1

4

1
4

1
4,

, ,
...

π
π π

�
�

�
� +

∂ ��
�
�

∂
+

∂ ��
�
�

∂

�

�
�
�

�

�
�
� + ...(ii)

Let 1 + h = x ⇒  h = x – 1 and 
π
�

 + k = y ⇒  k = y – 
π
�

, equation (2) reduce in the form

f ((x, y) = ex cos y =
e

2
 + (x – 1) · 

e

2
 + � −��

�
�

π
�

 −���
�
��

e

2
+ 

1
2

1
2

2( )x
e− ⋅

��

+ 2 (x – 1) y
e

y
e

−��
�
� −���

�
�� + −��

�
� −���

�
��
�
�
�
�

π π
4 2 4 2

2

 + ...

⇒  f (x, y) = e
x y

x
x y y

2
1 1

4
1

2
1

4 4

2 2

+ − − −��
�
� + − − −


��

−��
�
� − −��

�
� +

�
�
�( )

( )
( ) ...

π π π .

�������� ���Expand f (x, y) = ey log (1 + x) in powers of x and y about (0, 0)
���� � We have f (x, y) = ey log (1 + x)
Here, a = 0 and b = 0, then f (0, 0) = e0 log 1 = 0

Now,
∂
∂

f
x

=
e

x

y

1 +
⇒

∂
∂

f
x

( , )0 0 = 1

∂
∂

f
y = ey log (1 + x) ⇒

∂
∂

f
x

( , )0 0
= 0
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∂
∂ ∂

2 f
x y

=
e

x

y

1 +
⇒

∂
∂ ∂

2 0 0f
x y
( , )

= 1

∂
∂

�

�

�

�
= −

+
e

x

y

( )1 2 ⇒
∂

∂

2

2

0 0f

x

( , )
= – 1

∂
∂

2

2

f

y = ey log (1 + x) ⇒
∂

∂

2

2

0 0f

y

( , )
= 0

Now, applying Taylor's theorem, we get

f (0 + h, 0 + k) = f (h, k) = f (0, 0) + h
f

x
k

f
y

h
f

x

∂
∂

+
∂

∂
�
��

�
��

+
∂

∂

�
��

( , ) ( , ) ( , )0 0 0 0 1
2

0 02
2

2

+ 2hk 
∂

∂ ∂
+

∂
∂

�
��

2
2

2

2

0 0 0 0f
x y

k
f

y

( , ) ( , )
 + ...

Let h = x, k = y, then, we get

f (x, y) = ey log (1 + x) = f (0,0) + x
f

x
y

f
y

∂
∂

+
∂

∂
�
��

�
��

+
( , ) ( , )

...
0 0 0 0

= 0 + (x × 1 + y × 0) + 
1
2

 [x2 (–1) + 2xy × 1 + y2 × 0] + ...

⇒ ey log (1 + x) = x – 
x 2

2
+ xy + ... .

�������� ���Find Taylor’s series expansion of function f (x, y) = e x y− −2 2

. cos xy about the
point x0 = 0, y0 = 0 up to three terms. (U.P.T.U., 2006)

���� � We have f (x, y) = e x y− −2 2

 cos xy.
Now, we get the following terms f (0, 0) = 1.

∂
∂

f
x

= – e x y− −2 2

 (2x cos xy + y sin xy) ⇒  ∂
∂

f
x

( , )0 0  = 0

∂
∂

f
y = – e x y− −2 2

 (2y cos xy + x sin xy) ⇒  
∂

∂
f

y
( , )0 0

 = 0

Similarly,
∂

∂ ∂

2 0 0f
x y
( , )

= 0,  
∂

∂

2

2

0 0f

x

( , )
  = −

∂
∂

2
0 02

2,
( , )f

y
 = – 2

∂
∂ ∂

3

2

0 0f

x y

( , )
= 0,  

∂
∂ ∂

3

2

0 0f

x y

( , )
 = 0,  

∂
∂

3

3

0 0f

x
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 = 0

∂
∂

3

3

0 0f

y

( , )
= 0

Applying Taylor's theorem

f (h, k) = f (0, 0) + h
x
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y

∂
∂

+
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Putting h = x, k = y and all values then, we get

f (x, y) = e x y− −2 2

· cos xy = 1 + (x × 0 + y × 0)

+ 
1
2

2 2 0 22 2x xy y( ) ( )− + × + −

+ 
1
3

0 3 0 3 0 03 2 2 3x x y xy y× + × + × + ×

⇒ � � �− −� �

. cos xy = 1 – x2 – y2 .... .

�������� ��� Find Taylor's expansion of f (x, y) = cot–1 xy in powers of (x + 0. 5) and
(y – 2) up to second degree terms. Hence compute f (– 0.4, 2.2) approximately.

���� �Here f (x, y) = cot–1 xy

f (– 0.5, 2) = cot–1(–1) = 
3
4
π

Now
∂
∂

f
x

=
−

+
y

x y1 2 2 ⇒
∂ −

∂
f

x
( . , )0 5 2

= – 1

∂
∂

f
y

=
−

+
x

x y1 2 2 ⇒
∂ −

∂
f

y
( . , )0 5 2

= 1/4

∂
∂ ∂

2 f
x y =

( )

( )

x y

x y

2 2

2 2 2

1

1

−
+

⇒
∂ −

∂ ∂

2 0 5 2f
x y

( . , )
= 0

∂
∂

2

2

f

x
=

2

1

3

2 2 2

xy

x y( )+
⇒

∂ −
∂

2

2

0 5 2f

x

( . , )
= – 2

∂
∂

2

2

f

y
=  

2

1

3

2 2 2

x y

x y( )+
⇒

∂ −
∂

2

2

0 5 2f

y

( . , )
= –

1
8

Now applying Taylor's series expansion, we get

f (– 0.5 + h, 2 + k) = f (–0.5, 2) + h
x

k
y

f h
x

k
y

∂
∂

+ ∂
∂

�
��

�
��

⋅ − + ∂
∂

+ ∂
∂

�
��

�
��

( . , )0 5 2
1
2

2

f (–0.5, 2) +…

Let – 0.5 + h = x ⇒  h = x + 0.5
2 + k = y ⇒  k = y – 2 |As a = – 0.5, b = 2

∴ f (x, y) = cot–1 xy = 
3
4
π

 + (x + 0.5) (–1) + (y – 2) × 
1
4

+ 
1
2  ( . ) ( ) ( . )( ) ( ) .x x y y+ − + + − × + − −��

�
�


��

�
��

0 5 2 2 0 5 2 0 2
1
8

2 2

or f (x, y) =
3
4
π

 – (x + 0.5) + 
1
4

 (y – 2) – (x + 0.5)2 – 
1
16

 (y – 2)2 + ....

Putting x = – 0.4 and y = 2.2

f (– 0.4, 2.2) =
3
4
π

 – (0.1) + 
0 2
4
.

 – (0.1)2 – 
1

16
 (0.2)2

= 2.29369.
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�������� ���Calculate log ( . ) ( . )/ /1 03 0 98 11 3 1 4+ −  approximately by using Taylor's expan-

sion up to first order terms.

���� �Let f (x, y) = log x y
1
3

1
4 1+ −

�
�

�
�

f (1, 1) = log 1 = 0

Now,
∂
∂

f
x

=
1

3 1

2
3

1
3

1
4

×

+ −
�
�

�
�

−
x

x y

⇒
∂
∂

f
x

( , )1 1 =
1
3

Taking a = 1, b = 1

∂
∂

f
y =

1

4 1

3
4

1
3

1
4

×

+ −
�
�

�
�

−
y

x y

⇒
∂
∂

f
x

( , )1 1 =
1
4

Now, applying Taylor's theorem

f (1 + h, 1 + k) = f (1, 1) + h
x

k
y

f
∂
∂

+
∂
∂

�
��

�
��

+( , ) ...1 1

But f (1 + h,  1 + k) = log ( ) ( )1 1 1
1
3

1
4+ + + −


��

�
��h k

∴  f (1 + h, 1 + k) = log ( ) ( )1 1 1
1
3

1
4+ + + −


��

�
��h k  = 0 + h × 

1
3

 + k × 
1
4

...(i)

Putting h = 0.03 and k = – 0.02 in equation (i) then, we get

log ( . ) ( . )1 03 0 98 1
1
3

1
4+ −


��

�
�� = 0.03 × 

1
3

 + (– 0. 02) × 
1
4

= 0.005.

�������� ���Expand xy in powers of (x – 1) and (y – 1) up to the third degree terms.
(U.P.T.U., 2003)

���� �Here f (x, y) = xy f (1, 1) = 1

Now
∂
∂

f
x

= yxy–1 ⇒
∂

∂
f

x
( , )1 1

= 1

∂
∂

f
y = xy log x ⇒

∂
∂

f
y

( , )1 1
= 0

∂
∂ ∂

2 f
x y = xy–1 + yxy–1 · log x ⇒

∂
∂ ∂

2 1 1f
x y
( , )

= 1

∂
∂

2

2

f

x
= y (y – 1) xy–2 ⇒

∂
∂

2

2

1 1f

x

( , )
= 0

∂
∂

2

2

f

y
= xy · (log x)2 ⇒

∂
∂

2

2

1 1f

y

( , )
= 0
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∂
∂ ∂

3

2

f

x y = yxy–1(log x)2 + 2xy–1 · log x ⇒
∂

∂ ∂

3

2

1 1f

x y

( , )
= 0

∂
∂ ∂

3

2

f

x y
= (y – 1)xy–2 + y(y – 1) xy–2 · log x + yxy–2 ⇒

∂
∂ ∂

3

2

1 1f

x y

( , )
= 1

∂
∂

3

3

f

x
= y(y – 1) (y – 2)xy–3 ⇒  

∂
∂

3

3

1 1f

x

( , )
= 0

∂
∂

3

3

f

y
= xy(log x)3 ⇒

∂
∂

3

3

1 1f

y

( , )
= 0

Now applying Taylor's theorem, we get

f (1 + h, l + k) = f (1, 1) + h
x

k
y

∂
∂

+
∂
∂

�
��

�
��  f (1, 1) + 

1
2

2

h
x

k
y

∂
∂

+ ∂
∂

�
��

�
�� f (1, 1)

+ 
1
3

3

h
x

k
y

∂
∂

+ ∂
∂

�
��

�
�� · f (1, 1) + ...

Let 1 + h = x and 1 + k = y

⇒ h = x – 1 and k = y – 1

∴ f (x, y) = f (1, 1) + ( ) ( ) ( ) ( )x
x

y
y

f x
x

y
y

f− ∂
∂

+ − ∂
∂


��

�
��

+ − ∂
∂

+ − ∂
∂


��

�
��

1 1
1
2

1 1
2

+ 
1
3

1 1
3

( ) ( ) ...x
x

y
y

f− ∂
∂

+ − ∂
∂


��

�
��

+

Using all values in above equation, we get

f (x, y) = xy = 1 + (x – 1) + 0 + 
1
2

0 2 1 1 0+ − − +( )( )x y

+ 
1
3

0 3 1 1 0 02+ − − + +( ) ( )x y

= 1 + (x – 1) + (x – 1) (y – 1) + 
1
2

1 12( ) ( )x y− − .

�������� ��� Obtain Taylor's expansion of tan–1 
y
x

 about (1, 1) up to and including the

second degree terms. Hence compute f (1.1, 0.9). (U.P.T.U., 2002, 2005)
���� � Here

f (x, y) = tan–1 
y
x

∴ f (1, 1) =
π
4

Now,
∂
∂

f
x

= – 
y

x y( )2 2+
⇒

∂
∂

f
x

( , )1 1
= − 1

2
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∂
∂

f
y =

x
x y( )2 2+ ⇒

∂
∂

f
y

1 1,� � =
1
2

∂
∂

2

2

f

x
=

2
2 2 2

xy

x y( )+
⇒

∂
∂

2

2 1 1
f

x
,� � =

1
2

∂

∂

2

2
f

y
=

−
+
2

2 2 2
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x y( )
⇒

∂
∂

2

2 1 1
f

y
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2

∂
∂ ∂

� �

� �
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y x

x y

2 2

2 2 2

−
+( )

⇒
∂
∂ ∂

2 f
x y = 0

By Taylor’s theorem

f (1 + h, 1 + k) = f (1, 1) +  h
x

k
y

f
∂
∂

+
∂
∂
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( , )1 1  + 
1
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k
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f
∂
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+ ∂
∂


��

�
��

+( , ) ...

Let l + h = x ⇒   h = x – 1
1 + k = y ⇒  k = y – 1

∴ f (x, y) = f (1, 1) + ( ) ( )x
x

y
y

f− ∂
∂

+ − ∂
∂


��

�
��

1 1 + 
1
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y
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∂

+ − ∂
∂
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��

f + ...

=
π
�

 + (x – 1) −��
�
�

1
2

 + (y – 1) 1
2
�
�
�
� + 

1
2

1
1
2

2 1 12( ) ( )( )x x y− �
�
�
� + − −


��

× + − −��
�
�
�
��

0 1
1
2

2( )y

or f (x, y) =
π
�

 – 
1
2

 (x – 1) + 
1
2

 (y – 1) + 
1
4

 (x – 1)2 – 
�

�
(y – 1)2 + … .

Putting x = 1.1, y = 0.9, we get

f (1.1, 0. 9) =
π
�

– 
1
2

· (1.1 – 1) + 
1
2

 (0.9 – 1) + 
1
4

 (1.1 – 1)2 – 
1
4

 (0.9 – 1)2

= 0.785 – 0.05 – 0.05 + 0.0025 – 0.0025
= 0.685.

�������� ��� Find Taylor's expansion of 1 2+ +x y in power of (x – 1) and (y – 0).

����  Here f (x, y) = 1 2+ +x y f (1, 0) = 2

∴
∂
∂

f
x

=
1

2 1 2+ +x y
⇒  

∂
∂�

� � � �� � = � � �	

∂
∂

f
y

=
y

x y1 2+ +
⇒  

∂
∂�

� � � �� � = 0

∂
∂

2

2

f

x
= – 

1
4 1 2 3 2( ) /+ +x y

⇒  
∂
∂

�

�
� �

�

�
�� � = – 

1
4 23 2. /

∂
∂

2

2

f

y
=

1

1 2+ +x y
 – 

y

x y

2

2 3 21( ) /+ +
⇒  

∂
∂

2

2

1 0f

y

( , )
=

1

2
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∂
∂ ∂

2 f
x y

= – 
y

x y2 1 2 3 2( ) /+ + ⇒  
∂

∂ ∂

2 1 0f
x y
( , )

= 0.

By Taylor's theorem, we get

f (1 + h, 0 + k) = f (1, 0) + h
x

k
y

∂
∂

+
∂
∂


��

�
��

 f (1, 0) +  
1
2

1 0
2

h
x

k
y

f
∂
∂

+ ∂
∂


��

�
��

( , )  + ...

Let 1 + h = x ⇒  h = x – 1, k = y

⇒  f (x, y) = 2 1
1

2 2
0+ −( ) ⋅ + ×x y  + 

1
2

1
1

4 2
1 02

3 2x x y−( ) −���
�
�� + − ×

.
( )/  + y2. 

1

2 2
 + ...

= 2 1
1

4
1

32 4

2 2

+
−

−
−

+ +

��

�
��

x x y( )
... .

EXERCISE 1.10

	 � Expand f (x, y) = x2 + xy + y2 in powers of (x – 1) and (y – 2).
[���
 f (x, y) = 7 + 4 (x – 1) + 5 (y – 2) + (x – 1)2 + (x – 1) (y – 2) + (y – 2)2 + ...]

� � Evaluate tan–1 0 9
1 1
.
.

�
�
�
� . [��� 0.6904]

� � Expand f (x, y) = sin (xy) about the point (1, π/2) up to and second degree term.

Ans. f x y x x y y( , ) ( ) ( ) ...= − − − − −�
�

�
� − −��

�
�


�
�

�
�
� +1

8
1

2
1

2
1
2 2

2
2

2π π π π

� � Obtain Taylor's expansion of x2y + 3y – 2 in powers of (x – 1) and (y + 2).
[��� f (x, y) = – 10 – 4 (x – 1) + 4 (y + 2) – 2(x – 1)2 + ...]

� � Expand exy in powers of (x – 1) and (y – 1).

Ans. e x y
x

x y
y

1 1 1
1

2
1 1

1
2

2 2

+ − + − + − + − − +
−

+
�
�
	



�
�


�
�

�
�
�( ) ( )

( )
( )( )

( )
...

� � Expand cosx cosy in powers of x and y.

Ans. f x y x y x x y y( , ) ( ) ( ) ...= − + + + + +
��

�
��

1
1
2

1
24

62 2 4 2 2 4

� � Expand f (x, y) = e2x cos 3y up to second degree. [��� 1 + 2x + 2x2 – 
9
2

 y2 + ...]

� � Obtain Taylor's series expansion of (x + h) (y + k) /(x + h + y + k)

Ans.
xy

x y
hy

x y
kx

x y

h y

x y

hkxy

x y
k x

x y+
+

+
+

+
−

+
+

+
−

+
+


�
�
�

�
�
�
�

2

2

2

2

2 2

3 3

2 2

3

2

( ) ( ) ( ) ( ) ( )
...

� � Obtain Taylor's expansion of (1 + x – y)–1 in powers of (x – 1) and (y – 1).
[���
 1 – x + y + x2 – 2xy + y2 + ...]

	
 � Find Machaurin's expansion of ex log (1 + y). Ans. y xy
y x y xy y

+ − +
−

+ +

��

�
��

2 2 2 3

2 2 3
( )

...
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OBJECTIVE TYPE QUESTIONS

��� ���/� #.�� �����#� ���0��� &� #.�� �.����� ��1��� 4��0!

	 � If u = exyz, then 
∂

∂ ∂ ∂

3u
x y z

 is

(i) (x2yz + x) (ii) (x2yz – x)exyz

(iii) exyz.xy (iv) (1 + 3xyz + x2y2z2)exyz

� � If u = sin–1 
x y

x y

−

+
, then 

∂
∂
u
x

 is equal to

(i) − ∂
∂

x
y

u
y

(ii)
∂
∂
u
y

(iii) − ∂
∂

y
x

u
y

(iv) xy
u
y

∂
∂

� � If z = log x y2 2+  then 
∂
∂

z
x

 and 
∂
∂

z
y

 are

(i) −
+ +
x

x y

y

x y2 2 2 2, (ii)
x

x y

y

x y2 2 2 2+
−

+
,

(iii)
x

x y

y

x y2 2 2 2+ +
, (iv) x

x y

y

x y2 2 2 2− −
,

� � If u = ex2 + y2 + z2, then 
∂

∂ ∂ ∂

3u
x y z

 is

(i) 7xy (ii) 6xyzu

(iii) – 8xyzu (iv) 8xyzu

� � If z = xn–1 y f(y/x) then x
u

x
y

u
y x

∂
∂

+ ∂
∂ ∂

2

2

2

 is

(i) n
z
x

∂
∂

(ii) nz

(iii) n(n – 1)z (iv) n
z
y

∂
∂

� � If f(x, y, z) = 0 then 
∂
∂

⋅
∂
∂

⋅ ∂
∂

x
y

y
z

z
x

 is

(i) –1 (ii) 1
(iii) 0 (iv) 2

� � If u = x3 y2 sin–1 (y/x), then x
u
x

y
u
y

∂
∂

+ ∂
∂

 is:

(i) 0 (ii) 6u

(iii) – 8u (iv) 5u
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� � If u = xy f(y/x), then x
u
x

y
u
y

∂
∂

+ ∂
∂

 is

(i) yu (ii) xu

(iii) u (iv) 2u

� � The degree of u = [z2/(x4 + y4)]1/3 is

(i)
2
3

(ii)
1
3

(iii)
−2
3

(iv) 3

	
 � If z = x4 y5 where x = t2 and y = t3 then 
dz
dt

 is

(i) t22 (ii) 0
(iii) 23t17 (iv) 23t22

		 � If x2 + y2 + z2 = a2 then 
∂
∂

z
x

 and 
∂
∂
y
x

 at (1, –1, 2) are

(i) − 1
2

1, (ii) − −1
2

1,

(iii)
1
2

1, − (iv)
1
2

1,

	� � The equation of curve x3 + y3 = 3axy inersects the line y = x at the point

(i) 3
3
2

a
a

,�
��

�
�� (ii)

3
2

3
2

a a
, −�

��
�
��

(iii)
3
2

3
2

a a
,�

��
�
�� (iv) − −�

��
�
��

3
2

3
2

a a
,

	� � The equation of the curve x2y – y – x = 0 has maximum
(i) One asymptote (ii) Four asymptotes

(iii) Three asymptotes (iv) None of these
	� � The curve r2 cos 2θ = a2 is symmetric about the line

(i) θ π=
2

(ii) θ π= −
2

(iii) θ π= − 3
2

(iv) θ = π

	� � The parametric form of the curve x = a cost, y = a sin t is symmetric about
(i) x-axis (ii) y-axis

(iii) both axis (iv) about y = x

5�� ����� ��� #.�� 4���/�!

	 � The nth derivative of y = xn–1 log x at x = 
1
2

 is ..........

� � The nth derivative of y = x sin x is ..........
� � If y = ex sin x, then y″ – 2y′ + 2y = ..........
� � If y = sin 2x then y6 (0) = ...........
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� � If y = sin hx, then y2n (x) = ..........
� � If y = ex.x, then yn(x) = ...........
� � If y = sin3 x, then yn (x) = ..........
� � The nth derivative (yn) of y = x2 sin x at x = 0 is .......... (U.P.T.U., 2008)
� � If y = tan–1 x and n is even, then yn (0) = ..........
	
 � If y = cos(m sin–1 x) and n is odd then yn (0) = ..........
		 � If y = (sin–1 x)2 and n is odd then yn (0) = ..........

	� � If z = f(x – by) + φ(x + by), then b
z

x
2

2

2
∂
∂

 = ..........

	� � If u = log(2x + 3y), then 
∂
∂ ∂

2u
x y

 = ...........

	� � If u = eax + by f(ax – by), then b
u
x

a
u
y

∂
∂

+
∂
∂  = ..........

	� � If u = x2 + y2, x = s + 3t, y = 2s – t, then 
∂
∂
u
s

 = ..........

	� � If f(x, y) be a homogeneous function of degree n, then x
f

x
xy

f
x y

y
f

y
2

2

2

2
2

2

22
∂
∂

+
∂
∂ ∂

+
∂
∂

 = ..........

	� � If log u = 
x y
x y

2 2

+
, then x

u
x

y
u
y

∂
∂

+ ∂
∂

 = ..........

	� � If u = (x2 + y2 + z2)1/2, then x
u
x

y
u
y

z
u
z

∂
∂

+ ∂
∂

+ ∂
∂

 = ..........

	� � If f(x, y) = 0, φ(y, z) = 0, then 
∂
∂

∂φ
∂

f
y z

dz
dx

 = ..........

�
 � If x = er cos θ, y = er sin θ then 
∂θ
∂x

 = .......... and 
∂θ
∂y

 = ..........

�	 � If u = 
x x y xy y

x xy y

3 2 2 3

2 2

− + +
− −

, then x
u
x

y
u
y

∂
∂

+ ∂
∂

 = ..........

�� � If u = log 
x y

x y

4 4

3 3

−
+

, then x
u
x

y
u
y

∂
∂

+ ∂
∂

 = ..........

�� � If lim
t t→ 1

 x(t) = ∞, lim
t t→ 1

 y(t) = ∞, then t = .......... is asymptote.

�� � The curve r = a (1 – cos θ) is symmetric about the ..........

�� � The tangent is parallel to x-axis if 
dy
dx

 = ..........

�� � The curve x2y2 = a2 (y2 – x2) has tangents at origin ..........
�� � The curve y2 (a – x) = x2(a + x) exists if ..... x .....
�� � The curve y2 (x2 + y2) + a2 (x2 – y2) = 0, cross y-axis at ..... and .....
�� � If f(x, y) = ey log(1 + x), then expansion of this function about (0, 0) up to second degree

term is ..........
�
 � tan–1 {(0.9) (–1.2)} = ..........



DIFFERENTIAL CALCULUS-I 93

�	 � If f(x, y) = ex . sin y, then 
∂

∂

3

3

0 0f

x

,� �
 = ..........

�� � Expansion of exy up to first order tem is ..........
�� � f(x, y) = f(1, 2) + .........

6�� *�����#�� (� �� �� ������ &�� #.�� &��0���� �#�#����#�!

	 � If u, v are functions of r, s are themselves functions of x, y then 
∂
∂

=
∂
∂

×
∂
∂

u v

x y

u v

r s

x y

r s
,
,

,
,

,

,
� �
� �

� �
� �

� �
� �

� � Geometrically the function z = f(x, y) represents a surface in space.

� � If f(x, y) = ax2 + 2hxy + by2 then x
f
x

y
f
y

∂
∂

+
∂
∂

 = 2f.

� � If z is a function of two variables then dz is defined as dz = 
∂
∂

+ ∂
∂

z
x

dx
z
y

dy .

� � If f(x1, x2, ..., xn) be a homogeneous function then x
f

x
x

f
x

x
f

xn
n

1
1

2
2

∂
∂

+
∂
∂

+ +
∂

∂
...

= n (n – 1) f.

� � If u = 
x y

x y

2 2

2 2 4
+
−

+ , then x
u
x

y
u
y

∂
∂

+ ∂
∂

= 4 .

� � When the function z = f(x, y) differentiating (partially) with respect to one variable, other
variable is treated (temporarily) as constant.

� � To satisfied Euler’s theorem the function f(x, y) should not be homogeneous.

� � The partial derivatives 
∂
∂

z
x

 and 
∂
∂

z
y

 are interpreted geometrically as the slopes of the

tangent lines at any point.
	
 � (i) The curve y2 = 4ax is symmetric about x-axis.

(ii) The curve x3 + y3 = 3axy is symmetric about the line y = – x.
(iii) The curve x2 + y2 = a2 is symmetric about both the axis x and y.
(iv) The curve x3 – y3 = 3axy is symmetric about the line y = x.

		 � (i) If there is no constant term in the equation then the curve passes through the origin
otherwise not.

(ii) A point where 
d y

dx

2

2 0≠  is called an inflexion point.

(iii) If r2 is negative i.e., imaginary for certain values of θ then the curve does not exist for
those values of θ.

(iv) The curve r = aeθ is symmetric about the line θ = 
π
2

.

	� � (i) Maclaurin’s series expansion is a special case of Taylor’s series when the expansion
is about the origin (0, 0).

(ii) Taylor’s theorem is important tool which provide polynomial approximations of real
valued functions.



94 A TEXTBOOK OF ENGINEERING MATHEMATICS—I

(iii) Taylor’s theorem fail to expand f(x, y) in an infinite series if any of the functions
fx(x, y), fxx(x, y), fxy(x, y) etc., becomes infinite or does not exist for any value of x, y
in the given interval.

(iv) f(x, y) = f(a, b) + x a
x

x b
y

−
∂
∂

− −
∂
∂


�
�

�
�
�� � � �  f(a, b) + ..... .

ANSWERS TO OBJECTIVE TYPE QUESTIONS

��� ���/� #.�� �����#� ���0��!

	 �  (iv) � � (iii) � � (iii)
� � (iv) � � (i) � � (i)
� � (iv) � � (iv) � � (iii)
	
 � (iv) 		 � (i) 	� � (iii)
	� � (iii) 	� � (i) 	� � (iii)

5�� ����� ��� #.�� 4���/�!

	 �  2 1n − � � x x
n

n x
n

sin cos+���
�
�� − +���

�
��

π π
2 2

� � Zero � � Zero � � sin hx

� � e x nx +� � � � Try yourself � � n n
n− 2

2
� � sin

π

� � Zero 	
 � Zero 		 � Zero

	� �
∂
∂

2

2
z

y 	� �
∂
∂ ∂

2u
y x 	� � 2 abu

	� � 2x + 4y 	� � n(n – 1)f 	� � 3u log u

	� � u 	� �
∂
∂

⋅ ∂φ
∂

f
x y �
 � − sin

,
cos2 2θ θ

y x
�	 � u �� � 1 �� � t1

�� � initial line �� � 0 �� � y = ± x

�� � – a < x < a �� � (0, a) and (0, – a) �� � x
x

xy− +
2

2
�
 � – 0.823 �	 � 0 �� � e{1 + (x – 1) + (y – 1)}

�� � z
f
x

y
f
y

x
f
x

y
f
y

−
∂
∂

+ ⋅
∂
∂

�
�
	



�
�

+ −
∂
∂

+ ⋅
∂
∂

�
�
	



�
�

+


�
�
�

�

�
�
�

1 2
1
2

1 2
2

� � � � � � � � ......

6�� (� �� �� �����!

	 � F � � T � � T � � T
� � F � � F � � T � � F
� � T
	
 � (i) T (ii) F (iii) T (iv) F

		 � (i) T (ii) F (iii) T (iv) F
	� � (i) T (ii) T (iii) T (iv) F

���



UNIT ��

Differential Calculus-II

2.1  JACOBIAN

The Jacobians* themselves are of great importance in solving for the reverse (inverse functions)
derivatives, transformation of variables from one coordinate system to another coordinate system
(cartesian to polar etc.). They are also useful in area and volume elements for surface and volume
integrals.

2.1.1  Definition
If u = u (x, y) and v = v (x, y) where x and y are independent, then the determinant

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

is known as the Jacobian of u, v with respect to x, y and is denoted by
∂
∂

u v
x y

,
,

a f
b g  or J (u, v)

Similarly, the Jacobian of three functions u = u (x, y, z), v = v (x, y, z), w = w (x, y, z) is defined
as

J (u, v, w) =
∂
∂

u v w
x y z
, ,
, ,

a f
b g  = 

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

u
z

v
x

v
y

v
z

w
x

w
y

w
z

* Carl Gustav Jacob Jacobi (1804–1851), German mathematician.

95
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2.1.2  Properties of Jacobians
1. If u =u (x, y) and v = v (x, y), then

∂
∂

×
∂
∂

u v

x y

x y

u v
,
,

,

,
a f
b g

b g
a f = 1 or JJ′′′′′ = 1 (U.P.T.U., 2005)

where, J =
∂
∂

u v
x y
,
,
a f
b g  and J′ = 

∂
∂

x y

u v

,

,
b g
a f

Proof: Since u = u (x, y) ...(i)
 v = v (x, y) ...(ii)

Differentiating partially equations (i) and (ii) w.r.t. u and v, we get
∂
∂
u
u  = 1 =  

∂
∂
u
x  · 

∂
∂
x
u  + 

∂
∂
u
y  × 

∂
∂
y
u

...(iii)

∂
∂
u
v  = 0 =

∂
∂
u
x

 · 
∂
∂
x
v

 + 
∂
∂
u
y

 × 
∂
∂
y
v

...(iv)

∂
∂
v
u  = 0 =

∂
∂
v
x  · 

∂
∂
x
u  + 

∂
∂
v
y  × 

∂
∂
y
u

...(v)

∂
∂
v
v  = 1 =

∂
∂
v
x  · 

∂
∂
x
v  + 

∂
∂
v
y

 × 
∂
∂
y
v

...(vi)

Now,
∂
∂

u v
x y
,
,
a f
b g  × 

∂
∂

x y

u v

,

,
b g
a f =

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

 × 

∂
∂

∂
∂

∂
∂

∂
∂

x
u

x
v

y
u

y
v

=

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

 × 

∂
∂

∂
∂

∂
∂

∂
∂

x
u

y
u

x
v

y
v

(By interchanging rows and columns in II determinant)

=

∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

∂
∂

+ ∂
∂

∂
∂

u
x

x
u

u
y

y
u

u
x

x
v

u
y

y
v

v
x

x
u

v
y

y
u

v
x

x
v

v
y

y
v

. .
(multiplying row-wise)

Putting equations (iii), (iv), (v) and (vi) in above, we get

∂
∂

u v
x y
,
,
a f
b g  × 

∂
∂

x y

u v

,

,
b g
a f =

1 0
0 1  = 1

or J J ′ = 1.   Hence proved.

2. Chain rule: If u, v, are function of r, s and r, s are themselves functions of x, y i.e.,
u = u (r, s), v = v (r, s) and r = r (x, y), s = s (x, y)

then
∂
∂

u v
x y

,
,
a f
b g =

∂
∂

⋅
∂
∂

u v
r s

r s
x y

,
,

,
,

a f
a f

a f
b g

Proof: Here u = u (r, s), v = v (r, s)
and  r = r (x, y), s = s (x, y)
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Differentiating u, v partially w.r.t. x and y
∂
∂
u
x =

∂
∂
u
r ·

∂
∂
r
x  + 

∂
∂
u
s · 

∂
∂
s
x ...(i)

∂
∂
u
y

=
∂
∂
u
r

·
∂
∂
r
y

 + 
∂
∂
u
s

· 
∂
∂
s
y

...(ii)

∂
∂
v
x

= ∂
∂
v
r

· ∂
∂
r
x

 + 
∂
∂
v
s

· 
∂
∂
s
x

...(iii)

∂
∂
v
y

=
∂
∂
v
r ·

∂
∂
r
y  + 

∂
∂
v
s

· 
∂
∂
s
y

...(iv)

Now,
∂
∂

u v
r s
,
,
a f
a f  · 

∂
∂

r s
x y

,
,
a f
b g =

∂
∂

∂
∂

∂
∂

∂
∂

u
r

u
s

v
r

v
s

 . 

∂
∂

∂
∂

∂
∂

∂
∂

r
x

r
y

s
x

s
y

=

∂
∂

∂
∂

∂
∂

∂
∂

u
r

u
s

v
r

v
s

 . 

∂
∂

∂
∂

∂
∂

∂
∂

r
x

s
x

r
y

s
y

By interchanging the rows and columns in second determinant

=

∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

∂
∂

+ ∂
∂

∂
∂

u
r

r
x

u
s

s
x

u
r

r
y

u
s

s
y

v
r

r
x

v
s

s
x

v
r

r
y

v
s

s
y

|multiplying row-wise

Using equations (i), (ii), (iii) and (iv) in above, we get

∂
∂

u v
r s
,
,
a f
a f  . ∂

∂
r s
x y
,
,
a f
b g =

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

 = 
∂
∂

u v
x y
,
,
a f
b g .

Or

∂
∂

u v
x y
,
,
a f
b g =

∂
∂

⋅
∂
∂

u v
r s

r s
x y

,
,

,
,

.
a f
a f

a f
b g Hence proved.

Example 1. Find 
∂
∂

u v
x y
,
,
a f
b g , when u = 3x + 5y, v = 4x – 3y.

Sol. We have u = 3x + 5y
v = 4x – 3y

∴
∂
∂
u
x = 3, 

∂
∂
u
y  = 5, 

∂
∂
v
x

 = 4 and 
∂
∂
v
y

 = – 3

Thus,
∂
∂

u v
x y
,
,
a f
b g =

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

 = 
3 5
4 3−  = – 9 – 20 = – 29.
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Example 2. Calculate the Jacobian 
∂
∂

u v w
x y z
, ,
, ,
a f
b g  of the following:

u = x + 2y + z, v = x + 2y + 3z, w = 2x + 3y + 5z. (U.P.T.U., 2007)
Sol. We have u = x + 2y + z

v = x + 2y + 3z
w = 2x + 3y + 5z

∴
∂
∂
u
x = 1, 

∂
∂
u
y  = 2, 

∂
∂
u
z  = 1, 

∂
∂
v
x  = 1, 

∂
∂
v
y  = 2, 

∂
∂
v
z  = 3,

∂
∂
w
x = 2, 

∂
∂
w
y  = 3 and 

∂
∂
w
z  = 5.

Now,
∂
∂

u v w
x y z
, ,
, ,
a f
b g =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

u
z

v
x

v
y

v
z

w
x

w
y

w
z

 = 

1 2 1
1 2 3
2 3 5

= 1 (10 – 9) – 2 (5 – 6) + 1 (3 – 4) = 2.

Example 3. Calculate 
∂
∂

x y z
u v w

, ,
, ,
b g
a f   if u = 

2yz
x

, v = 
3zx
y

, w = 
4xy

z
.

Sol. Given u =
2yz
x

, v = 
3zx
y

, w = 
4xy

z

∴
∂
∂
u
x

=
−2

2

yz

x
, 

∂
∂
u
y

 = 
2z
x

, 
∂
∂
u
z

 = 
2y
x

, 
∂
∂
v
x

 = 
3z
y

, 
∂
∂
v
y

 = − 
3

2
zx

y
, 

∂
∂

=v
z

x
y
3 ,

∂
∂
w
x =

4y
z

, 
∂
∂
w
y

 = 
4x
z

 and 
∂
∂
w
z

 = – 
4

2

xy

z

Now,
∂
∂

u v w
x y z
, ,
, ,
a f
b g =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

u
z

v
x

v
y

v
z

w
x

w
y

w
z

 = 

–

–4

2 2 2

3 3 3

4 4

2

2

2

yz

x
z

x
y

x
z

y
zx

y

x
y

y
z

x
z

xy

z

−

= – 
2

2

yz

x

12 122

2 2

2x yz
y z

x
yz

−
L
NMM

O
QPP

 – 
2z
x

−
−

L
NMM

O
QPP

12 12
2
xyz

yz
xy

yz  +  
2y
x

12 12
2

xz
yz

xyz
zy

+
L
NMM

O
QPP

⇒
∂
∂

u v w
x y z
, ,
, ,
a f
b g = 0 + 48 + 48 = 96.

But, we have 
∂
∂

x y z
u v w

, ,
, ,
b g
a f  × 

∂
∂

u v w
x y z
, ,
, ,
a f
b g  = 1 (Property 1)

∴
∂
∂

x y z
u v w

, ,
, ,
b g
a f =

1
96

.
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Example 4. If u = xyz, v = x2 + y2 + z2, w = x + y + z find J (x, y, z). (U.P.T.U., 2002)
Sol. Here we calculate J(u, v, w) as follows:

J(u, v, w) =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

u
z

v
x

v
y

v
z

w
x

w
y

w
z

 = 

yz zx xy
x y z2 2 2
1 1 1

= yz (2y – 2z) – zx (2x – 2z) + xy (2x – 2y)
= 2 [y2z – yz2 – zx2 + z2x + xy (x – y)]
= 2 [– z (x2 – y2) + z2 (x – y) + xy (x – y)]

= 2 (x – y)[– zx – zy + z2 + xy] As –  =  ( – )( + )2 2x y x y x y

= 2 (x – y)[z (z – x) – y (z – x)]
= 2 (x – y) (z – y) (z – x)
= – 2 (x – y) (y – z) (z – x)

But J(x, y, z) · J(u, v, w) = 1

∴ J (x, y, z) =

Example 5. If x = vw , y = wu , z = uv  and u = r sin θ cos φ,

v = r sin θ sin φ, w = r cos θ, calculate 
∂
∂

x y z
r
, ,
, ,
b g
b gθ φ

.

Sol. Here x, y, z are functions of u, v, w and u, v, w are functions of r, θ, φ so we apply IInd
property.

∂
∂

x y z
r
, ,
, ,
b g
b gθ φ =

∂
∂

x y z
u v w

, ,
, ,
b g
a f  · 

∂
∂

u v w
r
, ,
, ,
a f
b gθ φ

...(i)

Consider
∂
∂

x y z
u v w

, ,
, ,
b g
a f =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

x
u

x
v

x
w

y
u

y
v

y
w

z
u

z
v

z
w

=

0
1
2

1
2

1
2

0
1
2

1
2

1
2

0

w
v

v
w

w
u

u
w

v
u

u
v

=
1
8  

w
v

v
u

u
w

v
w

w
u

u
v

+
L
NMM

O
QPP  = 

1
8

1 1+  = 
2
8

 = 
1
4
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⇒
∂
∂

x y z
u v w

, ,
, ,
b g
a f = ...(ii)

Next
∂
∂

u v w
r

, ,
, ,
a f
b gθ φ

=

∂
∂

∂
∂θ

∂
∂φ

∂
∂

∂
∂θ

∂
∂φ

∂
∂

∂
∂θ

∂
∂φ

=

−

−

u
r

u u

v
r

v v

w
r

w w

r r

r r

r

sin cos cos cos sin sin

sin sin cos sin sin cos

cos sin

θ φ θ φ θ φ

θ φ θ φ θ φ

θ θ 0

= sinθ cos φ (r2 sin2 θ cos φ) – r cos θ cos φ (–r2 sin θ cos θ cos φ)
+ r2 sin θ sin φ (sin2 θ sin φ + cos2 θ sin φ)

= r2 sin θ cos2 φ (sin2 θ + cos2 θ) + r2 sin θ sin2 φ

⇒
∂
∂

u v w
r

, ,
, ,
a f
b gθ φ = r2 sin θ cos2 φ + r2 sin θ sin2 φ = r2 sin θ ...(iii)

Using (ii) and (iii) in equation (i), we get

∂
∂

x y z
r
, ,
, ,
b g
b gθ φ

=
1
4

 × r2 sin θ = 
r2

4
sin

.
θ

Example 6. If u = x (1 – r2)−1/2, v = y (1 – r2)−1/2, w = z (1 – r2)−1/2

where r = x y z2 2 2+ + , then find 
∂
∂

u v w
x y z
, ,
, ,

.
a f
b g

Sol. Since r2 = x2 + y2 + z2

∴
∂
∂
r
x

=
x
r

, 
∂
∂
r
y

 = 
y
r

, 
∂
∂
r
z

 = 
z
r

Differentiating partially u = x (1 – r2)–1/2 w.r.t. x, we get

∂
∂
u
x

= 1 2
1

2−
−

re j  + x
−F
HG
I
KJ

1
2

 (– 2r) 1 2
3

2−
−

re j . 
∂
∂
r
x

= 1 2
1

2−
−

re j  + rx 1 2
3

2−
−

re j . 
x
r

 = 
1

1 2− r
 + 

x

r

2

2
3
21 −e j

⇒
∂
∂
u
x =

1

1

2 2

2
3
2

− +

−

r x

re j
Differentiating partially u w.r.t. y, we get

∂
∂
u
y

= x 
−F
HG
I
KJ

1
2

 1 2
3

2−
−

re j · (– 2r) 
∂
∂
r
y

 = 
xr

r1 2
3
2−e j

· 
y
r

⇒
∂
∂
u
y

=
xy

r1 2
3
2−e j

and ∂
∂
u
z

= xz

r1 2
3
2−e j
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Similarly,
∂
∂
v
x

=
yx

r1 2
3
2−e j

, 
∂
∂
v
y

 = 
1

1

2 2

2
3
2

− +

−

r y

re j
, 

∂
∂
v
z  = 

yz

r1 2
3
2−e j

∂
∂
w
x

=
zx

r1 2
3
2−e j

, 
∂
∂
w
y

 = 
zy

r1 2
3
2−e j

, 
∂
∂
w
z

 = 
1

1

2 2

2
3
2

− +

−

r z

re j
.

Thus,
∂
∂

u v w
x y z
, ,
, ,
a f
b g =

1

1 1 1

1

1

1 1

1 1

1

1

2 2

2
3
2 2

3
2 2

3
2

2
3
2

2 2

2
3
2 2

3
2

2
3
2 2

3
2

2 2

2
3
2

− +

− − −

−

− +

− −

− −

− +

−

r x

r

xy

r

xz

r

yx

r

r y

r

yz

r

zx

r

zy

r

r z

r

e j e j e j

e j e j e j

e j e j e j

=  
1

1 2
9
2− re j

 

1
1

1

2 2

2 2

2 2

− +
− +

− +

r x xy xz

yx r y yz

zx zy r z

=  1 2
9

2−
−

re j  [(1 – r2 + x2) {(1 – r2 + y2)(1 – r2 + z2)– y2z2}

– xy {xy (1 – r2 + z2) – xyz2} + xz{xy2z – zx(1 – r2 + y2)}]

= 1 2
9

2−
−

re j  [(1 – r2 + x2) (1 – r2 + y2) (1 – r2 + z2)

– (1 – r2) (y2z2 + x2y2 + x2z2) – x2y2z2]

=  1 2
9

2−
−

re j  [(1 – r2)3 + (1 – r2)2 (x2 + y2 + z2)]

= 1 2
9

2−
−

re j  [(1 – r2)3 + (1 – r2)2 r2]

=  1 2
9

2−
−

re j . (1 – r2)2 [1 – r2 + r2] = 1 2
5

2−
−

re j .

Example 7. Verify the chain rule for Jacobians if x = u, y = u tan v, z = w.  (U.P.T.U., 2008)

Sol. We have x = u ⇒   
∂
∂
x
u

 = 1, 
∂
∂
x
v

 = 
∂
∂

=
x
w

0

y = u tan v ⇒   
∂
∂
y
u

 = tan v, 
∂
∂
y
v

 = u sec2 v, 
∂
∂

y
w

 = 0

z = w ⇒   
∂
∂
z
u

 = 
∂
∂

=
z
v

0, 
∂
∂

z
w

 = 1

J =
∂
∂

=
x y z
u v w

v u v
, ,
, ,

tan sec
b g
b g

1 0 0

0

0 0 1

2  = u sec2 v ...(i)
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Solving for u, v, w in terms of x, y, z, we have
u = x

v = tan–1 
y
u

y
x

= −tan 1

w = z

∴ ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= −
+

∂
∂

=
+

∂
∂

= ∂
∂

= ∂
∂

=u
x

u
y

u
z

v
x

y

x y

v
y

x

x y

v
z

w
x

w
y

1 0 0 02 2 2 2, , , , ,  and

∂
∂

=
w
z

1

J′ = 
∂
∂

= −
+ +

=
+

=
+
F
HG
I
KJ

=
u v w
x y z

y
x y

x
x y

x
x y

x
y
x

u v
, ,
, , sec
b g
b g

1 0 0

0

0 0 1

1

1

1
2 2 2 2 2 2 2

2

2 ...(ii)

Hence from (i) and (ii), we get

J.J′ = u sec2 v. 
1

12u vsec
= .

2.1.3  Jacobian of Implicit Functions
If the variables u, v and x, y be connected by the equations

f1 (u, v, x, y) = 0 ...(i)
 f2 (u, v, x, y) = 0 ...(ii)

i.e., u, v are implicit functions of x, y.
Differentiating partially (i) and (ii) w.r.t. x and y, we get

∂
∂
f
x
1  + 

∂
∂
f
u
1  · 

∂
∂
u
x  + 

∂
∂
f
v
1  · 

∂
∂
v
x = 0 ...(iii)

∂
∂
f
y
1

 + 
∂
∂
f
u
1  · 

∂
∂

u
y

 + 
∂
∂
f
v
1  · 

∂
∂

u
y

= 0 ...(iv)

∂
∂
f
x
2  + 

∂
∂
f
u
2  · 

∂
∂
u
x  + 

∂
∂
f
v
2  · 

∂
∂
v
x = 0 ...(v)

∂
∂
f
y
2  + 

∂
∂
f
u
2  · 

∂
∂
u
y

 + 
∂
∂
f
v
2  · 

∂
∂
v
y

= 0 ...(vi)

Now,
∂
∂

f f
u v
1 2,
,
b g
a f  × 

∂
∂

u v
x y
,
,
a f
b g =

∂
∂

∂
∂

∂
∂

∂
∂

f
u

f
v

f
u

f
v

1 1

2 2
 

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

=

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

f
u

u
x

f
v

v
x

f
u

u
y

f
v

v
y

f
u

u
x

f
v

v
x

f
u

u
y

f
v

v
y

1 1 1 1

2 2 2 2
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Using (iii), (iv), (v) and (vi) in above, we get

=

−
∂
∂

−
∂
∂

−
∂
∂

−
∂
∂

f
x

f
y

f
x

f
y

1 1

2 2
 = (– 1)2 

∂
∂

∂
∂

∂
∂

∂
∂

f
x

f
y

f
x

f
y

1 1

2 2

Thus,
∂
∂

f f
u v
1 2,
,
b g
a f  × 

∂
∂

u v
x y
,
,
a f
b g = (– 1)2 

∂
∂

f f

x y
1 2,

,
b g
b g

⇒
∂
∂

u v
x y
,
,
a f
b g = (– 1)2 

∂
∂

∂
∂

f f

x y

f f

u v

1 2

1 2

,

,

,

,

b g
b g
b g
a f

Similarly for three variables u, v, w

∂
∂

u v w
x y z
, ,
, ,
a f
b g = (– 1)3 

∂
∂

∂
∂

f f f

x y z

f f f

u v w

1 2 3

1 2 3

, ,

, ,

, ,

, ,

b g
b g
b g
a f

and so on.

Example 8. If u3 + v3 = x + y, u2 + v2 = x3 + y3, show that

∂
∂

u v
x y
,
,
a f
b g =

y x
uv u v

2 2

2
−

−a f . (U.P.T.U., 2006)

Sol. Let f1 ≡ u3 + v3 − x − y = 0
f2 ≡ u2 + v2 − x3 − y3 = 0

Now,
∂
∂

f f

x y
1 2,

,
b g
b g =

∂
∂

∂
∂

∂
∂

∂
∂

f
x

f
y

f
x

f
y

1 1

2 2
 = 

–1 –1

–3 –3x y2 2
 = 3 (y2 – x2)

and
∂
∂

f f
u v
1 2,
,
b g
a f =

∂
∂

∂
∂

∂
∂

∂
∂

f
u

f
v

f
u

f
v

1 1

2 2
 = 

3 3
2 2

2 2u v
u v  = 6 uv (u – v)

Thus,
∂
∂

u v
x y
,
,
a f
b g =

∂
∂

∂
∂

f f

x y

f f

u v

1 2

1 2

,

,

,

,

b g
b g
b g
a f

 = 
3

6 2

2 2 2 2y x

uv u v
y x
uv u v

−
=

−
−

e j
a f–

( )
( )

.   Hence Proved.

Example 9. If u, v, w are the roots of the equation in k, 
x

a k+  + 
y

b k+
 + 

z
c k+  = 1,  prove

that 
∂
∂

x y z
u v w

, ,
, ,
b g
a f  = – 

u v v w w u
a b b c c a
− − −
− − −
a f a f a f
a f a f a f .
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Sol. We have
x

a k+  + 
y

b k+
 + 

z
c k+  = 1

or x (b + k) (c + k) + y (a + k) (c + k) + z (a + k) (c + k) = (a + k) (b + k) (c + k)
or k3 + k2 (a + b + c – x – y – z) + k{bc + ca + ab – (b + c) x – (c + a)

y – (a + b)z} + (abc – bcx – cay – abz) = 0
Since its roots are given to be u, v, w, so we have

u + v + w = – (a + b + c – x – y – z)
uv + vw + wu = bc + ca + ab – (b + c) x – (c + a)y – (a + b)z

uvw = – (abc – bcx – cay – abz)
Let f1 ≡ u + v + w + a + b + c – x – y – z = 0

f2 ≡ uv + vw + wu – bc – ca – ab + (b + c) x + (c + a) y + (a + b)z = 0
f3 ≡ uvw + abc – bcx – cay – abz = 0

Now,
∂

∂
f f f

x y z
1 2 3, ,

, ,
b g
b g =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

f
x

f
y

f
z

f
x

f
y

f
z

f
x

f
y

f
z

1 1 1

2 2 2

3 3 3

 = 

–1 –1 –1

– – –
b c c a a b

bc ca ab
+ + +a f a f a f

=

1 0 0
b c a b a c

bc c a b b a c

+ − −
− −a f a f

 = (a – b)(a – c)(b – c)

and
∂

∂
f f f
u v w
1 2 3, ,

, ,
b g
a f =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

f
u

f
v

f
w

f
u

f
v

f
w

f
u

f
v

f
w

1 1 1

2 2 2

3 3 3

 = 

1 1 1
v w w u u v

vw wu uv

+ + +a f a f a f

=

1 0 0
v w u v u w

vw w u v v u w

+ − −
− −a f a f

  (C2 → C2 – C1, C3 → C3 – C1)

= (u – v)(u – w)(v – w)

Thus,
∂
∂

u v w
x y z
, ,
, ,
a f
b g = (–1)3 

∂
∂

∂
∂

f f f

x y z

f f f

u v w

1 2 3

1 2 3

, ,

, ,

, ,

, ,

b g
b g
b g
a f

 = – 
a b a c b c

u v u w v w

− − −
− − −
a f a f a f
a f a f a f

∴
∂
∂

x y z
u v w

, ,
, ,
b g
a f = – 

u v v w u w
a b b c a c
− − −
− − −
a f a f a f
a f a f a f .  Hence proved. As  =  1. JJ ′

Example 10. If u = 2axy, v = a (x2 – y2) where x = r cosθ, y = r sin θ, then prove that

∂
∂

u v
r
,
,
a f
a fθ = – 4a2r3.
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Sol. We have u = 2axy, v = a (x2 – y2)

Now,
∂
∂

u v
x y
,
,
a f
b g =

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

 = 
2 2
2 2
ay ax
ax ay−  = – 4a2(x2 + y2)

or
∂
∂

u v
x y
,
,
a f
b g = − 4a2r2 As +  =2x y r2 2

and
∂
∂

x y
r
,
,
b g
a fθ =

∂
∂

∂
∂θ

∂
∂

∂
∂θ

x
r

x

y
r

y  = 
cos – sin
sin cos

θ θ
θ θ

r
r

 = r

Hence
∂
∂

u v
r

,
,
a f
a fθ =

∂
∂

u v
x y
,
,
a f
b g  · 

∂
∂

x y
r
,
,
b g
a fθ  = (− 4a2r2).r = − 4a2r3. Hence proved.

Example 11. If u3 + v3 + w3 = x + y + z, u2 + v2 + w2 = x3 + y3 + z3, u + v + w = x2 + y2 + z2,
then show that

∂
∂

u v w
x y z
, ,
, ,
a f
b g  = 

x y y z z x
u v v w w u

− − −
− − −

⋅
b g b g a f
a f a f a f

Sol. Let f1 ≡ u3 + v3 + w3 – x – y – z = 0
f2 ≡ u2 + v2 + w2 – x3 – y3 – z3 = 0
f3 ≡ u + v + w – x2 – y2 – z2 = 0

Now,
∂

∂
f f f

x y z
1 2 3, ,

, ,
b g
b g =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

f

x

f

y

f

z
f

x

f

y

f

z
f

x

f

y

f

z

1 1 1

2 2 2

3 3 3

 = 

–1 –1 –1
–3 –3 –3
–2 –2 –2

x y z
x y z

2 2 2

=

–1
–3
–2

0 0
3 3
2 2

2 2 2 2 2x x y x z

x x y x z

− −

− −
e j e j
b g a f

C C C C C C2 2 1 3 3 1→ − → −,

= – 6[(x2 – y2) (x – z) – (x2 – z2) (x – y)]
= – 6 (x – y) (x – z) [(x + y) – (x + z)]

⇒
∂

∂
f f f

x y z
1 2 3, ,

, ,
b g
b g = 6 (x – y) (y – z) (z – x)

and
∂
∂

f f f
u v w
1 2 3, ,

, ,
b g
a f =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

f
u

f
v

f
w

f
u

f
v

f
w

f
u

f
v

f
w

1 1 1

2 2 2

3 3 3

  = 

3 3 3
2 2 2
1 1 1

2 2 2u v w

u v w
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=

3 3 3
2 2 2
1 0 0

2 2 2 2 2u v u w u

u v u w u

− −
− −

b g b g
a f a f C C C C C C2 2 1 3 3 1→ − → −,

Expand it with respect to third row, we get
= 6[(v2 – u2) (w – u) – (w2 – u2) (v – u)]
= 6 (v – u) (w – u) [(v + u) – (w + u)]

⇒
∂
∂

f f f
u v w
1 2 3, ,

, ,
b g
a f = – 6 (u – v) (v – w) (w – u)

Hence
∂
∂

u v w
x y z
, ,
, ,
a f
b g = (–1)3 

∂
∂

∂
∂

f f f

x y z

f f f

u v w

1 2 3

1 2 3

, ,

, ,

, ,

, ,

b g
b g
b g
a f

 = + 
6
6

x y y z z x
u v v w w u

− − −
− − −
b gb ga f
a fa fa f

=
x y y z z x
u v v w w u

− − −
− − −
b g b g a f
a f a f a f · Hence proved.

Example 12. u, v, w are the roots of the equation

(x – a)3 + (x – b)3 + (x – c)3 = 0, find 
∂
∂

u v w

a b c

, ,

, ,
.

b g
b g

Sol. We have (x – a)3 + (x – b)3 + (x – c)3 = 0
x3 – a3 – 3xa (x – a) + x3 – b3 – 3xb (x – b) + x3 – c3 – 3xc (x – c) = 0

or    3x3 – 3x2 (a + b + c) + 3x (a2 + b2 + c2) – (a3 + b3 + c3) = 0

Since u, v, w are the roots of this equation, we have
u + v + w = a + b + c

uv + vw + wu = a2 + b2 + c2

uvw =
a b c3 3 3

3
+ +

Let f1 ≡ u + v + w – a – b – c = 0
f2 ≡ uv + vw + wu – a2 – b2 – c2 = 0

f3 = uvw – 
a b c3 3 3

3
+ +

Now
∂

∂
f f f

a b c
1 2 3, ,

, ,

b g
b g =

− − −
− − −
− − −

=
−
− − −
− − −

→ −
→ −

F
HG

I
KJ

1 1 1
2 2 2

1 0 0
2 2 2

2 2 2 2 2 2 2 2

2 2 1

3 3 1
a b c

a b c
a a b a c

a a b a c

c c c
c c c

a f a f
e j e j

,

= – 2{(a – b) (a2 – c2) – (a – c) (a2 – b2)} = – 2(a – b) (b – c) (c – a)

and
∂
∂

f f f

u v w
1 2 3, ,

, ,

b g
b g =

1 1 1 1 0 0
2 2 1

3 3 1
v w u w v u

vw wu uv

v w u v u w

vw w u v v u w

c c c

c c c
+ + + = + − −

− −

→ −
→ −

F
HG

I
KJa f a f

,

As α β γ
αβ βγ γα

αβγ

+ + = −
+ + =

= −

b a

c a

d a
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= (u – v) v(u – w) – (u – w) w(u – v)
= – (u – v) (v – w) (w – u)

Thus
∂
∂

u v w
a b c
, ,
, ,
a f
a f = −

∂
∂

∂
∂

1 3

1 2 3

1 2 3
a f
b g
a f
b g
a f

f f f

a b c

f f f

u v w

, ,

, ,
, ,

, ,

= −
− − − −

− − − −
2 a b b c c a
u v v w w u
a f a f a f
a f a f a f

= −
− − −

− − −
2

a b b c c a
u v v w w u
a f a f a f
a f a f a f .

2.1.4  Functional Dependence
Let u = f1 (x, y), v = f2 (x, y) be two functions. Suppose u and v are connected by the relation
f (u, v) = 0, where f is differentiable. Then u and v are called functionally dependent on one another

(i.e., one function say u is a function of the second function v) if the 
∂
∂
u
x , 

∂
∂
u
y , 

∂
∂
v
x  and 

∂
∂
v
y  are not

all zero simultaneously.
Necessary and sufficient condition for functional dependence (Jacobian for

functional dependence functions):
Let u and v are functionally dependent then

f (u, v) = 0 ...(i)

Differentiate partially equation (i) w.r.t. x and y, we get

∂
∂

f
u

· 
∂
∂
u
x

 + 
∂
∂

f
v

 
∂
∂
v
x = 0 ...(ii)

 
∂
∂

f
u

· 
∂
∂
u
y  + 

∂
∂

f
v

· 
∂
∂
v
y

= 0 ...(iii)

There must be a non-trivial solution for 
∂
∂

f
u

 ≠ 0, 
∂
∂

f
v

 ≠ 0 to this system exists.

Thus,

∂
∂

∂
∂

∂
∂

∂
∂

u
x

v
x

u
y

v
y

= 0  For non-trivial solution xAx = 0

or

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

= 0  Changing all rows in columns

or
∂
∂

u v
x y

,
,
a f
b g = 0

Hence, two functions u and v are “functionally dependent” if their Jacobian is equal to
zero.
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Note: The functions u and v are said to be “functionally independent” if their Jacobian is not equal
to zero i.e., J(u, v) ≠ 0

Similarly for three functionally dependent functions say u, v and w.

J(u, v, w)  =
∂

∂

u v w

x y z

, ,
, ,
a f
b g  = 0.

Example 13. Show that the functions u = x + y – z, v = x – y + z, w = x2 + y2 + z2 – 2yz
are not independent of one another. Also find the relation between them.

Sol. Here u = x + y – z, v = x – y + z and w = x2 + y2 + z2 – 2yz

Now,
∂
∂

u v w
x y z
, ,
, ,
a f
b g =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

u
z

v
x

v
y

v
z

w
x

w
y

w
z

  = 

1 1
1 1
2 2 2 2 2

–1
–1

x y z z y− −

=

1 1 0
1 0
2 2 2 0

–1
x y z−

 (C3 → C3 + C2)

= 0. Hence u, v, w are not independent.

Again u + v = x + y – z + x – y + z = 2x
u – v = x + y – z – x + y – z = 2 (y – z)

∴ (u + v)2 + (u – v)2 = 4x2 + 4 (y – z)2

= 4(x2 + y2 + z2 – 2yz) = 4w
⇒ (u + v)2 + (u – v)2 =  4w

or 2(u2 + v2) = 4w or u2 + v2 = 2w.

Example 14. Find Jacobian of u = sin–1 x + sin–1 y and v = x y1 2−  + y x1 2− . Also find
relation between u and v.

Sol. We have u = sin–1 x + sin–1 y, v = x y1 2−  + y x1 2−

Now,
∂
∂

u v
x y

,
,
a f
b g =

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

 = 

1

1

1

1

1
1 1

1

2 2

2

2 2

2

− −

− −
−

−
−

+ −

x y

y
xy

x

xy

y
x

= −
− −

+ − +
− −

xy

x y

xy

x y1 1
1 1

1 12 2 2 2
 = 0. Hence u and v are dependent.

Next, u = sin–1 x + sin–1 y ⇒ u = sin–1 x y y x1 12 2− + −{ }
As sin  +  sin  =  sin 1 11 1 1 2 2− − − − + −A B A B B A{ }

⇒ sin u = x y1 2−  + y x1 2−  = v

or v = sin u.
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�������� 	
� Show that ax2 + 2hxy + by2 and Ax2 + 2Hxy + By2 are independent unless
a
A

=
h
H

 = 
b
B

.

���� Let u = ax2 + 2hxy + by2

v = Ax2 + 2Hxy + By2

If u and v are not independent, then 
∂
∂

u v
x y

,
,

a f
b g  = 0

or

∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

=
2 2 2 2

2 2 2 2
ax hy hx by

Ax Hy Hx By

+ +
+ +  = 0

⇒  (ax + hy) (Hx + By) – (hx + by) (Ax + Hy) = 0
⇒  (aH – hA) x2 + (aB – bA) xy + (hB – bH) y2 = 0
But variable x and y are independent so the coefficients of x2 and y2 must separately vanish

and therefore, we have

aH – hA = 0 and hB – bH = 0 i.e., 
a
A

 = 
h
H

 and 
h
H

 = 
b
B

i.e,
a
A

=
h
H

 = 
b
B

· ������ ������

�������� 	��� If u = x2 e–y cos hz, v = x2 e–y sin hz and w = 3x4 e–2y then prove that u, v, w
are functionally dependent. Hence establish the relation between them.

���� We have u = x2 e–y cos hz, v = x2 e–y sin hz, w = 3x4 e–2y

∂
∂

u v w
x y z
, ,
, ,

a f
b g =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

=

−

−

−

− − −

− − −

− −

u x u y u z

v x v y v z

w x w y w z

xe hz x e hz x e hz

xe hz x e hz x e hz

x e x e

y y y

y y y

y y

2

2

12 6 0

2 2

2 2

3 2 4 2

cos cos sin

sin sin cos

= 2x e–y cos hz{0 + 6x6 e–3y cos hz} + x2 e–y cos hz{0 – 12x5 e–3y cos hz}
+ x2 e–y sin hz{–12x5 e–3y sin hz + 12x5 e–3y sin hz}

= 12x7 e–4y cos h2 z – 12x7 e–4y cos h2 z = 0
Thus u, v and w are functionally dependent.
Next, 3u2 – 3v2 = 3(x4 e–2y cos h2 z – x4 e–2y sin h2 z) = 3x4 e–2y (cos h2 z – sin h2 z)

= 3x4 e–2y

⇒ 3u2 – 3v2 = w.

EXERCISE 2.1

	 � If x = r cos θ, y = r sin θ find 
∂
∂

x y

r

,

,
.

b g
a fθ

Ans.  
1
r

L
NM

O
QP

� � If y1 = 
x x
x
2 3

1
, y2 = 

x x
x
3 1

2
, y3 = 

x x
x
1 2

3
 show that the Jacobian of y1, y2, y3 with respect to x1,

x2, x3 is 4. (U.P.T.U., 2004(CO), 2002)
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3 . If x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, show that

∂
∂

x y z
r
, ,
, ,
b g
b gθ φ

= r2 sin θ. (U.P.T.U., 2000)

4 . If u = x + y + z, uv = y + z, uvw = z, evaluate 
∂
∂

x y z
u v w

, ,
, ,

.
b g
a f (U.P.T.U., 2003) Ans.  u v2

5 . If u = 
y
x

2

2
, v = 

x y

x

2 2

2

+e j
, find 

∂
∂

u v

x y

,

,
.

b g
b g Ans.  −L

NM
O
QP

y
x2

6 . If x = a cos h ξ  cos η, y = a sin h ξ sin η, show that

∂
∂

x y,

,
b g
b gξ η

=
1
2 a2(cos h 2ξ – cos 2η).

7 . If u3 + v + w = x + y2 + z2, u + v3 + w = x2 + y + z2, u + v + w3 = x2 + y2 + z, then evaluate

∂
∂

u v w
x y z
, ,
, ,

.
a f
b g Ans.  

1 4 4 4 6

27 2 32 2 2 2 2 2

− − − +

+ − + +

L

N
MMM

O

Q
PPP

xy yz zx xyz

u v w u v w

b g
e j

8 . If u, v, w are the roots of the equation (λ – x)3 + (λ – y)3 + (λ – z)3 = 0 in λ, find 
∂
∂

u v w
x y z
, ,
, ,

.
a f
b g

(U.P.T.U., 2001) Ans.  
− − − −

− − −
L
NM

O
QP

2( ) ( ) ( )x y y z z x
u v v w w ua f a f a f

9 . If u = x1 + x2 + x3 + x4, uv = x2 + x3 + x4, uvw = x3 + x4 and uvwt = x4, show that

∂
∂
x x x x

u v w t
1 2 3 4, , ,

, , ,
b g
a f = u3v2w.

10 . Calculate J = 
∂
∂

u v
x y
,
,
a f
b g  and J′ = 

∂
∂

x y
u v
,
,
b g
a f . Verify that JJ′ = 1 given

 (i) u = x + 
y
x

2
, v = 

y
x

2
. Ans.  =

2
J

y
x

J
x
y

, ′ =
L
NM

O
QP2

(ii) x = eu cos v, y = eu sin v. Ans.  = , = .2 2J e J eu u′ −

11 . Show that 
∂
∂

u v
r

,
,
a f
a fθ  = 6r3 sin 2θ given u = x2 – 2y2, v = 2x2 – y2 and x = r cos θ, y = r sin θ.

12 . If X = u2v, Y = uv2 and u = x2 – y2, v = xy, find 
∂
∂

X Y
x y
,
,
a f
b g . Ans.  + –2 2 2 2 26 2 2

x y x y x ye je jL
NM

O
QP

13 . Find 
∂
∂

u v w
x y z
, ,
, ,

,
a f
b g  if u = x2, v = sin y, w = e–3z. Ans.  – 6 3e x yz− cos

14 . Find 
∂
∂

u v w
x y z
, ,
, ,
a f
b g , if u = 3x + 2y – z, v = x – y + z, w = x + 2y – z. Ans. – 2 

15 . Find J (u, v, w) if u = xyz, v = xy + yz + zx, w = x + y + z. Ans. x y y z z x− − −b gb ga f 
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16 . Prove that u, v, w are dependent and find relation between them if u = xey sin z, v = xey

cos z, w = x2e2y. Ans. dependent,  u v w2 2+ =

17 . u = 
3

2

2x
y z+b g , v = 

2

3 2

y z

x y

+

−

b g
b g , w = 

x y
x
−

. Ans. dependent, = 1 2uvw

18 . If X = x + y + z + u, Y = x + y – z – u, Z = xy – zu and U = x2 + y2 – z2 – u2, then show

that J = 
∂
∂

X Y Z U
x y z u
, , ,
, , ,
a f
b g  = 0 and hence find a relation between X, Y, Z and U.

Ans. XY U Z= + 2  

19 . If u = 
x

y z−
, v = 

y
z x−

, w = 
z

x y−
, then prove that u, v, w are not independent and also

find the relation between them. Ans. uv vw wu+ + + =1 0 
20 . If u = x + 2y + z, v = x – 2y + 3z, w = 2xy – xz + 4yz – 2z2, show that they are not

independent. Find the relation between u, v and w. Ans. 4 2 2w u v= −  

21 . If u = 
x y

xy
+

−1
 and v = tan–1 x + tan–1 y, find 

∂
∂

u v
x y
,
,
a f
b g . Are u and v functionally related? If

yes find the relationship. [Ans. yes, u = tan v]

22 . If u = x + y + z, uv = y + z, uvw = z, show that 
∂
∂

=
x y z
u v w

u v
, ,
, ,
b g
a f

2 .

23 . If x2 + y2 + u2 – v2 = 0 and uv + xy = 0 prove that 
∂
∂

=
−
+

u v

x y
x y

u v

,
,
a f
b g

2 2

2 2
.

24 . Find Jacobian of u, v, w w.r.t. x, y, z when u = 
yz
x

v
zx
y

w
xy
z

, ,= = . [Ans. 4]

2.2  APPROXIMATION OF ERRORS

Let u = f (x, y) then the total differential of u, denoted by du, is given by

du =
∂
∂

f
x

 dx + 
∂
∂

f
y  dy ...(i)

If δx and δy are increments in x and y respectively then the total increment δu in u

is given by δu = f (x + δx, y + δy) – f (x, y)
or f (x + δx, y + δy) = f (x, y) + δu ...(ii)

But δu ≈ du, δx ≈ dx and δy ≈ dy

∴ From (i)   δu ≈
∂
∂

f
x

 δx + 
∂
∂

f
y

 δy ...(iii)
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Using (iii) in (ii), we get the approximate formula

f (x + δx, y + δy) ≈ f (x, y) + 
∂
∂

f
x

 δx + 
∂
∂

f
y  δy ...(iv)

Thus, the approximate value of the function can be obtained by equation (iv). Hence
δx or dx = Absolute error

δx
x  or 

dx
x = Proportional or Relative error

and 100 × 
dx
x

 or  100 × 
dx
x

= Percentage error in x.

Example 1. If f (x, y) = x y2
1

10 , compute the value of f when x = 1.99 and y = 3.01.
(U.P.T.U., 2007)

Sol. We have f (x, y) = x y2
1

10

∴
∂
∂

f
x

= 2
1

10xy , 
∂
∂

f
y

 = 
1

10
2

9
10x y

−

Let x = 2, δx = – 0.01 As
+ =2+ –0.01x x

y y
δ
δ
a f
a f

=
+ = + =

1 99
1 2 01 3 01

.
. .

y = 1, δy = 2.01

Now, f (x + δx, y + δy) = f (x, y) + 
∂
∂

f
x

 δx + 
∂
∂

f
y  δy

⇒ f{2 + (– 0.01), 1 + 2.01} = f (2, 1) + 2 2 1
1
10× a f  × (– 0.01) + 

1
10  (2)2. 1

9
10a f−  × (2.01)

⇒ f (1.99, 3.01) ≈ 22 × 1
1

10  + (– 0.04) + 0.804
≈ 4 – 0.04 + 0.804 = 4.764.

Example 2. The diameter and height of a right circular cylinder are measured to be 5 and
8 cm. respectively. If each of these dimensions may be in error by ± 0.1 cm, find the relative
percentage error in volume of the cylinder.

Sol. Let diameter of cylinder = x cm.
height of cylinder = y cm.

then V =
πx y2

4
 (radius = 

x
2

)

∴
∂
∂
V
x =

πxy
2

, 
∂
∂
V
y

 = 
πx2

4

⇒ dV =
∂
∂
V
x

 dx + 
∂
∂
V
y

 dy
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OLS

OLS

OLS>ª

R>ª

Fig. 2.1

⇒ dV =
1
2 π xy. dx + 

1
4  πx2. dy

or
dV
V =

1
2

4

1
4

4

2

2

2

π

π

π

π

xy dx

x y

x dy

x y

.
+  = 2. 

dx
x

 + 
dy
y

or 100 × 
dV
V = 2 100×F

HG
I
KJ

dx
x

 + 100 × 
dy
y

Given x = 5 cm., y = 8 cm. and error dx = dy = ± 0.1. So 100 × 
dV
V  = ± 100 2 01

5
01
8

× +F
HG

I
KJ

. .

= ± 5.25.
Thus, the percentage error in volume = ± 5.25.

Example 3. A balloon is in the form of right circular cylinder of radius 1.5 m and length
4 m and is surmounted by hemispherical ends. If the radius is increased by 0.01 m and the length
by 0.05 m, find the percentage change in the volume of the balloon.  [U.P.T.U., 2005 (Comp.), 2002]

Sol. Let  radius = r = 1.5 m, δr = 0.01 m
height = h = 4 m, δh = 0.05 m

volume (V) = πr2 h + 
2
3 πr3 + 

2
3 πr3 = πr2h + 

4
3 πr3

∴
∂
∂
V
r = 2πrh + 4πr2, 

∂
∂
V
h  = πr2

dV =
∂
∂
V
r dr + 

∂
∂
V
h dh = (2πrh + 4πr2) dr + πr2dh

or
dV
V =

2 2
4
3

2

π

π

r h r

r h
r

+

+FH
I
K

a f
 dr + π

π

r

r h
r

2

2 4
3

+FH
I
K

 dh

=
3 2 2

3 4
× +

+
h r

r h r
a f
a f  dr + 

3
3 4h r+a f  dh = 

3
3 4r h r+a f  [2(h + 2r) dr +rdh]

=
3

15 12 6. +a f  [2(4 + 3)(0.01) + 1.5 (0.05)] δ
δ
r dr
h dh

=
=

=
1
9  [0.14 + 0.075] = 

0 215
9

.

⇒ 100 × 
dV
V = 100 × 

0 215
9

.
 = 2.389%

Thus, change in the volume = 2.389%.
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Example 4. Calculate the percentage increase in the pressure p corresponding to a reduction

of 
1
2 % in the volume V, if the p and V are related by pV1.4 = C, where C is a constant.

Sol. We have pV1.4 = C ...(i)
Taking log of equation (i)

log p + 1.4 log V = log C
Differentiating

1
p

· dp + 
1 4.
V

· dV = 0 ⇒ 
dp
p

 = – 1.4 
dV
V

or 100 × 
dp
p

= −1.4 100×F
HG

I
KJ

dV
V

= −1.4 × −F
HG
I
KJ

1
2

dV
V

= =
×

1
2

1
2 100

%

= 0.7
Hence increase in the pressure p = 0.7%.

Example 5. In estimating the cost of a pile of bricks measured as 6′ × 50′ × 4′, the tape is
stretched 1% beyond the standard length. If the count is 12 bricks to one ft3, and bricks cost Rs.
100 per 1000, find the approximate error in the cost. (U.P.T.U., 2004)

Sol. Let length (l) = x ...(i)

breadth (b) = y

height (h) = z

∴ V = lbh = xyz

or log V = log x + log y + log z

On differentiating
1
V  dV =

1
x  dx + 

1
y  y + 

1
z  dz

or 100 × 
dV
V

= 100 × 
dx
x

 + 100 × 
dy
y

 + 100 × 
dz
z

⇒ 100 × 
dV
V

= 1 + 1 + 1 = 3

dV =
3
100

V
 = 

3 6 50 4
100
× ×a f

 = 36 cube fit

∴ Number of bricks in dV = 36 × 12 = 432

Hence, the error in cost = 432 × 
.100
1000  = Rs. 43.20.

Example 6. The angles of a triangle are calculated from the sides a, b, c of small changes

δa, δb, δc are made in the sides, show that approximately δA = 
a

2∆  [δa – δb cos C – δc. cos B]

where ∆ is the area of the triangle and A, B, C are the angles opposite to a, b, c respectively. Verify
that δA + δB + δC = 0. (U.P.T.U., 2001)
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Sol. From trigonometry, we have

cos A =
b c a

bc

2 2 2

2
+ −

 ⇒ b2 + c2 – a2 = 2bc cos A

⇒ a2 = b2 + c2 – 2bc cos A
On differentiating, we get

a · da = b · db + c · dc – db · c cos A – b · dc cos A + bc sin A · dA

⇒ bc sin A · dA = a · da – b · db – c · dc + db · c cos A + b · dc cos A
⇒ 2∆ · dA = a · da – (b – c cos A) · db – (c – b cos A) dc
⇒ 2 ∆ · dA = a da – (a cos C + c cos A – c cos A) db – (a cos B + b cos A

– b cos A) dc  
As ∆ =

= +

1
2

bc A

a b C c B

sin

cos cos

or 2 ∆ · dA = a da – db.a cos C – dc.a cos B

⇒ δA =
a

2∆  [δa – δb. cos C – δc. cos B]

As A  
  ,    

  

δ
δ δ

δ

≈
≈ ≈

≈

dA
a da b db

c dc
Hence proved.

Similarly, δB =
b

2∆  [δb – δc. cos A – δa. cos C]

and δC =
c

2∆  [δc – δa. cos B – δb. cos A]

Adding δA, δB and δC, we get

δA + δB + δC =
1

2∆  [(a – b cos C – c cos B) δa + (b – a cos C – c cos A) δb

+ (c – a cos B – b cos A) δc]

=
1

2∆  [(a – a) δa + (b – b) δb + (c – c) δ c]

⇒ δA + δB + δC = 0. Verified.

Example 7. Show that the relative error in c due to a given error in θ is minimum when
θ = 45° if c = k tan θ.

Sol. We have c = k tanθ ...(i)
On differentiating, we get

dc = k sec2 θ dθ ...(ii)

From (i) and (ii), we get
dc
c =

sec
tan

2 θ θ
θ
d

 = 
2

2
dθ

θsin

Thus, dc
c

 will be minimum if sin2θ is maximum

i.e., sin 2θ = 1 = sin 90
Since sin lies
between –  1 and 1

θ

⇒ 2θ = 90 ⇒ θ = 45°. Hence proved.
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�������� 	
� Find approximate value of

0.98� � � � � �2 2 2 1 2
2 01 1 94+ +. . .

���
� Suppose f (x, y, z) = x y z2 2 2 1 2
+ +� �

∴
∂
∂

f
x

= x x y z2 2 2 1 2
+ +

−
� � ,

∂
∂

f
y

= y x y z2 2 2 1 2
+ +

−
� � ,

∂
∂
f
z

= z x y z2 2 2 1 2
+ +

−
� �

Now

f (x + δx, y + δy,z + δz) = f (x, y, z) + 
∂
∂

f
x

 δx + 
∂
∂

f
y  δy + 

∂
∂

f
z

 δz

Let x = 1, y = 2, z = 2, δx = – .02, δy = .01, δz = –.06.

⇒ f (0.98, 2.01, 1.94) = 1 2 2 9 0 02 2 9 012 2 2 1 2 1 2 1 2+ + +( ) × −( ) + ( ) ( )− −� � . . + −−2 9 0 061 2� � � �.

= 3 – 
1
3

 (0.02 – 0.02 + 0.12)

= 3 – 0.04 = 2.96.

��������
 Prove that the relative error of a quotient does not exceed the sum of the relative
errors of dividend and the divisor.

���
� Let x = dividend
y = divisor
z = quotient

Then x
y

= z

Taking log on both sides
log x – log y = log z

Differentiating
dx
x

 – 
dy
y

=
dz
z

⇒ the relative error in quotient is equal to difference of the relative errors of dividend and
divisor.

Hence 
dz
z

 (relative error) in quotient does not exceed the sum of relative errors of dividend

and the divisor

i.e.,
dz
z

<
dx
x

 + 
dy
y

. � ������ ������


����������
 The work that must be done to propel a ship of displacement D for a distance

‘S in time ‘t’ proportional to 
S D

t

2
2
3

2
. Find approximately the increase of work necessary when the

displacement is increased by 1%, the time diminished by 1% and the distance diminished by 2%.
���
� Let the work = W

then W ∝ S D
t

2
2
3

2
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⇒ W = K·
S D

t

2 2 3

2

−

, where K is proportional constant.

Taking log on both sides

log W = log K + 2 log S + 
2
3

 log D – 2 log t

On differentiating
dW
W

= 2 
dS
S

 + 
2
3

 
dD
D

 – 2 
dt
t

⇒ 100 × 
dW
W

= 2 100 ×�
��

�
	


dS
S

 + 
2
3

 100 ×�
��

�
	


dD
D

 – 2 100 ×�
��

�
	


dt
t

= 2 (–2) + 
2
3

 (1) – 2 (–1)  = 
−4
3

∴  Approximate increase of work = 
−4
3

%.

����������
 The height h and semi-vertical angle α, of a cone are measured from there A,
the total area of the cone, including the base, is calculated. If h and α are in error by small
quantities δh and δα respectively, find the corresponding error in the area. Show further that, if

α = 
π
6

, an error of + 1 per cent in h will be approximately compensated by an error of –19.8

minutes in α.
���
� Total area of the cone

A = πr2 + πrl

or A = πh2 tan2 α + π (h tan α) (h sec α)

= πh2 (tan2α + tan α sec α)

r
h

r h

l
h

l h

= ⇒ =

= ⇒ =

tan tan

sec sec

α α

α α

Differentiating δA = 2πh δh (tan2 α + tan α sec α)
+ πh2 (2tan α sec2 α. δα + sec3α δα + tan2 α · sec α · δα)

or δA = 2πh tan α.δh (tan α + sec α) + πh2 (sec2 α + 2.tan α sec α
+ tan2 α) sec α . δα

= 2πh tan α. δh (tan α + sec α) + πh2 (sec α + tan α)2 sec α.δα

δA = πh2 (tan α + sec α) 2tan . tan sec sec .α
δ

α α α δα
h
h

+ +�
�

�
��

� � .

Now, putting α =
π
6

, 
δh
h

 × 100 = 1 and δA = 0 in above.

0 = πh2 tan sec
π π
6 6

+�
��

�
	
 2

6
100

1
100 6 6 6

tan . tan sec . sec .
π δ π π πδα×�
��

�
	
 + +�

��
�
	


�
�

�
��

h
h

⇒  2·
1
3

.
1

100
 + 

1
3

2
3

+
�
��

�
	
 ·

2
3

· δα = 0

���
� �
�
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   ⇒
1

100 3
 + 

3
3
�
��
�
	
  δα= 0 ⇒ δα  = – 

1

100 3
 radian.

or δα = – 
1

100 3
 × 180

π
 degree

= – 
9

5 3π
 × 60 minutes (1° = 60 minutes)

= – 
9 60

5 3 14 1 732
×

× ×. .
 = – 19.858 minutes. ������ ������


����������
 If the sides and angles of a plane triangle vary in such a way that its circum

radius remains constant, prove that 
da

Acos
 + 

db
Bcos

 + 
dc

Ccos
 = 0 where da, db, dc are small

increaments in the sides a, b, c respectively.
���
� Let R be the circum radius.

We know that R =
a

A2sin

∴ ∂
∂
R
a

=
1

2sin A
, 

∂
∂
R
A

 = – 
a A

A
×cos
sin2 2

⇒ dR =
∂
∂
R
a

 da + 
∂
∂

R
A

 dA

=
1

2sin A
 da – 

a A
A

cos
sin2 2 . dA

or 0 =
1

2sin A
 da

a A
A

dA−���
���

cos
sin

.
2

 As  =  constantR

⇒ da −
a A

A
cos

sin
 dA = 0 ⇒  

da
Acos

 = 
a

Asin
. dA

⇒
da

Acos
= 2R dA

Similarly,
db

cosB
= 2R dB

dc
cosC

= 2R dC

Adding these equations, we get
da

cosA
 + 

db
cosB

 + 
dc

cosC
= 2R (dA + dB + dC) ...(i)

� A + B + C = π
∴ dA + dB + dC = 0 ...(ii)
From (i) and (ii), we get

da
Acos

 + 
db

Bcos
 + 

dc
Ccos

= 0. ������ ������


C

R

O

A B

���
� �
�
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����������
 Considering the area of a circular ring as an increment of area of a circle, find
approximately the area of the ring whose inner and outer radii are 3 cm. and 3.02 cm.
respectively.

���
 Let area of a circle = πr2

or A = πr2

⇒ dA = 2πr dr ...(i)
Now area of circular ring δA is the difference between A1 of outer ring and A2 of inner

sphere
choose r = 3 cm. and δr = 0.02, then

A1 – A2 = A (r + δr) – A (r) = δA ≈ dA
⇒ A1 – A2 = dA = 2πr.dr (from i)
⇒ A1 – A2 = 2 π × 3 × .02

= .12 π cm2.

�������� ��
 Calculate (2.98)3

���
 Let f (x, y) = yx

⇒
∂
∂

f
x

= yx. log y, 
∂
∂

f
y  = xyx–1

Now, f (x + δx, y + δy) = f (x, y) + 
∂
∂

f
x

 δx + 
∂
∂

f
y  δy

Let x = 3, δx = – 0.02, y = 3, δy = 0

⇒ f (2.98, 3) = f (3, 3) + 33. log 3 × (– 0.02) + 0

= 33 – 33 × (.4771213) × 0.02 log 3 =  .4771213

= 27 (1 – 0.00954) = 26.74.

EXERCISE 2.2

�
 The period T of a simple pendulum is T = 2π
l
g

. Find the maximum error in T due to

possible errors up to 1% in l and 2.5 % in g. (U.P.T.U., 2003) Ans.  .75%1

�
 In the estimating the number of bricks in a pile which is measured to be (5 m × 10 m ×
5 m), count of bricks is taken as 100 bricks per m3. Find the error in the cost when the tape
is stretched 2% beyond its standard length. The cost of bricks is Rs. 2,000 per thousand

bricks. (U.P.T.U., 2000) Ans.  Rs.  3000

�
 Find the approximately value of f(0.999) where f(x) = 2x4 + 7x3 – 8x2 + 3x + 1.

Ans.  4.984

Hint:  0.999f f x x f x
f
x

x f f� � � � � � � � � �� �= + = +
∂
∂

= + ′�
�

�
��

δ δ. –0.1 1 001

3.02

3 cm

O

0.02

���
� �
�
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�
 If the kinetic energy T is given by T = 
1
2

 mv2
e find approximate change in T as the mass

m changes from 49 to 49.5 and the velocity v changes from 1600 to 1590.

Ans.  ts144000 uni

�
 Find the approximate value of (1.04)3.01. Ans.  .121

�
 If ∆ be the area of a triangle, prove that the error in ∆ resulting from a small error in c
is given by

δ ∆ =
∆
4

1 1 1 1
s s a s b s c

+
−

+
− −

�
�

�
��

–  δc

�
 Considering the volume of a spherical shell as an increment of volume of a sphere,
calculate approximately the volume of a spherical shell whose inner diameter is 8 inches

and whose thickness is 
1
6

 inch. Ans.   cubic inches4π

	
 A diameter and altitude of a can in the form of right circular cylinder are measured as
4 cm. and 6 cm. respectively. The possible error in each measurement is 0.1 cm. Find
approximately the maximum  possible error in the value computed for the volume and

lateral surface. Ans.  5.0336 cm ,  3.146 cm3 2


 Find the percentage error in calculating the area of ellipse 
x

a

2

2  + 
y

b

2

2  = 1, when error of

+ 1 % is made in measuring the major and minor axis. Ans. 2%

��
 The quantity Q of water flowing over a v-notch is given by the formula Q = cH
5
2  where

H is the head of water and c is a constant. Find the error in Q if the error in H is 1.5%.

Ans.  3.75%

��
 Find the percentage error in calculated value of volume of a right circular cone whose
altitude is same as the base radius and is measured as 5 cm. with a possible error of

0.02 cm. Ans.  1.2%
��
 Find possible percentage error in computing the parallel resistance r of three resistance

r1, r2, r3 from the formula 1
r

 = 
1

1r
 + 

1
2r

 + 
1

3r
 if r1, r2, r3 are each in error by plus 1.2%.

Ans. 12%

��
 The diameter and the height of a right circular cylinder are measured as 4 cm. and 6 cm.
respectively, with a possible error of 0.1 cm. Find approximately the maximum possible
error in the computed value of the volume and surface area.  Ans.  1.6  cu.  cm,   sq.  cmπ π

��
 Find 3 82 2 212 3
1
5. . .� � � �+ Ans. = 2  .012

��
 Show that the acceleration due to gravity is reduced nearly by 1% at an altitude equal to
0.5 % of earth’s radius. Given that an external point x kilometers from the earth’s centre,

such an acceleration is given by g 
r
x
�
��
�
	


2

, where r is the radius of the earth.

��
 Calculate the error in R if RI = E and possible errors in E and I are 20% and 10%

respectively. Ans.  10%
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��
 In the manufacture of closed cylindrical boxes with specified sides a, b, c (a ≠ b ≠ c) small
changes of A %, B %, C % occurred in a, b, c respectively from box to box from the
specified dimension. However, the volume and surface area of all boxes were according
to specification, show that

A
a b c−� � =

B
b c a−� �  = 

C
c a b−� �

�	
 Find 83 7
1
4.� � . Ans. .3 025

�
 Find y (1.997) where y(x) = x4 – 2x3 + 9x + 7. Ans. .24 949

��
 The time T of a complete oscillation of a simple pendulum of length l is governed by T

= 2π l
g  where g is a constant.

(a) Find approximate error in the calculated value of T corresponding to an error of 2%
in the value of L. (U.P.T.U., 2008) Ans. 1%

(b) By what percentage should the length be changed in order to correct a loss of 2
minutes per day? Ans. – .0 278%

2.3  EXTREMA OF FUNCTION OF SEVERAL VARIABLES

Introduction
In some practical and theoretical problems, it is required to find the largest and smallest values
of a function of two variables where the variables are connected by some given relation or
condition known as a constraint. For example, if we plot the function z = f(x, y) to look like a
mountain range, then the mountain tops or the high points are called local maxima of f(x, y) and
valley bottoms or the low points are called local minima of f(x, y). The highest mountain and
lowest valley in the entire range are said to be absolute maximum and absolute minimum. The
graphical representation is as follows.

Z

O
Y

X

Local minimum 

Absolute minimum 

Local maximum 

Absolute maximum

���
� �
�

Definition
Let f (x, y) be a function of two independent variables x, y such that it is continuous and finite
for all values of x and y in the neighbourhood of their values a and b (say) respectively.
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����� ����� �!�f(a, b) is called maximum value of f(x, y) if f (a, b) > f(a + h, b + k). For small
positive or negative values of h and k i.e., f(a, b) is greater than the value of function f (x, y,) at
all points in some small nbd of (a, b).

����� ����� �!� f(a, b) is called minimum value of f(x, y) if f (a, b) < f(a + h, b + k).

"�#�! f(a + h, b + k) – f (a, b) = positive, for Minimum value.
f(a + h, b + k) – f (a, b) = negative, for Maximum value.

��#��� �!�The maximum or minimum value of the function f(x, y) at any point x = a and
y = b is called the extremum value and the point is called “extremum point”.

$����#������ �����%��#�#���� �&� ������� ���� ������!� The function f(x, y) represents a
surface. The maximum is a point on the surface (hill top). The minimum is a point on the surface
(bottom) from which the surface ascends (climbs up) in every direction.

Z = f (x, y) Z = f (x, y)

P (maximum)

Y Y

X X

Q (minimum)

(a) (b)
���
� �
�

�����������#!�It is a point where function is neither maximum nor minimum. At such point
f is maximum in one direction while minimum in another direction.

�������!� z = xy, hyperbolic paraboloid has a saddle point at the origin.

'����(� �� ! If f(x, y) ≤ f(a, b) where (x, y) is a neighbourhood of (a, b). The number f(a, b)
is called local maximum value of f(x, y).

'����(� �� ! If f(x, y) ≥ f(a, b) where (x, y) is a neighbourhood of f(a, b). The number f(a, b)
is called local minimum value of f(x, y).

2.3.1  Condition for the Existence of Maxima and Minima (Extrema)
By Taylor’s theorem

f (a + h, b + k) = f (a, b) + h
f
x

k
f
y

a b

∂
∂

+
∂
∂

�
��

�
	
 ( , )

+ 
1
2

 h
f

x
hk

f
x y

k
f

y
a b

2
2

2

2
2

2

22
∂
∂

+
∂
∂ ∂

+
∂
∂

�
��

�
	


+
( , )

....  ...(i)

Neglecting higher order terms of h2, hk, k2, etc. Since h, k are small, the above expansion
reduce to

 f (a + h, b + k) = f (a, b) + h 
∂

∂
f a b

x
,� �

 + k 
∂

∂
f a b

y
,� �

⇒ f (a + h, b + k) – f (a, b) = h 
∂

∂
f a b

x

,� �
 + k 

∂
∂

f a b
y
,� �

...(ii)
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The necessary condition for a maximum or minimum value (L.H.S. of eqn (ii) negative or
positive) is

 h 
∂

∂
f a b

x

,� �
 + k 

∂
∂

f a b
y
,� �

= 0

⇒
∂

∂
f a b

x

,� �
= 0, 

∂
∂

f a b
y
,� �

 = 0 h k and  can take both + ve and – ve value ...(iii)

The conditions (iii) are necessary conditions for a maxmium or a minimum value of f(x, y).

"�#�!�The conditions given by (iii) are not sufficient for existence of a maximum or a minimum value
of f(x, y).

2.3.2  Lagrange’s Conditions for Maximum or Minimum (Extrema)
Using the conditions (iii) in equation (i) (2.3.1) and neglecting the higher order term h3, k3, h2 k etc.
we get

f (a + h, b + k) – f (a, b) =
1
2

22
2

2

2
2

2

2h
f

x
hk

f
x y

k
f

y
a b

∂
∂

+
∂
∂ ∂

+
∂
∂

�
�



�
�
�
�( , )

Putting
∂
∂

2

2

f

x
= r, 

∂
∂ ∂

2 f
x y

 = s, 
∂
∂

2

2

f

y
 = t, then

 f (a + h, b + k) – f (a, b) =
1
2

 [h2r + 2hks + k2 t]

=
1
2

 
h r hkrs k tr

r

2 2 22+ +�
�


�
�
�

⇒ f (a + h, b + k) – f (a, b) =
1
2

2 2 2hr ks k rt s

r

+ + −�

�



�

�
�
�

� � � �
...(iv)

If rt – s2 > 0 then the numerator in R.H.S. of (iv) is positive. Here sign of L.H.S. = sign of r.
Thus, if rt –s2 > 0 and r < 0, then f (a + h, b + k) – f (a, b) < 0

if rt – s2 > 0 and r > 0, then f (a + h, b + k) – f (a, b) > 0.
Therefore, #)�� *�������+%� �����#���%� &��� ����� �� ��� ����� �� ���!� (U.P.T.U., 2008)
1. If rt –s2 > 0 and r < 0, then f (x, y) has maximum value at (a, b).
2. If rt –s2 > 0 and r > 0, then f (x, y) has minimum value at (a, b).
3. If rt –s2 < 0,  then f (x, y) has neither a maximum nor minimum i.e., (a, b) is saddle point.
4. If rt –s2 = 0, then case fail and here again investigate more for the nature of function.

2.3.3  Method of Finding Maxima or Minima

1. Solve 
∂
∂

f
x

 = 0 and 
∂
∂
f
y  = 0, for the values of x and y. Let x = a, y = b.

,)�� ����#� � -��� �.� �%� ������� ���#����� ��� %#�#�����/� ����#
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2. Find r, s and t at x = a, y = b.
3. Now check the following conditions:

(i) If rt – s2 > 0 and r < 0, f (x, y) has maximum at x = a, y = b.
(ii) If rt – s2 > 0 and r > 0, f (x, y) has minimum at x = a, y = b.
(iii) If rt – s2 < 0,  f(x, y) has neither maximum nor minimum.
(iv) If rt – s2 = 0, case fail.

���������
 Find the maximum and minimum of u = x3 + y3 – 63(x + y) + 12xy.

���

∂
∂
u
x

= 3x2 – 63 + 12y; 
∂
∂
u
y  = 3y2 – 63 + 12x

r =
∂
∂

2

2

u

x
 = 6x, s = ∂

∂ ∂

2u
x y

 = 12, t = 
∂
∂

2

2
u

y
 = 6y

Now for maximum and minimum value

∂
∂
u
x

= 0 and 
∂
∂
u
y  = 0

⇒ 3x2 + 12y – 63 = 0 ⇒  x2 + 4y – 21 = 0 ...(i)

and 3y2 + 12x – 63 = 0 ⇒  y2 + 4x – 21 = 0 ...(ii)
Subtracting (i) and (ii), we get

(x – y) (x + y) – 4 (x – y) = 0
⇒ (x – y) (x + y – 4) = 0
⇒ x = y and x + y = 4
Putting x = y in (i), we get x2 + 4x – 21 = 0 ⇒  (x + 7) (x – 3) = 0

∴ x = 3, x = – 7
y = 3, y = – 7

Again putting y = 4 – x in eqn (i), we get

∴ x2 + 4 (4 – x) – 21 = 0 ⇒  x2 – 4x – 5 = 0
⇒ (x – 5) (x + 1) = 0 ⇒  x = 5, x = – 1
∴ y = 4 – 5 = – 1, y = 4 – (–1) = 5.
Hence (3, 3),  (5, –1), (–7, –7) and (–1, 5) may be possible extremum.

At x = 3, y = 3, we have r = 18; s = 12, t = 18
∴ rt – s2 = 18 × 18 – (12)2 > 0 and r = 18 > 0.
So there is minima at x = 3, y = 3, and the minimum value of u is
(3)3 + (3)3 – 63 (3 + 3) + 12 (3) (3) = – 216.
At x = 5, y = – 1, we have r = 30; s = 12, t = – 6
∴  rt – s2 = 30 (– 6) – (12)2 < 0, so there is neither maxima nor minima at x = 5, y = – 1.
At x = – 7, y = – 7, we have r = – 42; s = 12, t = – 42
∴  rt – s2 = (– 42) (– 42) – (12)2 > 0 and r < 0, so there is maxima at x = – 7, y = – 7 and its

maximum value is
(– 7)3 + (– 7)3 – 63 (– 7 – 7) + 12 (– 7) (– 7) = 784.
At x = – 1, y = 5, we have r = – 6 ; s = 12, t = 30
∴ rt – s2 = (– 6) (30) – (12)2 < 0, so there is neither maxima nor minima at x = – 1, y = – 5.
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��������	
� Show that minimum value of u = xy + 
a
x

a
y

3 3
+  is 3a2.

���
�
∂
∂

= − ∂
∂

= − = ∂
∂

=− − −u
x

y a x
u
y

x a y r
u

x
a x3 2 3 2

2

2
3 32; , ;

s =
∂
∂ ∂

=
2

1
u

x y
; t

u

y
a y= ∂

∂
= −

2

2
3 32 .

Now for maximum or minimum we must have 
∂
∂

=u
x

0 , 
∂
∂

=u
y

0

So from ∂
∂

=u
x

0,  we get y – a3x–2 = 0 or x2y = a3 ...(i)

and from 
∂
∂

=u
y

0,  we get x – a3y−2 = 0 or xy2 = a3 ...(ii)

Solving (i) and (ii), we get x2y = xy2 or xy (x – y) = 0

or x = 0, y = 0 and x = y.

From (i) and (ii), we find that x = 0 and y = 0 do not hold as it gives a = 0, which is against
hypothesis.

∴  We have x = y and from (i) we get x3 = a3 or x = a and therefore, we have x = a = y.
This satisfies (ii) also. Hence it is a solution.

At x = a = y, we have r = 2a3a–3 = 2, s = 1, t = 2
∴ rt – s2 = (2) (2) – 12 = 3 > 0
Also r = 2 > 0. Hence, there is minima at x = a = y
∴  The minimum value of u

= xy + (a3/x) + (a3/y)
at x = a = y

= a.a + (a3/a) + (a3/a) = a2 + a2 + a2 = 3a2. �����������


���������
� Discuss the maximum or minimum values of u when u = x3 + y3 – 3axy.
(U.P.T.U., 2004)

���

∂
∂
u
x

� 3x2 – 3ay; 
∂
∂
u
y  = 3y2 – 3ax; r = 

∂
∂

2

2
u

x
 = 6x;

s =
∂
∂ ∂

= − = ∂
∂

=
2 2

23 6
u

x y
a t

u

y
y, .

Now for maximum or minimum, we must have 
∂
∂

= ∂
∂

=u
x

u
y

0 0,

So from ∂
∂

=u
y

0,  we get x2 – ay = 0 ...(i)

and from ∂
∂

=u
y

0,  we get  y2 – ax = 0 ...(ii)

Solving (i) and (ii), we get (y2/a)2 – ay = 0
or y4 – a3y = 0  or y (y3 – a3) = 0  or y = 0, a.

Now from (i), we have when y = 0, x = 0, and when y = a, x = ± a.
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But x = – a, y = a, do not satisfy (ii), here are not solutions.
Hence the solutions are x = 0, y = 0; x = a, y = a;
At x = 0, y = 0, we have r = 0, s = – 3a, t = 0.
∴   rt – s2 = 0 – (–3a)2 = negative and there is neither maximum nor minimum at

x = 0, y = 0.
At x = a, y = a, we get r = 6a, s = – 3a, t = 6a
∴   rt – s2 = (6a)(6a) – (–3a)2 = 36a2 – 9a2 > 0
Also r = 6a > 0 if a > 0 and r < 0 if a < 0.
Hence there is maximum or minimum according as a < 0

or  a > 0. The maximum or minimum value of u = – a3 according
as a < 0 or a > 0.

�������� �
� Determine the point where the function

u = x2 + y2 + 6x + 12 has a maxima or minima.

���

∂
∂
u
x

= 2x + 6; 
∂
∂
u
y

 = 2y

r ≡
∂
∂

2

2

u

x
 = 2; s ≡ 

∂
∂ ∂

2u
x y

 = 0; t ≡ 
∂
∂

2

2

u

y
 = 2

Now for maxima or minima we must have ∂
∂

= ∂
∂

=u
x

u
y

0 0, .

From 
∂
∂
u
x

 = 0, we get 2x + 6 = 0   or x = – 3

From 
∂
∂
u
y  = 0, we get 2y = 0   or  y = 0

Also at x = – 3, y = 0, r = 2, s = 0, t = 2
∴  rt – s2 = 2 (2) – (0)2 = 4 > 0 and r = 2 > 0
Hence, there is minima at x = –3, y = 0.

�������� �
� A rectangular box, open at the top, is to have a volume of 32 c.c. Find the
dimensions of the box requiring least material for its construction. (U.P.T.U., 2005)

���
 V = 32 c.c.
Let length = l, breadth = b and height = h
Total surface area S = 2lh + 2bh + lb ...(i)

S = 2(l + b)h + lb

Now volume V = lbh = 32 ⇒  b = 32
lh

...(ii)

Putting the value of ‘b’ in equation (i)

S = 2 l
lh

+��
�
�

32
h + l 

32
lh
�
�
�
�

S = 2lh + 64 32
l h

+ ...(iii)

∴
∂
∂
S
l

= 2h – 
64

2l
, 

∂
∂

= −S
h

l
h

2
32

2

h

b

�

���
� 	
�
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For minimum S, we get

∂
∂
S
l

= 0 ⇒  2h – 
64

2l
 = 0 ⇒  h = 

32
2l

...(iv)

and
∂
∂
S
h

= 0 ⇒  2l – 
32

2h
 = 0 ⇒  l = 

16
2h

...(v)

From (iv) and (v), we get

h = 32
256

4× h  ⇒  h3 = 8 ⇒   h = 2

Putting h = 2, in equation (v), we get l = 
16
4

 = 4

From (ii) b =
32

4 2×
 = 4

Now,
∂
∂

2

2
S

l
=

128 128
64

23l
= =  ⇒  r = 2 > 0

and  
∂
∂ ∂

2S
l h

 = 2 ⇒  s = 2 and  
∂
∂

2

2
S

h
 = 

64 64
8

83h
= =  ⇒  t = 8

∴ rt – s2 = 2 × 8 – 4 = 12 > 0
⇒   rt – s2 > 0 and r > 0
Hence, S is minimum, for least material

l = 4, b = 4, h = 2.
���������
�Examine the following surface for high and low points z = x2 + xy + 3x + 2y + 5.

���

∂
∂

z
x

= 2x + y + 3; 
∂
∂

= +z
y

x 2

r =
∂
∂

= = ∂
∂ ∂

= = ∂
∂

=
2

2

2 2

22 1 0
z

x
s

z
x y

t
z

y
; ;

For the maximum or minimum we must have

∂
∂

z
x

= 0, 
∂
∂

z
y  = 0.

From  
∂
∂

z
x

= 0, we get 2x + y + 3 = 0 ...(i)

From
∂
∂

z
y

= 0, we get  x + 2 = 0. ...(ii)

From (ii), we get x = – 2 and ∴  from (i) y = – 3 + 4 = 1.
Hence, the solution is x = – 2, y = 1 and for these values we have r = 2, s = 1, t = 0.
∴   rt – s2 = (2) (0) – (1)2 = – 1 < 0.
∴   There is neither maximum nor minimum at x = – 2, y = 1.
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�������� �
� Discuss the maximum and minimum values of 2 sin 
1
2

(x + y) cos 
1
2

(x – y)

+ cos (x + y).

���
� � Let u = 2 sin 
1
2

(x + y) cos 
1
2

 (x – y) + cos (x + y)

= sin x + sin y + cos (x + y)

∴
∂
∂
u
x

= cos x – sin (x + y);  
∂
∂
u
y

 = cos y – sin (x + y)

r =
∂
∂

2

2

u

x
 = – sin x – cos (x + y); s = 

∂
∂ ∂

2u
x y

 = – cos (x + y);

t = ∂
∂

2

2

u

y
 =  – sin y – cos (x + y)

For maximum or minimum, we must have 
∂
∂

= ∂
∂

=u
x

u
y

0 0,

From 
∂
∂
u
x

 = 0, we get cos x – sin (x + y) = 0 ...(i)

From 
∂
∂
u
y  = 0, we get cos y – sin (x + y) = 0. ...(ii)

Solving (i) and (ii), we get cos x = cos y which gives
x = 2nπ ± y, where n is any integer. In particular x = y.

When x = y, from (i), we get cos x – sin 2x = 0

or cos x (1 – 2 sin x) = 0 which gives cos x = 0, sin x = 
1
2

If sin x = 
1
2

,  then x = nπ + (–1)n. 
1
6

π= y,   � x = y

and for these value of x and y, we have

r = – 1
2

 – cos 2 1
1
3

n nπ π+ −�
��

�
	


( ) .  < 0. ������

Similarly, t < 0 and s < 0 and r > s, t > s.
∴    rt – s2 > 0. Also r < 0.

Hence, there is a maximum when x = nπ + (–1)n. 1
6

π  = y.

If cos x = 0, then x = 2nπ + 1
2

π= y, � x = y

From here, we get x = y = ± 
1
2

π , (3/2)π, (5/2)π etc.

If x = 
1
2

π  = y, then r = – 1 + 1 = 0, s = 1, t = 0

∴   rt – s2 < 0. Hence, there is neither maximum nor minimum at x = 
1
2

π  = y.
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If  x = −
1
2

π = y, then r = 1 + 1 = 2 = t,  s = 1

∴   rt – s2 = (2 × 2) –1 = 3 > 0. Also r > 0

Hence, there is minimum at x = – 
1
2

π= y. In a similar way we can discuss other values too.

�������� 
�Show that the distance of any point (x, y, z) on the plane 2x + 3y – z = 12, from
the origin is given by

l = x y x y2 2 22 3 12+ + + −( ) .

Hence find a point on the plane that is nearest to the origin.
���
 l = distance between (x, y, z) and (0, 0, 0)

= ( ) ( ) ( )x y z− + − + −0 0 02 2 2  = x y z2 2 2+ +

= x y x y2 2 22 3 12+ + + −( ) ,  � z = 2x + 3y – 12

or l2 = x2 + y2 + (2x + 3y – 12)2 = u (say)
or l2 = u = 5x2 + 10y2 + 12xy – 48x – 72y + 144 ...(i)

∴
∂
∂
u
x

= 10x + 12y – 48; 
∂
∂
u
y

 = 20y + 12x – 72

r =
∂
∂

2

2

u

x
 = 10; s = 

∂
∂ ∂

2u
y x

 = 12 ; t = 
∂
∂

2

2

u

y
 = 20

∴ rt – s2 = (10) (20) – (12)2 = 56 > 0 and r > 0, so there is a minimum
value of l.

Also
∂
∂
u
x

= 0 ⇒  10x + 12y – 48 = 0  or 5x + 6y = 24 ...(ii)

and
∂
∂
u
y

= 0 ⇒  20y + 12x – 72 = 0  or 5y + 3x = 18 ...(iii)

Solving (ii) and (iii), we get x = 
12
7
�
�
�
� , y = 

18
7
�
�
�
�

Also 2x + 3y – z = 12  or 2 
12
7
�
�
�
� + 3 

18
7
�
�
�
� �– z = 12

or 24 + 54 – 7z = 84 or 7z = 24 + 54 – 84 = – 6   or z = − 6
7

∴   The required point is 
12
7

18
7

6
7

, , .−�
�

�
�

�������� !
� Discuss the maximum and minimum values of

x4 + 2x2y – x2 + 3y2.
���
� � Let u = x4 + 2x2y – x2 + 3y2

Then
∂
∂
u
x

= 4x3 + 4xy – 2x ;   
∂
∂
u
y

 = 2x2 + 6y;
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∴ r =
∂
∂

2

2

u

x
 = 12x2 + 4y – 2;  s = ∂

∂ ∂

2u
x y

 = 4x; t = 
∂
∂

2

2
u

y
 = 6

For maximum and minimum, we must have 
∂
∂
u
x

 = 0, 
∂
∂
u
y

 = 0.

From 
∂
∂
u
x

 = 0, we get 2x(2x2 + 2y – 1) = 0   or  2x2 + 2y – 1 = 0 ...(i)

From 
∂
∂
u
y  = 0, we get 2x2 + 6y = 0 or x2 + 3y = 0 ...(ii)

Solving (i) and (ii), we get 4y + 1 = 0  or  y = – 
1
4

∴   From (ii), we get x2 = – 3y = 3
4
�
�
�
�  or x = ± 

1
2

3

∴   The solutions are x = 
1
2

3 , y = – 
1
4

 and x = – 
1
2

3 , y = – 
1
4

When x = 
1
2

3 , y = – 
1
4

, we get

r = 12 3
4

4
1
4

2 6�
�
�
� + −��

�
� − = , s = 4 

1
2

3�
�

�
� = 2 3 , t = 6

∴   rt – s2 =  6 × 6 – 2 3
2

� �  > 0. Also r > 0

∴   There is a minimum when x = 
1
2

3 , y = – 
1
4

Again when x = – 
1
2

3 , y = – 
1
4

, we have r = 6, s = – 2 3, t = 6

∴   rt – s2 = (6) (6) – −2 3
2

� �  > 0. Also r > 0.

Hence as before there is a minimum when

x =
1
2

3 , y = – 
1
4

.

�������� "#
� Find the shortest distance between the lines

x y z− =
−
−

= −3
1

5
2

7
1

 and 
x y z+ =

+
−

= +1
7

1
6

1
1

.

���
� � Let  
x y z− =

−
−

= −3
1

5
2

7
1

 = λ ⇒  x = λ + 3, y = 5 – 2λ, z = 7 + λ

Thus any point P on the line is (3 + λ, 5 – 2λ, 7 + λ)

and let   
x +1

7
=

y z+
−

= + =
1

6
1

1
µ  ⇒   x = – 1 + 7µ, y = – 1 – 6µ , z = – 1 + µ

The point Q is (– 1 + 7 µ, – 1 – 6µ, – 1 + µ)
∴   Distance between these two lines is

D = 3 1 7 5 2 1 6 7 12 2 2+ + − + − + + + + + −λ µ λ µ λ µ � ( ) ( )

⇒ D2 = u(Say) = 6λ2 +86µ2 – 40λµ + 105.
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∴
∂
∂λ
u

= 12λ – 40µ, 
∂
∂µ

u
 = 172µ – 40λ.

But
∂
∂λ
u

= 0 and 
∂
∂µ

u
= 0 ⇒   12λ – 40µ = 0, 172µ – 40λ = 0.

Solving these equations, we get λ = 0, µ = 0

r =
∂
∂λ

2

2

u
 = 12,  t = 

∂
∂µ

=
2

2 172
u

, 
∂

∂λ∂µ

2u
  = s = – 40

Now, rt – s2 = (12)·(172) – (– 40)2 = 464 > 0
⇒ rt – s2 > 0  and r > 0
Hence u occurs minimum value at λ = 0 and µ = 0.
The shortest distance is given by

D = 4 6 82 2 2+ +  = 116  = 2 29.

��������""
� The temperature T at any point (x, y, z) in space is T (x, y, z) = Kxyz2 where
K is a constant. Find the highest temperature on the surface of the sphere x2 + y2 + z2 = a2.

(U.P.T.U., 2008)
���
 T = Kxyz2 ...(i)

x2 + y2 + z2 = a2 ⇒  z2 = a2 – x2 – y2

From (i) T = Kxy (a2 – x2 – y2)

∴ ∂
∂
T
x

= Ky (a2 – x2 – y2) – 2 Kx2y = Ky(a2 – 3x2 – y2)

Similarly,
∂
∂
T
y = Kx(a2 – x2 – 3y2)

for maximum and minimum value
∂
∂
T
x

= 0 and 
∂
∂
T
y

= 0 ⇒  x = 0 and y = 0

or 3x2 + y2 = a2

x2 + 3y2 = a2

Solving   x = y = ± 
a
2

r =
∂
∂

2

2

T

x
 = – 6 Kxy,  s = 

∂
∂ ∂

2T
x y

 = K (a2 – 3x2 – 3y2)

and t =
∂
∂

2

2
T

y  = – 6Kxy

At (0, 0) r = 0, s = Ka2 and t = 0
∴ rt – s2 = 0.0 – Ka2 = – Ka2 < 0
So, there is neither maximum nor minimum at x = 0 and y = 0

At x =
a
2

, y = 
a
2

 and x = – 
a
2

, y = – 
a
2

r = – 
6
4

2Ka  = – 
3
2

2Ka  < 0, t = − 3
2

Kxy, s = −
a K2

2
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rt – s2 =
9
4

2 4K a – a K4 2

4
 = 2K2a4 > 0

∴   rt – s2 > 0 and r < 0
Hence, T has a maximum value at x = + a/2 and y = ± a/2

The maximum value of T = K · 
a a2 2

4 2

�
��
�
��  = 

Ka4

8
.

��������"	
� Find the maximum and minimum values of the function
z = sin x sin y sin (x + y).

���
� � Given z = sin x sin y sin (x + y)

=
1
2

 [2 sin x sin y] sin (x + y)

=
1
2

 [cos (x – y) – cos (x + y)] sin (x + y)

=
1
4

 [2 sin (x + y) cos (x – y) – 2 sin (x + y) cos (x + y)]

or z =
1
4

 [sin 2x + sin 2y – sin(2x + 2y)]

∴
∂
∂

z
x

=
1
2

 [cos 2x – cos (2x + 2y)]

∂
∂

z
y

=
1
2

[cos 2y – cos (2x + 2y)]

r =
∂
∂

2

2

z

x
 = – sin 2x + sin (2x + 2y) ...(A)

s =
∂
∂ ∂

2z
x y

 = sin (2x + 2y) ...(B)

t =
∂
∂

2

2
z

y
 = – sin 2y + sin (2x + 2y) ...(C)

For maximum or minimum, we must have 
∂
∂

z
x

 = 0, 
∂
∂

z
y

 = 0

From  
∂
∂

z
x

 = 0, we get cos 2x – cos (2x + 2y) = 0 ...(i)

From 
∂
∂

z
y

 = 0, we get cos 2y – cos (2x + 2y) = 0 ...(ii)

Solving (i) and (ii), we get cos 2x = cos 2y which gives

2x = 2nπ ± 2y. In particular 2x = 2y or x = y

When x = y, from (i), we get cos 2x – cos 4x = 0

or cos 2x –(2 cos2 2x – 1) = 0 �  cos 2θ = 2 cos2 θ – 1

or 2 cos2 2x – cos 2x – 1 = 0
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or   cos 2x = 
1 1 8

4

± +( )
 = 

1 3
4
±

 = 1, – 
1
2

or   2x = 2nπ ± 0, 2mπ ± 
2
3
π

, where m, n are zero or any integers

or   x = nπ, mπ ± 
π
3

In particular x = 
π
3

When x = 
π
3

, we have y = x = 
π
3

and then r = – sin 
2
3
π

+ sin 
4
3
π

, from (A)

= – 
3

2
 – 

3
2

 = – 3 ;

s = sin 
4
3
π

, from (B)

or s = – 
3

2

and t = – sin 
2
3
π

 + sin 
4
3
π

, from (C)

= – 
3

2
 – 

3
2

 = – 3

∴ rt – s2 = − 3� �  − 3� �  – −
�
��

�
��

3
2

2

 = 3 – 
3
4

 = 
9
4

= positive.

Thus at x = 
π
3

 = y, rt – s2 > 0 , r < 0, so there is a maximum at x = 
π
3

 = y.

Hence, maximum value = sin 
π
3

. sin 
π
3

. sin 
π π
3 3

+�
�

�
�

=
3

2
3

2
3

2
⋅ ⋅  = 

3 3
8

.

If we take x = – 
π
3

, then y = x = – 
π
3

and r = 3 ,  s = 
1
2

3 , t = 3

∴ rt – s2 =
9
4

 > 0 , r > 0

There is a minimum at x = – 
π
3

 = y.

Hence, the minimum value = sin −��
�
�

π
3

 sin −��
�
�

π
3

 sin −��
�
� + −��

�
�

���
���

π π
3 3
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= – sin 
π
3

· sin 
π
3

 sin 
2
3
π

= − ⋅ ⋅3
2

3
2

3
2

 = − 3 3
8

·

��������"�
� Find the local minima or local maxima of the function
f(x, y) = 4x2 + y2 – 4x + 6y – 15.

���
� We have f(x, y) = 4x2 + y2 – 4x + 6y – 15

∂
∂

f
x

= 8x – 4 and
∂
∂

f
y

 = 2y + 6.

For stationary point
∂
∂

f
x

= 0 and 
∂
∂

=
f
y

0

∴ 8x – 4 = 0 ⇒  x = 
1
2

 and 2y + 6 = 0 ⇒  y = – 3

Now, the given function can be written as
f(x, y) = (2x – 1)2 + (y + 3)2 – 25 ...(i)

Since (2x – 1)2 ≥ 0 and (y + 3)2 ≥ 0.
From (i), we get
f(x, y) ≥ – 25 for all values of x and y. Hence f(1/2, – 3) = – 25 is a local minimum.

��������"�
� Find the local minima or local maxima of the function
f(x, y) = – x2 – y2 + 2x + 2y + 16.

���

∂
∂

f
x

= – 2x + 2 = 0 ⇒  x = 1

∂
∂

f
y

= – 2y + 2 = 0 ⇒  y = 1

Now, f(x, y) = 18 – {(x – 1)2 + (y – 1)2} ...(i)
Since (x – 1)2 ≥ 0 and (y – 1)2 ≥ 0, from (i) we get f(x, y) ≤ 18 for all values of x and y.
Hence f(1, 1) = 18 is a local maxima.

EXERCISE 2.3

"
 Discuss the maximum values of u, where

u = 2a2xy – 3ax2y – ay3 + x3y + xy3 $�%
 x
a

y
a= =�

��
�
	
2 2

,

	
 Find the points (x, y) where the function u = xy (1 – x – y) is maximum or minimum.

$�%
 Maxima at x = =�
��

�
	


1
3

1
3

, y

�
 Find the extrema of f (x, y) = (x2 + y2) e(6x + 2x2).
[$�%
 minima at (0, 0) minimum value = 0 and at (–1, 0) min. value = e–4,

saddle point (–
1
2

, 0)].
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�
 If the perimeter of a triangle is constant prove that the area of this triangle is maximum
when the triangle is equilateral.

[���: 2s = a + b + c, ∆ = s s a s b s c( )( )( )− − − ]

[$�%
 Maximum when a = b = c =
2
3
s

]

�
 Show that the rectangular solid of maximum volume that can be inscribed in a sphere is
a cube.

[���&� V = xyz, diagonal of cubic = x y z2 2 2+ +  = d ⇒   z = d x y2 2 2− − so

V = xy d x y2 2 2− − �
	


�
 Find the shortest distance from origin to the surface xyz2 = 2. [$�%
 2]
�
 In a plane triangle ABC find the maximum value of cos A cos B cos C. [$�%
 1/8]
 
 Discuss the maximum or minimum values of u given by u = x3y2 (1 – x – y).

[$�%
 Maximum at x = 0, y = 1/3]
!
 Find the maximum and minimum values of u = 6xy + (47 – x – y) (4x + 3y).

[$�%
 Max. value of u = 3384]
"#
 Discuss the maxima and minima of the function

f (x, y) = cos x, cos y cos (x + y) (U.P.T.U., 2007)
""
 Divide 24 into three parts such that the continued product of the first, square of the

second and the cube of the third may be maximum. [$�%
 4, 8, 12]
"	
 Examine for extreme values: u (x, y) = x2 + y2 + 6x + 12. [$�%
 Min. value = 3]

2.4 LAGRANGE'S* METHOD OF UNDETERMINED MULTIPLIERS

Let φ (x, y, z) is a function of three independent variables, where x, y, z are related by a known
constraint g(x, y, z) = 0

Thus the problem is Extrema of
u = f(x, y, z) ...(i)

Subject to g (x, y, z) = 0 ...(ii)

For stationary point
∂
∂

f
x

=
∂
∂

f
y

 = 
∂
∂

f
z

 = 0

∴ df =
∂
∂

f
x

dx + 
∂
∂

f
y

dy + 
∂
∂

f
z

dz = 0 ...(iii)

From (ii) dg =
∂
∂
g
x

 dx + 
∂
∂

g
y

dy + 
∂
∂
g
z

 dz = 0 ...(iv)

Multiplying eqn. (iv) by λ and adding to (iii), we obtain

           
∂
∂

+
∂
∂

�
��

�
�� +

∂
∂

+
∂
∂

�
��

�
��

+
∂
∂

+
∂
∂

�
��

�
��

f
x

g
x

dx
f
y

g
y

dy
f
z

g
z

dzλ λ λ  = 0 ...(v)

*Joseph Louis Lagrange (1736–1813).
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Since x, y, z are independent variables

∴
∂
∂

+
∂
∂

f
x

g
x

λ = 0 ...(vi)

∂
∂

+
∂
∂

f
y

g
y

λ = 0 ...(vii)

∂
∂

+
∂
∂

f
z

g
z

λ = 0 ...(viii)

On solving (ii), (vi), (vii) and (viii), we can find x, y, z and λ for which f (x, y, z) has maximum
or minimum.

����%&� 1. The Lagrange's method of undetermined multiplier's introduces an additional unknown
constant λ known as Lagrange's multiplier.

2. Nature of stationary points cannot be determined by Lagranges method.

��������"
� Determine the maxima and minima of x2 + y2 + z2 when ax2 + by2 + cz2 = 1.
���
� � Let f (x, y, z) = x2 + y2 + z2 ...(i)

and g(x, y, z) ≡ ax2 + by2 + cz2 – 1 = 0 ...(ii)

From (i)
∂
∂

f
x

= 2x, 
∂
∂

f
y  = 2y, 

∂
∂

f
z

 = 2z

From (ii)
∂
∂

g
x

= 2ax, 
∂
∂
g
y  = 2by, 

∂
∂
g
z

 = 2cz.

Now from Lagrange's equations, we get

∂
∂

+
∂
∂

f
x

g
x

λ  = 2x + λ . 2ax = 0 ⇒  2x (1 + λa) = 0 ⇒  x (1 + λa) = 0 ...(iii)

∂
∂

+
∂
∂

f
y

g
y

λ = 0 ⇒  2y + λ · 2by = 0 ⇒  2y (1 + λb) = 0 ⇒ y ( 1 + λb) = 0 ...(iv)

and
∂
∂

+
∂
∂

f
z

g
z

λ = 0 ⇒  2z + λ · 2cz = 0 ⇒  2z (1 + λc) = 0 ⇒  z ( 1 + λb) = 0  ...(v)

Multiplying these equations by x, y, z respectively and adding, we get

 x2 (1 + λa) + y2 (1 + λb) + z2 (1 + λc) = 0
or          (x2 + y2 + z2) + λ (ax2 + by2 + cz2) = 0 ...(vi)

Using (i) and (ii) in above equation, we get
f + λ = 0 ⇒  λ = – f

Putting λ = – f in equations (iii), (iv) and (v), we get

x (1 – fa) = 0, y (1 – fb) = 0, z (1 – fc) = 0
⇒ 1 – fa = 0, 1 – fb = 0, 1 – fc = 0

i.e., f =
1 1 1
a b c

, , . These give the max. and min. values of f.

��������	
� Find the extreme value of x2 + y2 + z2, given that ax + by + cz = p.
(U.P.T.U., 2007)

���
� � Let u = x2 + y2 + z2 ...(i)
Given ax + by + cz = p. ...(ii)
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For max. or min. from (i), we have
du = 2x dx + 2y dy + 2z dz = 0. ...(iii)

Also from (ii), a dx + b dy + c dz = 0. ...(iv)
Multiplying (iv) by λ and adding in (iii), we get (x dx + y dy + z dz) + λ (a dx + b dy + c dz)

= 0.
Equating the coefficients of dx, dy and dz to zero, we get

x + λa = 0, y + λb = 0, z + λc = 0 ...(v)
These are Lagrange's equations.
Multiplying these by x, y, z respectively and adding, we get

x (x + λa) + y (y + λb) + z (z + λc) = 0

or (x2 + y2 + z2) + λ (ax + by + cz) = 0
or u + λp = 0  or λ = – u/p.

∴  From (v), we get

x – 
au
p
�
��
�
�� = 0,  y – 

bu
p
�
��
�
��  = 0,  z – 

cu
p
�
��
�
��  = 0

or
x
a

=
u
p

y
b

z
c

= =   or x
a

y
b

z
c

= = ...(vi)

From (ii), we get a2 
x
a
�
�
�
� + b2 

y
b
�
��
�
��  + c2 

z
c
�
�
�
�  = p

or a2 
x
a
�
�
�
�  + b2 

x
a
�
�
�
�  + c2 

x
a
�
�
�
� = p, from (vi)

or (a2 + b2 + c2) 
x
a
�
�
�
� = p  or  x = 

ap

a b c2 2 2+ +

Similarly, y =
bp

a b c2 2 2+ +
,   z = 

cp

a b c2 2 2+ +
These give the minimum value of u.
Hence minimum value of u is

u =
a p

a b c

b p

a b c

c p

a b c

2 2

2 2 2 2

2 2

2 2 2 2

2 2

2 2 2 2( ) ( ) ( )+ +
+

+ +
+

+ +

=
( )

( ) ( )

a b c p

a b c

p

a b c

2 2 2 2

2 2 2 2

2

2 2 2

+ +
+ +

=
+ +

·

���������
�Find the maximum and minimum values of 
x
a

y

b
z
c

2

4

2

4

2

4+ +  where 
x
a

y

b
z
c

2

2

2

2

2

2+ +

= 1 and lx + my + nz = 0.

���
� � Let u = x
a

y

b
z
c

2

4

2

4

2

4+ + ...(i)

Given
x
a

y

b
z
c

2

2

2

2

2

2+ + = 1 ...(ii)

and lx + my + nz = 0 ...(iii)
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From (i), (ii) and (iii), we get

x

a
dx

y

b
dy

z

c
dz4 4 4

�
��
�
�� + ���

�
�� + ���

�
�� = 0 ...(iv)

x

a
dx

y

b
dy

z

c
dz

2 2 2
�
��
�
�� + ���

�
�� + ���

�
�� = 0 ...(v)

and l dx + m dy + n dz = 0 ...(vi)
Multiplying (v) and (vi) by λ1, λ2 and adding, we get

x

a

x

a
l4

1
2 2+ +�

��
�
��

λ
λ dx + 

y

b

y

b
m4

1
2 2+ +�

��
�
��

λ
λ dy + 

z

c

z

c
n4

1
2 2+ +�

��
�
��

λ
λ  dz = 0

Equating to zero the coefficients of dx, dy and dz, we get

x
a

x

a
l4

1
2 2 0+ + =

λ
λ , 

y

b

y

b
m4

1
2 2 0+ + =

λ
λ , 

z
c

z

c
n4

1
2 2 0+ + =

λ
λ ...(vii)

These are Lagrange’s equations.
Multiplying these by x, y, z and adding, we get

x

a

y

b

z

c

2

4

2

4

2

4+ +
�
��

�
��  + λ1 

x

a

y

b

z

c

2

2

2

2

2

2+ +
�
��

�
��  + λ2 (lx + my + nz) = 0

or   u + λ1 (1) + λ2 (0) = 0, using (i), (ii) and (iii)
or u + λ1 = 0  or  λ1 = – u

∴   From (vii), we have

x
a

ux
a

l4 2 2− + λ = 0,  
y

b

uy

b
m4 2 2− + λ  = 0,  

z
c

uz
c

n4 2 2− + λ  = 0

or x (1 – a2u) = – la4 λ2, y (1 – b2u) = – mb4 λ2, z (1 – c2u) = – nc4λ2

or x =
−

−
la

a u

4
2

21
λ

,  y = 
−

−
mb

b u

4
2

21
λ

,  z = 
−

−
nc

c u

4
2

21
λ

Substituting these values in (iii), we get

l a

a u

m b

b u

n c

c u

2 4

2

2 4

2

2 4

21 1 1−
+

−
+

−
 = 0

or Σl2 a4 (1 – b2u) (1 – c2u) = 0
or Σl2 a4 {b2c2u2 – (b2 + c2) u + 1} = 0
or u2 (Σl2a4b2c2) – u {Σl2a4 (b2 + c2)} + Σl2a4 = 0

or a2b2c2 (l2a2 + m2b2 + n2c2)u2 – a2b2c2 Σl a
c b

2 2
2 2

1 1+�
��

�
��

�
�
�

�
�
�

u + Σl2a4 = 0

or (l2a2 + m2b2 + n2c2) u2 – Σl
a

c

a

b
2

2

2

2

2+
�
��

�
��

�
��
��

�
��
��

 u + 
a l
b c

b m
c a

c n
a b

2 2

2 2

2 2

2 2

2 2

2 2+ +
�
��

�
��  = 0,

which gives the max. and min. values of u.

���������
� Find the minimum value of x2 + y2 + z2 when yz + zx + xy = 3a2.
���
� � Let u = x2 + y2 + z2 ...(i)
Given yz + zx + xy = 3a2. ...(ii)
For max. or min. from (i), we have

du = 2x dx + 2y dy + 2z dz = 0 ...(iii)
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Also from (ii), (y dz + z dy) + (z dx + x dz) + (x dy + y dx) = 0

(z + y) dx + (x + z) dy + (y + x) dz = 0. ...(iv)

Multiplying equation (iv), by λ and adding in (iii), we get

[x + λ (z + y)] dx + [y + λ (x + z)] dy + [z + λ (y + x)] dz = 0

Equating the coefficients of dx, dy, dz to zero, we get

x + λ (z + y) = 0, y + λ (x + z) = 0, z + λ (x + y) = 0 ...(v)

These are Lagrange’s equations

Multiplying these by x, y, z respectively and adding, we get

[x2 + λx (z + y)] + [y2 + λy (x + z)] + [z2 + λz (y + x)] = 0

or (x2 + y2 + z2) + 2λ (xy + yz + zx) = 0

or u + 2λ (3a2) = 0  or λ = − u

a6 2 .

∴   From (v), we get x = 
u z y

a

( )+
6 2 , y = 

u x z

a

( )+
6 2 , z = 

u y x

a

( )+
6 2

or
x

z y+  = 
y

x z+
 = 

z
x y

u

a+
=

6 2

or – 6a2x + uy + uz = 0, ux – 6a2y + uz = 0, ux + uy – 6a2z = 0
Eliminating x, y, z, we get

−
−

−

6
6

6

2

2

2

a u u

u a u

u u a

= 0, which gives the max. and min. values of u.

or

− + +
− −

− −

6 6 6
6 0

0 6

2 2 2

2

2

a u a u a

u a u

u a u
 = 0,  C2 → C2 – C1 C3 → C3 – C1

or (u + 6a2)2 

−
−

−

6 1 1
1 0

0 1

2a

u

u
 = 0 or (u + 6a2)2  

−
−

−

6 1 1
1 0

0 1 1

2a

u  = 0, R3 → R3 – R2

or (u + 6a2)2 [– 6a2 – u(–1–1)] = 0 |Expand with respect to first column
or (u + 6a2)2 [– 6a2 + 2u] = 0  or u = – 6a2, 3a2. But u cannot be equal to – 6a2, since sum
of three squares (viz. x2, y2, z2) from (i), cannot be negative. Hence u = 3a2 gives max. or min. value
of u.

���������
� Find the minimum distance from the point (1, 2, 0) to the cone z2 = x2 + y2.
(U.P.T.U., 2006)

���
� Let (x, y, z) be any point on the cone then distance from the point (1, 2, 0) is
D2 = (x – 1)2 + (y – 2)2 + (z – 0)2

Let u = (x – 1)2 + (y – 2)2 + z2 ...(i)
Subject to x2 + y2 – z2 = 0 ...(ii)
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for minimum, from (i) and (ii), we get
du = (x – 1)dx + (y – 2)dy + zdz = 0 ...(iii)

xdx + ydy – zdz = 0 ...(iv)
Multiplying equation (iv) by λ and adding in (iii), we get

(x – 1)dx + (y – 2)dy + zdz + λ (xdx + ydy – zdz) = 0
⇒ {x (1 + λ) –1} dx + {y (1 + λ) – 2} dy + {z (1 – λ)} dz = 0
⇒ x (1 + λ) –1 = 0, y ( 1 + λ) –2 = 0, z (1 – λ) = 0

⇒ x =
1

1 + λ ,   y = 
2

1 + λ ,  λ = 1 ...(v)

∴ x =
1

1 1+
 = 

1
2

,  y = 
2

1 1+
 = 1

Putting the value of x and y in equation (ii), we get

1
4

 + 1 – z2 = 0 ⇒  z2 = 
5
4

 ⇒  z = ± 
5

2
Hence, the minimum distance from the point (1, 2, 0) is

D2 =
1
2

1
2

−�
�

�
� + 1 2

5
2

2
2

−( ) +
�
��
�
��  = 

1
4

1
5
4

+ +  = 
10
4

or D2 =
5
2

 ⇒   D = 
5
2

.

���������
� Show that the rectangular solid of maximum  volume that can be inscribed in
a sphere is a cube. (U.P.T.U., 2003)

���
� Let the length, breadth and height of solid are
l = 2x
b = 2y

h = 2z
∴   Volume of the solid V = lbh = 2x·2y·2z

⇒ V = 8xyz ...(i)
Equation of the sphere

x2 + y2 + z2 = R2

⇒ x2 + y2 + z2 – R2 = 0 ...(ii)
For maximum differentiating (i), (ii), we get

dV = 8yzdx + 8xzdy + 8xydz = 0 ...(iii)
and 2xdx + 2ydy + 2zdz = 0 ...(iv)

Multiplying (iv) by λ and adding in (iii), we get

8yzdx + 8xzdy + 8xydz + λ (2xdx + 2ydy + 2zdz) = 0
⇒ (2λx + 8yz)dx + (2λy + 8xz)dy + (2λz + 8xy)dz = 0

Equating the coefficient of dx, dy and dz to zero, we get
⇒ λ x = – 4yz , λy = – 4xz, λz = – 4xy ...(v)
These are Lagrange’s equations

Z

Y

X

���
� 	
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Multiplying equation (v) by x, y, z respectively, we get
λx2 = – 4xyz, λy2 = – 4xyz, λz2 = – 4xyz

From these, we get
λx2 = λy2 = λz2

⇒ x2 = y2 = z2

⇒ x = y = z
Thus, the rectangular solid is a cube. '�����


�������� �
� Use the method of Lagrange's multiplier to find the volume of the largest

rectangular parallelopiped that can be inscribed in the ellipsoid 
x
a

y

b
z
c

2

2

2

2

2

2 1+ + = .

(U.P.T.U., 2002, 2000)
���
� Let l = 2x

b = 2y
h = 2z

∴ V = 8xyz ...(i)

and
x
a

y

b
z
c

2

2

2

2

2

2 1+ + − = 0 ...(ii)

For largest volume, from (i) and (ii), we get

dV = yz·dx + xz·dy + xy·dz = 0 ...(iii)

and x
a

dx
y

b
dy

z
c

dz2 2 2+ +  = 0 ...(iv)

Now, equation (iii) + λ × equation (iv), we get

      (yz + 
λ
a2 x) dx + (xz + 

λ
b2 y) dy + (xy + 

λ
c2  z) dz = 0

⇒ yz + 
λ
a2 x = 0,  xz + 

λ
b2 y = 0,  xy + 

λ
c2 z = 0 ...(v)

Multiplying (v) with x, y, z respectively and adding then, we get

3xyz + λ 
x

a

y

b

z

c

2

2

2

2

2

2+ +
�
��

�
	
 = 0

⇒ 3xyz + λ = 0  (using ii)
⇒ λ = – 3xyz
Putting the value of λ in any one of equation (v), we get

yz – 3xyz ·
x
a2 = 0 ⇒  yz 1

3 2

2−
�
��

�
��

x
a

 = 0

⇒ 1 – 
3 2

2

x
a

= 0 ⇒  x = 
a

3 ,

Similarly, y =
b

3
,  z = 

c

3

Hence, the largest volume V = 8 · 
abc

3 3
⋅
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�������� 
� Determine the point on the paraboloid z = x2 + y2 which is closest to the point
(3, – 6, 4).

���
� � Let (x, y, z) be any point on paraboloid nearest to the point (3, – 6, 4)

∴ D = ( ) ( ) ( )x y z− + + + −3 6 42 2 2

⇒ D2 = (x – 3)2 + (y + 6)2 + (z – 4)2

Let u = (x – 3)2 + (y + 6)2 + (z – 4)2 ...(i)
Subject to x2 + y2 – z = 0 ...(ii)

For minimum distance, differentiating (i) and (ii), we get
du = 2(x – 3) dx + 2(y + 6) dy + 2(z – 4) dz = 0 ...(iii)

and 2xdx + 2ydy – dz = 0 ...(iv)

Now, equation (iii) + λ × (iv), we get
{2x (1 + λ) – 6} dx + {2y (1 + λ) + 12} dy + {2z – λ – 8) dz = 0

⇒ x(1 + λ) – 3 = 0, y (1 + λ) + 6 = 0, 2z – (λ + 8) = 0

⇒ x = 
3

1 + λ ,  y = – 
6

1 + λ , z = 
( )λ + 8

2
...(v)

Putting the values of x, y, z in equation (ii), we get

9
1 2( )+ λ

+ 
36

1 2( )+ λ
 – ( )λ + 8

2
= 0

or
45

1 2( )+ λ
 – 

( )λ + 8
2

= 0

⇒ 90 – (λ + 1)2 (λ + 8) = 0
⇒ λ 3 + 10λ2 + 17λ – 82 = 0
⇒ λ = 2
Hence x = 1, y = – 2, z = 5.

��������!
� Find the maximum and minimum distances from the origin to the curve
3x2 + 4xy + 6y2 = 140.

���
� � Let (x, y) be any point on the curve

 ∴  distance from (0, 0) is given by

D2 = x2 + y2 = u (say) ...(i)

Subject to 3x2 + 4xy + 6y2 – 140 = 0 ...(ii)

For maximum and minimum from (i) and (ii), we get

du = 2xdx + 2ydy = 0 ...(iii)

6xdx + 4dx y + 4xdy+ 12ydy = 0 ...(iv)

Now, equation (iii) + λ × (iv), we get

{x (2 + 6λ) + 4yλ} dx + {y (2 + 12λ) + 4xλ}dy = 0

⇒ 2x + λ (6x + 4y) = 0 ...(v)

2y + λ (12y + 4x) = 0 ...(vi)
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Multiplying the above equations by x, y respectively and adding, we get

  2 (x2 + y2) + 2λ (3x2 + 4xy + 6y2) = 0

⇒ 2u + 2λ (140) = 0 (using (i) and (ii))

∴ λ = – 
u

140
Putting the value of λ in eqns. (v) and (vi), we get

2x – 
u

140
 (6x + 4y) = 0 ⇒  (140 – 3u)x – 2uy = 0

and 2y – 
u

140
 (12y + 4x) = 0 ⇒  – 2ux + (140 – 6u)y = 0

This system has non-trivial solution if

140 3 2
2 140 6
− −

− −
u u

u u( ) = 0

⇒ (140 – 3u) (140 – 6u) – 4u2 = 0
⇒ 14u2 – 1260u + (140)2 = 0

u2 – 90u – 1400 = 0
(u – 70) (u – 20) = 0

⇒ u = 70, 20
Thus, the maximum and minimum distances are

70 , 20 . | As D2 = u

��������"#
�A wire of length b is cut into two parts which are bent in the form of a square
and circle respectively. Find the least value of the sum of the areas so found.

���
� � Let part of square = x
and part of circle = y ⇒  x + y = b

∴ side of square =
x
4

,

radius of circle =
y

2π
|As 2πr = y

area of square =
x 2

16

area of circle =
π
π
y2

24
 = 

y2

4π

Here, let u = sum of areas =
x y2 2

16 4
+

π
...(i)

Subject to b =x + y ⇒  x + y – b = 0 ...(ii)
For minimum from (i) and (ii), we get

du =
x

dx
y

dy
8 2

+
π

 = 0 ...(iii)

and dx + dy = 0 ...(iv)
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Now, (iii) + λ × (iv), we get

xdx ydy
8 2

+
π

 + λ (dx + dy) = 0

⇒
x

dx
y

dy
8 2

+�
�

�
� + +�

��
�
��λ

π
λ = 0

⇒
x
8

+ λ  = 0,  
y

2π
λ+ = 0

⇒ x = – 8λ, y = – 2πλ ...(v)
Putting x and y in equation (ii), we get

– 8λ – 2πλ = b ⇒  λ = – 
b

8 2+ π

Thus x = – 8λ = 
8

8 2
b

+ π
, y = – 2πλ = 

2
8 2

π
π

b
+

∴   The least value of areas is, from (i)

u =
x y2 2

16
+

4π

=
64

16 8 2
4

4 8 2

2

2

2 2

2

b b

( ) ( )+
+

+π
π

π π

=
b2

2
4

4 4

( )

( )

π
π

+
+

  = b2

4 4( )π +
.

�������� ""
� Find the dimension of rectangular box of maximum capacity whose surface
area is given when (a) box is open at the top (b) box is closed. (U.P.T.U., 2008)

���
� Let the length, breadth and height of box are x, y, z respectively.
So volume V = xyz ...(i)
There will be two surface area one for open and one for closed box
∴ nxy + 2yz + 2zx = S (say) ...(ii)
or g(x, y, z) ≡ nxy + 2yz + 2zx – S = 0 ...(iii)
Here n = 1, when the box is open on the top

n = 2, when the box is closed.
The Lagrange’s equations are

∂
∂

+
∂
∂

V
x

g
x

λ = yz + λ(ny + 2z) = 0 ...(iv)

∂
∂

+
∂
∂

V
y

g
y

λ = xz + λ(nx + 2z) = 0 ...(v)

∂
∂

+
∂
∂

V
z

g
z

λ = xy + λ(2y + 2x) = 0 ...(vi)

Multiplying (iv), (v), (vi) by x, y, z respectively and adding, we get
3xyz + λ [2(nxy + 2yz + 2zx)]= 0

or 3V + λ[2S] = 0 ⇒ λ  = −
3
2
V
S

...(vii)



DIFFERENTIAL CALCULUS-II 145

Putting value of λ from (vii) in (iv), (v) and (vi), we get

yz − 3
2
V
S

 (ny + 2z) = 0 ⇒ yz −
3
2
xyz
S

 (ny + 2z) = 0

or nxy + 2xz =
2
3
S

...(viii)

Similarly nxy + 2yz =
2
3
S

...(ix)

2yz + 2zx =
2
3
S

...(x)

From (viii) and (ix), we get
x = y ...(xi)

and from (ix), (x), we get

ny = 2z ⇒ z = 
ny nx
2 2

= ...(xii)

Putting (xi) and (xii) in equation (ii), we have

nx · x + 2 · x · nx
2

 + 2 · nx
2

 · x = S ⇒ 3nx2 = S

or x2 =
S
n3

(a) When box is open n = 1

∴ x2 =
S
3

⇒ x = 
S
3

Hence, the dimensions of the open box are x = y = 
S
3

 and z = 
1
2 3

S

(b) When box is closed n = 2 ∴ x2 = 
S
6

⇒ x = 
S
6

Hence, the dimensions of the closed box are

x = y = 
S
6

and z = 
S
6

·

EXERCISE 2.4

"
 Find the maximum and minimum distances of the point (3, 4, 12) from the sphere,

x2 + y2 + z2 = 1. (U.P.T.U., 2001) $�%
 Dmin = 12, Dmax = 14

	
 Find the maximum and minimum distances from the origin to the curve

x2 + 4xy + 6y2 = 140. [U.P.T.U. (C.O.), 2003] $�%
 Dmin = 4.5706, Dmax. = 21.6589

�
 The temperature T at any point (x, y, z) in space is T = 400 xyz2. Find the highest tem-

perature at the surface of a sphere x2 + y2 + z2 = 1. $�%
 T = 50
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�
 Find the maxima and minima of x2 + y2 + z2 subject to the conditions : ax2 + by2 + cz2

=  1, lx + my + nz = 0. $�%
  
l

au
m

bu
n

cu

2 2 2

1 1 1
0

( ) ( ) ( )−
+

−
+

−
=

�
�
�

�
	



�
 Find the maximum value of u = xpyqzr when the variables x, y, z are subject to the

condition ax + by + cz = p + q + r. $�%
    u
p
a

q
b

r
c

p q r

= ���
�
��
�
��
�
��
�
�
�
�

�
�
�

�
	



�
 A rectangular box, which is open at the top has a capacity of 256 cubic feet. Determine
the dimensions of the box such that the least material is required for the construction of
the box. Use Lagrange's method of multipliers to obtain the solution.

$�%
 length = breadth  = 8′, height = 4′

�
 Find the minimum value of x2 + y2 + z2 subject to condition 
1 1 1
x y z

+ + = 0.

$�%
 Minimum value = 27

 
 Determine the point in the plane 3x – 4y + 5z = 50 nearest to the origin.

$�%
 (3, – 4, 5)

!
 Find the length and breadth of a rectangle of maximum area that can be inscribed in the

ellipse 4x2 + 9y2 = 36. $�%
 l = 
3 2

2
, b = 2 , area = 12

"#
 Divide 24 into three parts such that the continued product of the first square of the
second and the cube of the third may be maximum.

$�%
 4, 8, 12, maximum value = 4·82·123

""
 Find the volume of the largest rectangular parallelopiped that can be inscribed in the

ellipsoid of revolution 4x2 + 4y2 + 9z2 = 36. $�%
 Maximum volume = 16 3

"	
 Using the Lagrange's method of multipliers, find the largest product of the numbers x,

y and z when x2 + y2 + z2 = 9. $�%. 3 3

"�
 A torpedo has the shape of a cylinder with conical ends. For given surface area,  show

that the dimensions which give maximum value are l = h = 
2
5

r, where l is the length

of the cylinder, r is the radius and h is the altitude of cone.
"�
 Find the dimensions of a rectangular box, with open top of given capacity (volume) such

that the sheet metal (surface area) required is least.

$�%
 x = y = 2z = (2V)1/3, V = volume

"�
 Find the maximum and minimum values of x y2 2+  when 13x2 – 10xy + 13y2 = 72.

$�%
 Maximum = 3, minimum = 2
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"�
 A tent of given volume has a square base of side 2a and has its four sides of height b
vertical and is surmounted by a pyramid of height h. Find the values of a and b in terms
of h so that the canvas required for its construction be minimum.

[���&� V = 4a2b + 
1
3

(4a2)h,  S = 8ab + 4a a h2 2+ ; a = 
5

2
h , b = 

h
2

].

"�
 If x and y satisfy the relation ax2 + by2 = ab, prove that the extreme values of function
u = x2 + xy + y2 are given by the roots of the equation 4(u – a) (u – b) = ab.

" 
 Find the maximum value of xmynzp when x + y + z = a.

$�%
 am+n+b· mm·nn·pp/(m + n + p)m + n + p

"!
 Find minimum distance from the point (1, 2, 2) to the sphere x2 + y2 + z2 = 30. $�%. 3

	#
 Determine the perpendicular distance of the point (a, b, c) from the plane lx + my + nz

= 0 by the Lagrange’s method. $�%
  Minimum distance  = + +

+ +

�
�
�

�
	



la mb nc

l m n2 2 2

OBJECTIVE TYPE QUESTIONS

$
� '��(� �)�� �������� ��%*��� �+� �)�� �)����%� ������ ,���*&

"
 The Jacobian 
∂
∂

u v

x y

,

,

 �
 �  for the function u = ex sin y, v = (x + log sin y) is  (U.P.T.U., 2008)

(i) 1 (ii) 0

(iii) sin x sin y – xy cos x cos y (iv)
e
x

x

	
 The Jacobian 
∂
∂

u v
x y

,
,
� �
 �  for the function u = 3x + 5y, v = 4x – 3y is

(i) 29 (ii) xy

(iii) x2 y2 – y3 (iv) – 29

�
 If x = r cos θ, y = r sin θ, z = Z, then 
∂
∂

x y z

r Z

, ,

, ,
 �
� �θ

 is

(i) 2r (ii) r2 – 5

(iii)
5
r

(iv) r

�
 If u = x sin y, v = y sin x, then 
∂
∂

u v
x y

,
,
� �
 �

 is

(i) sin x sin y (ii) sin x sin y – xy cos x cos y

(iii) cos x cos y – xy sin y (iv) 0
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�
 If u = 3x + 2y – z, v = x – y + z, w = x + 2y – z, then J (u, v, w) is
(i) 5 (ii) 0

(iii) – 2 (iv) xy + 3x3

�
 If in the area of an ellipse if a two per cent error is made in measuring the major and
minor axis then the percentage error in area is

(i) 2% (ii) 3%
(iii) 5% (iv) 4%

�
 The value of (1.05)3.02 is
(i) 2.35 (ii) 1.25

(iii) 1.15 (iv) 0.57
 
 If an error of 2% is made in measuring the sides of a rectangle, then what is the

percentage of error in calculating its area?
(i) 1% (ii) 2%

(iii) 4% (iv) 8%
!
 The relation among relative error of quotient, relative errors of dividend and the divi-

sor (Take x = dividend, y = divisor, z = quotient) is

(i)
dz
z

dx
x

dy
y

= + (ii)
dz
z

dx
x

dy
y

< + 2

(iii)
dz
z

dx
x

dy
y

< − (iv)
dz
z

dx
x

dy
y

= −

"#
 If u = x2 + y2 + 6x + 12 then the stationary point is
(i) (– 3, 0) (ii) (– 3, 5)

(iii) (– 2, 6) (iv) (5, 6)

""
 The extreme values of f(x, y) = x2 + 2y2 on the circle x2 + y2 = 1 are
(i) fmax = 2, fmin = 1 (ii) fmax = 0, fmin = – 2

(iii) fmax = 7, fmin = – 5 (iv) None of these
"	
 If u = x4 + 2x2y – x2 + 3y2 then rt – s2 is equal to

(i) 24 (ii) 36
(iii) – 58 (iv) 14

-
� ����� ��� �)�� ,���(%&

"
 If u = u (r, s), v = v (r, s) and r = r (x, y), s = s (x, y) then 
∂
∂

u v
x y

,
,
� �
 �

 = ..........

	
 If x = r cos θ, y = r sin θ then 
∂
∂

x y

r

,

,
 �
� �θ

 is ..........

�
 If u = x (1 – y), v = xy then 
∂
∂

u v

x y

,
,
� �
 �

 = ..........

�

∂
∂

×
∂
∂

u v

x y

x y

u v
,
,

,

,
� �
 �

 �
� �  = ..........
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.
� /�������� 0�1�� ��� ���%�� +��� �)�� +����*���� %��������%&

"
 (i) The functions u and v are said to be functionally independent if their Jacobian is not
equal to zero.

(ii) If f1 (u, v, x, y) = 0 and f2 (u, v, x, y) = 0 then u, v are said to be implicit functions.

(iii) m functions of n variables are always functionally dependent when m > n.

(iv) If x = r cos θ, y = r sin θ then 
∂
∂

x y

r

,

,
 �
� �θ  = r2 – 2r + 1.

	
 (i)
dx
x

 represents relative error.

(ii) If f(a, b) < f(a + h, b + k) then f(a, b) is a maximum value.

(iii) If f(a, b) > f(a + h, b + k) then f(a, b) is a minimum value.
(iv) A point where function is neither maximum nor minimum is called saddle point.

�
 (i) Nature of stationary points cannot be determined by Lagrange’s method.

(ii) Solving fx = 0 and fy = 0 for stationary point.
(iii) Extremum is a point which is either a maximum or minimum.

(iv) Extrema occur only at stationary points. However, stationary points need not be
extrema.

2
� 3���)� �)�� �����*���&

"
 (i) Maxm (a) rt – s2 = 0 (U.P.T.U., 2008)
(ii) Minm (b) rt – s2 < 0

(iii) Saddle point (c) rt – s2 > 0, r > 0
(iv) Failure case (d) rt – s2 > 0, r < 0

	
 (i) δx or dx (a) Local maximum

(ii)
δx
x

 or 
dx
x

(b) Absolute error

(iii) 100 ×
dx
x

(c) Relative error

(iv) f(x, y) ≤ f(a, b) (d) Percentage error
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ANSWERS TO OBJECTIVE TYPE QUESTIONS

$
� '��(� �)�� �������� ��%*��&

"
 (ii) 	
 (iv) �
 (iv)
�
 (ii) �
 (iii) �
 (v)
�
 (iii)  
 (iii) !
 (iv)

"#
 (i) ""
 (i) "	
 (i)

-
� ����� ��� �)�� ,���(%&

"
  
∂
∂

⋅
∂
∂

u v

r s

r s

x y

,
,

,
,

� �
� �

� �
 �

	
 r �
 x

�
 1

.
� 0�1�� ��� ���%�&

"
 (i) T (ii) T (iii) T (iv) F

	
 (i) T (ii) F (iii) F (iv) T

�
 (i) T (ii) T (iii) T (iv) T

2
� 3���)� �)�� +����*���&

"
 (i) → (d) (ii) → (c) (iii) → (b) (iv) → (a)
	
 (i) → (b) (ii) → (c) (iii) → (d) (iv) → (a)

���



UNIT ���

Matrices

3.0 INTRODUCTION

The term matrix was apparently coined by sylvester about 1850, but introduced first by Cayley
in 1860. In this unit, we focus on matrix theory itself which theory will enable us to obtain
additional important results regarding the solution of systems of linear algebraic equations.

One way to view matrix theory is to think in terms of a parallel with function theory. In
mathematics, we first study numbers—the points on a real number axis. Then we study functions,
which are mappings or transformations, from one real axis to another. For example, f (x) = x2

maps the point x = 2, say on x-axis to the point f = 4 on f or y-axis. Just as functions act upon
numbers, we shall see that matrices act upon vectors and are mappings from one vector space to
another.

3.1 DEFINITION OF MATRIX

A matrix is a collection of numbers arranged in the form of a rectangular array. These numbers
known as elements or entries are enclosed in brackets [ ] or ( ) or �� �.

Therefore a matrix A may be expressed as

A = 

a a a

a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

�

�

� � � �

�

�

�

�
�
�
�

�

�

�
�
�
�

...(i)

The horizontal lines are called rows and vertical lines are called columns. The order of
matrix A is m × n and is said to be a rectangular matrix.

3.1.1  Notation
Elements of matrix are located by the double subscript ij where i denotes the row and j the
column. In view of subscript notation in (1), one also writes

A = [aij], where i = 1, 2, ...,m and j = 1, 2, ... n

151
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3.2  TYPES OF MATRICES

There are following types of matrices:
���������	
����������� A matrix in which the number of rows and columns are not equal,

i.e., (m ≠ n) is called a rectangular matrix, e.g., 
1 2 5
3 2 1

2 3

�
��

�
�� ×

.

���� ������ ������� A matrix in which the number of rows and columns are equal, i.e.,

(m = n) is called a square matrix, e.g., 
5 2 1

3 1 0

0 1 2 3 3

�

�

�
�
�

�

�

�
�
�

×

.

��������������� A matrix which has only single row and any number of columns is called
a row matrix, e.g., [1  2  0  5]1 × 4

���� �����	� ������� A matrix which has only single column and any number of rows,

i.e., (m × 1) order is called column matrix, e.g., 

  
 
 
 

1
2
0
5

4 1

�

�

�
�
�
�

�

�

�
�
�
�

×

.

���� ����� ������ �� ���� ������� Any m × n matrix is called a null matrix if each of its

elements is zero and is denoted by Om × n or simply by O simply, e.g., 
0 0 0
0 0 0
�
��

�
��

.

�������
�	���������� A square matrix A = [aij] is called diagonal matrix, if all the elements
except principal diagonal are zero. Thus, for diagonal matrix aij ≠ 0, i = j and aij = 0, i ≠ j, e.g.,

1 0 0
0 2 0
0 0 5

�

�

�
�
�

�

�

�
�
�

�
�� ������������� Any diagonal matrix in which all its diagonal elements are equal to a
scalar, say (K) is called a scalar matrix

Thus,

5 0 0
0 5 0
0 0 5

�

�

�
�
�

�

�

�
�
�

i.e., A = [aij]n × n is a scalar matrix if

aij =
0 when 

when  =  
i j

K i j

≠�
�
	

���� ���	����� ������ ��� �	��� �������� Any diagonal matrix is called an identity matrix,
if each of its diagonal elements is unity. Thus a matrix A = {aij}n × n  is called identity matrix iff

aij = 
0
1
,
,

.
 
  =  
i j

i j

≠�
�
	

 An identity matrix of order n is denoted by I or In.
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Thus, I4 =

1 0 0 0
0 1 0 0
0 0 0 1

�

�

�
�
�

�

�

�
�
�

���� ���������������� A square matrix A = [aij]n × n is said to be symmetric matrix if its
(i, j)th element is equal to (j, i)th element. Thus matrix A is said to be symmetric matrix if
aij = aji ∀  i, j.

e.g.,

1 3 4
3 2 5
4 5 3

− −
− −
− −

�

�

�
�
�

�

�

�
�
�

� �� �!��� "�������� ������� A sqaure matrix A = [aij] is said to be skew symmetric if
aij = – aji ∀  i, j.

But for diagonal elements aii = – aii ⇒  2aii = 0 ⇒  aii = 0. This proves that every leading
diagonal element of a skew symmetric matrix is zero.

Thus,
0 2 5
2 0 3
5 3 0

−
− −

�

�

�
�
�

�

�

�
�
�

is a skew symmetric matrix.

�!��#��	
����������� If  every element above or below the leading diagonal of a square
matrix is zero, the matrix is called a triangular matrix. It has the following two forms:

(i) Upper triangular matrix: A square matrix in which all the elements below the leading
diagonal are zero i.e., aij = 0; i > j is called an upper triangular matrix.

e.g.,
2 3 1
0 5 2
0 0 4

�

�

�
�
�

�

�

�
�
�

(ii)� Lower triangular matrix: A square matrix in which all the elements above the leading
diagonal are zero i.e., aij = 0; i < j is called a lower triangular matrix.

e.g.,

5 0 0
3 2 0
6 3 1

�

�

�
�
�

�

�

�
�
�

����#�	"$�"�������������� The matrix is obtained by interchange the rows and columns of
a given matrix A, is called the transpose of A and is denoted by A′ or AT e.g.,

If A =

2 3 5 6
1 2 3 0
5 1 2 1

�

�

�
�
�

�

�

�
�
�

, then A′ = 

2 1 5
3 2 1
5 3 2
6 0 1

�

�

�
�
�
�

�

�

�
�
�
�

������	 �
����������������The matrix obtained by replacing each element by its conjugate

complex number of a given matrix A, is called the conjugate of A and is denoted by A .

Thus, if A =
1 2 4

3 1 2
+ −

−
�
��

�
��

i i

i
, then A  = 

1 2 4
6 1 2
−

+
�
��

�
��

i i

i
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�	��#�	 �
���� �� ��	 �
���� ��	"$�"����� ��������� The conjugate of a transposed matrix
A or transpose of a conjugate matrix A is called a tranjugate matrix of A and is denoted by A*.

Thus, if A =
2 3 5

6 1 2
+ −

−
�
��

�
��

i i

i
, then A* = 

2 3 6
5 1 2
−

+
�
��

�
��

i

i i

���� %������	� ������� A square matrix A = [aij] is said to be “Hermitian matrix” if its
conjugate transpose matrix A* is equal to itself i.e., A* = A.

Thus A = [aij] is hermitian matrix if aij = a ji  ∀  i and j. Hence for diagonal elements, aii = aii

i.e., every leading diagonal element in a hermitian matrix is wholly real.

e.g.,
1 3

3 2 5
5 0

+
−
− −

�

�

�
�
�

�

�

�
�
�

i i

i i

i i

�$�� �!��� �������	� ������� Any square matrix A = [aij] is said to be a skew hermitian
matrix if A* = – A

Thus A is skew hermitian if aii = −a ji  ∀  i, j

For diagonal elements aii = – aii  ⇒  aii + aii  = 0

If aii = x + iy
and aii = x – iy

then a aii ii+ = x + iy + x – iy = 2x

or x = 0
Hence all the diagonal elements of a skew hermitian matrix are either zero or pure imaginary.

e.g.,
i i i

i i

i i

3 4 5
3 0 2
4 5 2 0

+ +
− +
− +

�

�

�
�
�

�

�

�
�
�

�������$���	��������� A square matrix A is said to be nilpotent of index p if p is the least
positive integer such that Ap = 0. Thus, a square matrix A is said to be nilpotent of index 2, if

A2 = 0; e.g.,  
0 0
1 0
�
��

�
��  is a nilpotent matrix

As A2 =
0 0
1 0
�
��

�
��  

0 0
1 0
�
��

�
��  = 

0 0
0 0
�
��

�
��  = 0

�������$���	��������� A square matrix A is said to be periodic of period p if p is the least
positive integer such that Ap+1 = A. If p = 1 so that A2 = A, then A is called idempotent. Thus a
square matrix A is said to be “idempotent” (or of period 1)

if A2 = A.

e.g., A =
1 0
0 1
�
��

�
��

,

A2 =
1 0
0 1

1 0
0 1

�
��

�
��
�
��

�
��

 = 
1 0
0 1
�
��

�
��

 = A
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�"�� �	&������� ������� A square matrix A is said to be involutory if A2 = I, I being the
identity matrix.

e.g., A =
1 0
0 1
�
��

�
��

,  A2  = 
1 0
0 1

1 0
0 1

�
��

�
��
�
��

�
��

 = 
1 0
0 1
�
��

�
��

 = I

���� '���
�	��� ������� A square matrix A is said to be an orthogonal matrix, if
A′A = AA′ = I

����(	������������ A square matrix A is said to be unitary matrix if AA* = A*A = I.
(U.P.T.U., 2001, 2005)

3.3  OPERATIONS ON MATRICES

3.3.1  Scalar Multiple of a Matrix

Consider a matrix A = [aij]m × n. Let k be any scalar belonging to a field over which A is defined.
The scalar multiple of k and A, denoted by kA, is defined as

kA = [kaij]m × n

i.e., each element of A is multiplied by k.

If k = –1, then (–1) A = [–aij]

(–1) A is denoted by –A and is called the negative of matrix A.
–A is also called “additive inverse of A”.

Thus, if A =
1 2

4–1
�
��

�
��

, then 3A = 
1 3 2 3

3 4 3
⋅ ⋅
⋅ ⋅

�
��

�
��–1

 = 
3 6

12–3
�
��

�
��

3.3.2  Addition of Matrices

Any two matrices can be added if they are of the same order.
If A = [aij]m × n, B = [bij]m × n then A + B = [aij + bij]m × n

e.g., Let A =
2 5
3 1
�
��

�
�� , B = 

5
2 0

–4�
��

�
�� , then A + B = 

7 1
5 1
�
��

�
��

3.3.3  Subtraction of Matrices

Any two matrices can be subtracted if they are of the same order.
If A = [aij]m × n, B = [bij]m × n; then A – B = [aij – bij]m × n

3.3.4  Properties of Addition of Matrices

(i) Commulative law
A + B = B + A

(ii) Associative law
(A + B) + C = A + (B + C)

(iii) Each matrix has an additive inverse
(iv) Cancellation law

A + B = A + C ⇒  B = C
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3.3.5  Multiplication of Matrices
The product AB of two matrices A and B is only possible if the number of columns of A = number
of rows of B. In the product AB, A is called the ‘prefactor’ and B is called the ‘post factor’.

e.g.,  Let A =
a a a

a a a
11 12 13

21 22 23

�
��

�
�� ,  B = 

b b

b b

b b

11 12

21 22

31 32

�

�

�
�
�

�

�

�
�
�

 AB =
a a a

a a a
11 12 13

21 22 23

�
��

�
��  

b b

b b

b b

11 12

21 22

31 32

�

�

�
�
�

�

�

�
�
�

=
a b a b a b a b a b a b

a b a b a b a b a b a b
11 11 12 21 13 31 11 12 12 22 13 32

21 11 22 21 23 31 21 12 22 22 23 32

+ + + +
+ + + +

�
��

�
��

3.3.6  Properties of Multiplication of Matrices
 (i) Associative law: (AB) C = A (BC)
(ii) Distributive law: A(B + C) = AB + AC.

3.4 TRACE OF MATRIX

If A = [aij]n × n be a square matrix, then the sum of its diagonal elements is defined as the trace
of the matrix, hence

trace of A = aii
i=

∞

∑
1

e.g., A = 

1 0 5
0 2 3

1 2–1

�

�

�
�
�

�

�

�
�
�

, the trace of A = 1 + 2 + (– 2) = 1.

3.5 PROPERTIES OF TRANSPOSE

(i) (A′)′ = A

(ii) (KA)′ = KA′,  K being scalar
(iii) (A + B)′ = A′ + B′
(iv) (AB)′ = B′A′ .

3.6  PROPERTIES OF CONJUGATE MATRICES

(i) KA
 � = K A , K being a scalar,

(ii) A B+
 � = A B+ ,

(iii) A B
 � = A B .
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)���$��� *+ Show that every square matrix can be uniquely expresses as the sum of a
symmetric and a skew symmetric matrix.

���+� Let A be any square matrix

Evidently A =
1
2

 (A + A′) + 
1
2

 (A – A′)

Taking P =
1
2

 (A + A′), Q = 
1
2

 (A – A′), we get

A = P + Q ...(i)

Now P′ =
1
2

 A A+ ′ ′�   = 
1
2

 ′ + ′ ′�
��

�
��A A� 

=
1
2

 (A′ + A) = P

and Q′ =
1
2

 [(A–A′)]′ = 
1
2

 [A′  – (A′)′]

=
1
2

 (A′ – A) = – Q

⇒ P′ = P, Q′ = – Q
Hence P is symmetric and Q is skew symmetric.
This shows that a square matrix A is expressible as a sum of a symmetric and skew symmetric

matrix.
��������	� To prove that this representation is unique, let if possible A = R + S be another

representation of A, where R is symmetric and S is skew symmetric,
⇒ R = R′, S′ = – S
Now A = R + S
⇒ A′ = (R + S)′ ⇒  A′ = R′  + S′

⇒ A′ = R – S As  =  R ,  S  = –R S′ ′

∴ A + A′ = R + S + R – S = 2R or R = 
1
2

 (A + A′) = P

Also A – A′ = R + S – (R – S) = 2S or S = 
1
2

 (A – A′) = Q

Thus R = P, S = Q
This proves that the representation is unique.

)���$���,+ Every square matrix can be uniquely expressed as P + iQ, where P and Q are
hermitian.

���+� Let A be square matrix. Evidently

A =
1
2

 (A + A* ) + 
1
2

 (A – A∗ )

=
1
2

 (A + A*) + i 
1
2i

A A−��	
���

*� �

Taking P =
1
2

 (A + A*), Q = 
1
2i

 (A – A*), we get

A = P + iQ ...(i)
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so that P* =
1
2

A A+�
��

�
��

*
*

� �  = 
1
2

 (A* + A∗∗ ) = 
1
2

 (A* + A) = P,

Q* = 1
2i

A A– *
*

� ��
��

�
��

 = 
1
2−

�
��

�
��i  A* – A** = – 

1
2i

 (A* – A) = Q

Thus P* = P, Q* = Q ⇒  P and Q are hermitian.
In this event (i) proves that A is expressible as P + iQ where P and Q are hermitian.
��������	��To prove that this representation is unique, let if possible. A = R + iS be another

representation where R and S are hermitian so that R* = R, S* = S

A* = (R + iS)* = R* + i
-
S* = R + (–i)S = R – iS

A + A* = (R + iS) + (R – iS) = 2R

or R =
1
2

 (A + A*) = P

A – A* = (R + iS) – (R – iS) = 2iS

⇒ S =
1
2i

 (A + A*) = Q

Finally, R = P, S = Q.
Hence the representation is unique.

)���$��� -+ If A is unitary matrix, show that A′ is also unitary.
���+ AA* = A*A = I

(AA*)* = (A*A)* = I* = I (I* = I)
⇒ (A*)* A* = A* (A*)* = I

 AA* = A* A = I As *A A� �* =

(AA*)′ = (A*A)′ = (I)′
(A*)′ A′ = A′ (A*)′ = I

⇒ (A′)* · A′ = A′ (A′)* = I
Hence, A′ is a unitary matrix. � .�&��+

)���$��� /+ If A = 

1 2 2
2 1 2
2 2 1

�

�

�
�
�

�

�

�
�
�

 show that A2 – 4A – 5I = 0.

���+� Here A2 =
1 2 2
2 1 2
2 2 1

�

�

�
�
�

�

�

�
�
�

 
1 2 2
2 1 2
2 2 1

�

�

�
�
�

�

�

�
�
�

=

1 4 4 2 2 4 2 4 2
2 2 4 4 1 4 4 2 2
2 4 2 4 2 2 4 4 1

+ + + + + +
+ + + + + +
+ + + + + +

�

�

�
�
�

�

�

�
�
�

 = 

9 8 8
8 9 8
8 8 9

�

�

�
�
�

�

�

�
�
�

and 4A = 4 

1 2 2
2 1 2
2 2 1

�

�

�
�
�

�

�

�
�
�

 = 

4 8 8
8 4 8
8 8 4

�

�

�
�
�

�

�

�
�
�
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∴ A2 – 4A − 5I =

9 8 8
8 9 8
8 8 9

�

�

�
�
�

�

�

�
�
�

 – 

4 8 8
8 4 8
8 8 4

�

�

�
�
�

�

�

�
�
�

 – 

5 0 0
0 5 0
0 0 5

�

�

�
�
�

�

�

�
�
�

=

9 9 8 8 8 8
8 8 9 9 8 8
8 8 8 8 9 9

– – –
– – –
– – –

�

�

�
�
�

�

�

�
�
�

 = 

0 0 0
0 0 0
0 0 0

�

�

�
�
�

�

�

�
�
�

 = 0. � .�&��+

)���$���0+ If A = 
3
1

–4
–1

�
��

�
��

 prove that AK = 
1 2 4

1 2
+

−
�
��

�
��

K K

K K

–
, K being any positive integer.

���+� Let A = 
3
1

–4
–1

�
��

�
��

 and K be any positive integer

To prove AK =
1 2 4

1 2
+

−
�
��

�
��

K K

K K

–
,  we see that

A1 = A =
3 4
1

−�
��

�
��–1

 = 
1 2 1 4 1

1 1 2 1
+ ⋅ − ⋅

⋅
�
��

�
��–

This proves that result is true for K = 1

Now A2 =
3
1

–4
–1

�
��

�
��  

3
1

–4
–1

�
��

�
��  = 

9 4 4
3 1 1

– –12
– –4

+
+

�
��

�
��  = 

5
2

–8
–3

�
��

�
��

=
1 2 2 2

2 1 2 2
+ ⋅ ⋅

⋅
�
��

�
��

–4
–

This proves that the result is true for K = 2.
Let us suppose that the result is true for K = n, so that

An =
1 2 4

1 2
+

−
�
��

�
��

n n

n n

–
.

Now, An + 1 = An A =
1 2 4

1 2
+

−
�
��

�
��

n n

n n

– 3 4
1 1

–
–

�
��

�
��

=
3 6 4 8 4
3 1 2 1 2

+ − − +
+ − − +

�
��

�
��

n n n n

n n n n

–4
–4  = 

1 2 1 1
1 1 2 1

+ + +
+ − +

�
�
�

�
�
�

n n

n n
� � � �

� �
–4

This proves that the result is true for K = n + 1, if it is true for K = n.
Also, we have shown that the result is true for K = 1, 2. Hence by mathematical induction

the required result follows.

)���$��� 1+ Find the nature of the following matrices
A + A*, AA* and A – A*. (U.P.T.U., 2001)

���+ A* = A → Hermitian matrix, (A + A*)* = A* + A �� Hermitian
(AA*)* = (A*)*·A* = A·A* ⇒  Hermitian matrix.

and (A – A*)* = A* – (A*)* = A* – A = – (A – A*) ⇒  skew symmetric matrix.
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)���$��� 2+ Show that the matrix A = 
α γ β δ
β δ α γ

+ +
+

�
��

�
��

� �

� �

�

�
 is a unitary matrix if

α2 + β2 + γ2 + δ2 = 1. (U.P.T.U., 2005)

���+ A = 
α γ β δ
β δ α γ

α γ β δ
β δ α γ

+ +
+

�
��

�
��
∴ =

+
�
��

�
��

� �

� �
�

� �

� �

�

�

� �

� �

�

But for unitary matrix AA* = I

∴
α γ β δ
β δ α γ

α γ β δ
β δ α γ

+ +
+

�
��

�
�� +
�
��

�
��

� �

� �

� �

� �

�

�

� �

� �
=

� �

� �

�
��

�
��

⇒  
α γ β δ αβ αδ βγ γδ αβ βγ αδ δγ

αβ βγ αδ γδ αβ αδ βγ δγ β δ α γ

2 2 2 2

2 2 2 2

+ + + + + +
+ + + + + +

�
�
��

�
�
��

– – – –
– – – –

i i i i

i i i i

=
� �

� �

�
��

�
��

⇒
α β γ δ

α β γ δ

� � � �

� � � �

�

�

+ + +
+ + +

�
�
��

�
�
�� =

� �

� �

�
��

�
��

⇒ α 2 + β2 + γ2 + δ2 = 1. � .�&��+

)���$��� 3+ Prove that the matrix 
1

3

1 1
1

+�
��

�
��

i

i– –1  is unitary. (U.P.T.U., 2001)

���+� Let A =
1
3

1 1
1

+�
��

�
��

i

i– –1

A* =
1
3

1 1
1

+�
��

�
��

i

i– –1

A*·A =
1

3

1 1
1

1

3

1 1
1

+�
��

�
��

×
+�

��
�
��

i

i

i

i– –1 – –1

=
1
3

1 1 1 1 1
1 1 1 1 1

1
3

3 0
0 3

1 0
0 1

+ + + +
+ +

�
��

�
��

=
�
��

�
��

=
�
��

�
��

=
( ) ( ) – ( )

( – ) – ( – ) ( )
i i

i i
I

Therefore, A is a unitary matrix.

)���$��� 4+ Define a unitary matrix. If N = 
0 1 2

2 0
+

+
�
��

�
��

i

i–1
 is a matrix, then show that

(I – N) (I + N)–1 is a unitary matrix where I is an identity matrix. (U.P.T.U., 2000)
���+� A square matrix A is said to be unitary if A*A = I.

Now I – N =
1 0
0 1

0 1 2
2 0

1 2
1 2 1

�
��

�
��

+
+

�
��

�
��

=
�
��

�
��

–
–1

–1 –
–

i

i

i

i
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and I + N =
1 0
0 1

0 1 2
2 0

1 1 2
2 1

�
��

�
��
+

+
+

�
��

�
��

=
+

+
�
��

�
��

i

i

i

i–1 –1

|I + N| = 1 – (– 1 – 4) = 6

Let A =
1 1 2

2 1
+

+
�
��

�
��

i

i–1

∴ A11 = 1, A12 = – (– 1 + 2i) = 1 – 2i
A21 = – (1 + 2i) = – 1 – 2i, A22 = 1

⇒ B =
1 1 2

2 1
1 2

1 2 1
–

–1 –
–1 –

–
i

i
or B

i

i
�
��

�
��

′ =
�
��

�
��

⇒ Adj A = Adj (I + N) = B′ = 
1 2

1 2 1
–1 –

–
i

i
�
��

�
��

and (I + N)–1 =
A I N

I N

i

i
dj ( )
| |

–1 –
–

+
+

=
�
��

�
��

1
6

1 2
1 2 1

Now (I – N) (I + N)–1 =
1
6

1 2
1 2 1

1 2
1 2 1

–1 –
–

–1 –
–

i

i

i

i
�
��

�
��
�
��

�
��

=
1
6

4
2 4

–4 –2 –
– –4

i

i
�
��

�
��

 = C (say)

∴ C* =
1
6

4 2 4
4 4

–
–2 –

+
+

�
��

�
��

i

i

⇒ C*C = 1
36

4 2 4
4 4

4 4
2 4 4

1
36

36 0
0 36

–
–2 –

– –2 –
– –

+
+

�
��

�
��
�
��

�
��

=
�
��

�
��

i

i

i

i

=
1 0
0 1
�
��

�
��

= I . �� %�	��� .�&��+

)���$��� *5+ Show that A = 

1 2 3
1 2 3

–1 –2 –3

�

�

�
�
�

�

�

�
�
�

 is nilpotent of index 2.

���+� Here A2 =

1 2 3
1 2 3

1 2 3
1 2 3

–1 –2 –3 –1 –2 –3

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

=

1 2 3 2 4 6 3 6 9
1 2 3 2 4 6 3 6 9

2 3 4 6 6 9

0 0 0
0 0 0
0 0 0

0
+ + +
+ + +

+ + +

�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

=
– – –
– – –

–1 – –2 – –3 –

Here A is nilpotent of index 2.
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)���$��� **+ If A = [x y z], B = 

a h g

h b f

g f c

C

x

y

z

�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

,  then find out ABC.

���+ AB = [x y z] 

a h g

h b f

g f c

�

�

�
�
�

�

�

�
�
�
 = [ax + hy + gz  hx + by + fz  gx + fy + cz]

and ABC = (AB) C = [ax + hy + gz  hx + by + fz  gx + fy + cz] 

�

�

�

�

�

�
�
�

�

�

�
�
�

= [(ax + hy + gz)x + (hx + by + fz)y + z(gx + fy + cz)]
= [ax2 + by2 + cz2 + 2fy + 2zx + 2hxy].

)���$��� *,+ If eA is defined as I + A + 
A A2 3

2 3
+  +..., show that

eA = ex 
cos sin
sin cos

, .
hx hx

hx hx
A

x x

x x
�
��

�
��

=
�
��

�
��

where

���+ A2 =
x x

x x

x x

x x
x x

x x
x

�
��

�
��
�
��

�
��

=
�
�
�
�

�
�
�
�

=
�
��

�
��

2 2
2 2

2
1 1
1 1

2 2

2 2
2

= 2x2 B say B =
�
��

�
��

�
��

�
��

1 1
1 1

Similarly, A3 = 22x3 B, A4 = 23x4 B, ... etc.

∴ eA = 1 + A + 
A A2 3

2 3
+  + .....

= I + xB + 
2

2
2

3

2 2 3x B x B+  + ..........|As A = xB

=
1
2

2 2
2

2
2

3

2 3

I x B
x

B
x

B+ + + +
�

�
�

�

�
�( )

( ) ( )
. . . . .

=
1
2

2 2
2

2
2

3
0 2

2
2

2
3

0 2
2

2
2

3
2 2

2
2

2
3

2 3 2 3

2 3 2 3

+ + + + + + + +

+ + + + + + + +

�

�

�
�
�
�
�

�

�

�
�
�
�
�

x
x x

x
x x

x
x x

x
x x

( ) ( )
...

( ) ( )
.. .

( ) ( )
...

( ) ( )
.. .

=
1
2

1 1

1 1

1
2

1
2

1
2

1
2

2 2

2 2
e e

e e
e

e e e e

e e e e

x x

x x
x

x x x x

x x x x

+
+

�
�
�
�

�
�
�
�

=
+

+

�

�

�
�
�

�

�

�
�
�

–

–

–

–

– –

– –

� � � �

� � � �

= e
hx hx

hx hx
x cos sin

sin cos
�
��

�
��

. � %�	��� .�&��+
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3.7 SINGULAR AND NON-SINGULAR MATRICES

A square matrix A is said to be singular, if |A| = 0. If |A|≠ 0, then A is called a non-singular
matrix or a regular matrix. (U.P.T.U., 2008)

3.8 ADJOINT OF A SQUARE MATRIX

Adjoint of A is obtained by first replacing each element of A by its cofactor in |A| and then
taking transpose of the new matrix or by first taking transpose of A and then replacing each
element by its cofactor in the determinant of A.

Let A =

a a a
a a a

a a a

A
a a a
a a a

a a a

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

�

�

�
�
�

�

�

�
�
�

=, then

The cofactors of A in |A| are as follows:

A11 =
a a

a a
A

a a

a a
A

a a

a a
22 23

32 33
12

21 23

31 33
13

21 22

31 32
= =– ,

A21 = –
a a

a a
A

a a

a a
A

a a

a a
12 13

32 33
22

11 13

31 33
23

11 12

31 32
, , –= =

A31 =
a a

a a
A

a a

a a
A

a a

a a
12 13

22 23
32

11 13

21 23
33

11 12

21 22
, – ,= =

Let B =

A A A

A A A

A A A

A B

A A A

A A A

A A A

11 12 13

21 22 23

31 32 33

11 21 31

12 22 32

13 23 33

�

�

�
�
�

�

�

�
�
�

= ′ =
�

�

�
�
�

�

�

�
�
�

then Adj

3.8.1  Properties of Adjoint

If A = [aij] is a square matrix of order n then
(i) adj A′ = (adj A)′  (ii) adj A* = (adj A)* (iii) adjoint of a symmetric (Hermitian) matrix is

symmetric (Hermitian).

3.9 INVERSE OF A MATRIX (RECIPROCAL)

Consider only square matrices.
Inverse of a n-square matrix A is denoted by A–1 and is defined as follows:

AA–1 = A–1A = I

where I is n × n unit matrix or A–1 = 
adj A

A
·

3.9.1  Properties of Inverse

(i) Inverse of A exists only if |A| ≠ 0 i.e., A is non-singular.

(ii) The inverse of a matrix is unique. If B and C are two inverses of the same matrix A
then (CA) B = C (AB), IB = CI i.e., B = C, so inverse is unique.



164 A TEXTBOOK OF ENGINEERING MATHEMATICS—I

(iii) Inverse of a product is the product of inverses in the reverse order i.e., (AB)–1 = B–1

A–1, since (AB) (B–1 A–1) = A (BB–1) A–1 = AIA–1 = AA–1 = I.
(iv) For a diagonal matrix D with dii as diagonal elements, D–1 is a diagonal matrix with

reciprocal 
�

���
 as the diagonal elements.

(v) Transportation and inverse are commutative i.e.,
(A–1)T = (AT)–1, taking transpose of AA–1 = A–1A = In
(A–1)T AT = AT (A–1)T = IT = I i.e.,
(A–1)T is the inverse of AT or (A–1)T = (AT)–1.

(vi) (A–1)–1 = A
Taking inverse of (AA–1) = I,
(AA–1)–1 = (A–1)–1 A–1 = I–1 = I = AA–1. Thus, A = (A–1)–1.

)���$��� *-+ Find the inverse of matrix A, where

A =

–1
–1

–1
.

1 2
3 1

3 4

�

�

�
�
�

�

�

�
�
�

���+� Here we find A11, A12......... cofactors of A as follow:

A11 =
–1 1
3 4

 = – 7, A12 = – 
3 1

4–1
 = – (12 + 1) = – 13, A13 = 

3
3

–1
–1

 = 10

A21 = – 
1 2
3 4

 = – (4 – 6) = 2, A22 = 
–1
–1

2
4

 = – 4 + 2 = – 2, A23 = – 
–1
–1

1
3

 = 2

A31 =
1 2

1–1
 = 1 + 2 = 3, A32 = – 

–1 2
3 1

 = – (– 1 – 6) = 7, A33 = 
–1

–1
1

3
 = 1– 3 = –2

Let B =

–7 –13
–2

–2
( )

–7
–13 –2

–2
,

10
2 2
3 7

2 3
7

10 2
10

�

�

�
�
�

�

�

�
�
�
∴ = =

�

�

�
�
�

�

�

�
�
�

=adj A B AT

∴ A–1 =
adj A

A
=

�

�

�
�
�

�

�

�
�
�

=
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅

�

�

�
�
�

�

�

�
�
�

1
10

2 3
7

10 2

7 0 2 0 3
3 2 0 7
1 0 2 2

–7
–13 –2

–2

–0
–1 –0

–0

.

)���$���*/+ If A and B are n-rowed orthogonal (unitary) matrices, then AB and BA are also
orthogonal (unitary).

���+� (i) Let A and B be n-rowed orthogonal matrices
then A′A = AA′ = I and B′B = BB′ = I

To prove AB and BA are orthogonal we have
(AB)′ (AB) = (B′A′) (AB) = B′ (A′A) B = B′IB = B′B = I
(BA)′ (BA) = (A′B′) (BA) = A′ (B′B) A = A′IA = A′A = I

Thus (AB)′ (AB) = I and (BA)′ (BA) = I
This ⇒  AB and BA are orthogonal.
(ii) Let A and B be unitary, then A*A = AA* = I and B*B = BB* = I.
To prove AB and BA are unitary complete the proof yourself.
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EXERCISE 3.1

*+ Find the values of p, q, r, s, t and u if

A = 

1 2
3 4
5 6

1
4 3

�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

,
–3 –2

–5B C

p q

r s

t u

and  so that A + B – C = 0.

[6	"+� p = – 2, q = 0, r = 4, s = – 1, t = 9, u = 9]

,+ If A = 

0 1 0
0 0 1
p q r

�

�

�
�
�

�

�

�
�
�

, then show that A3 = pI + qA + rA2.

-+ If A = 
2 3 1
0 1 5

1 2
0 3

�
��

�
��

=
�
��

�
��

,
–6

–1
B , find 3A – 4B. 6	"+  

2 1 27
0 1 3
�
��

�
��

�
�
�

�
�
�

/+ If A = 

1 3
2 3
3 1 2

–2
–1

�

�

�
�
�

�

�

�
�
�

, show that 6A2 + 25A – 42I = 0.

0+ If A = 

1 2
2 1
4

1 4 1 0
2 1 1 1
1 1 2

2 1
3
2 0

–3
–3

–3 –1
,

–2
,

–1 –2
–2 –1 –1
–5 –1

�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

B C .

Show that (i) AB = AC, (ii) (B + C) A = BA + CA.

1+ If A = 
0

2

2
0

– tan

tan

α

α

�

�

�
�
�

�

�

�
�
�

 prove that

I + A = (I – A) 
cos –sin
sin cos

α α
α α

�
��

�
��

·

2+ Find the product of the matrices

A = 
2 1 2 1
1 1 1 1

2 0
0 4 1

1 0
1 3 2

�
��

�
��

=

�

�

�
�
�
�

�

�

�
�
�
�

,

–1

–2
B . 6	".

1 1 3
1 1 3
�
��

�
��

�
�
�

�
�
�

3+ If Aα = 
cos sin
–sin cos

α α
α α

�
��

�
��

, then show that

(Aα)n = 
cos sin

– sin cos
n n

n n

α α
α α

�
��

�
��

 = Anα,

where n is any positive integer. Also prove that Aα and Aβ commute and that Aα Aβ
= Aα + β. Also prove that Aα A–α = I.
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4+ If A = 
� �

� �

�
��

�
��

, and B = 
1
2
�
��
�
��

, find BA and AB if they exist.

6	"+� AB = 
2
5
�
��
�
��

; BA does not exist

*5+ If A = 

3 4
1 1
2 0

2 1 2
1 2 4

�

�

�
�
�

�

�

�
�
�

=
�
��

�
��

, B , find (AB)′.

Hence verify that (AB)′ = B′A′. 6	". ( )AB ′ =
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

10 3 4
11 3 2
22 6 4

**+ Show that the matrix A = 
2

3 4
1 3

–2 –4
–1

–2

�

�

�
�
�

�

�

�
�
�

 is idempotent.

*,+ Show that the matrix A = 
1
3

1 2 2
2 1

2 1
–2

–2

�

�

�
�
�

�

�

�
�
�

 is orthogonal.

*-+ Prove that the matrix A = 
1
2

1 1
1 1

+
+
�
��

�
��

i i

i i

–
–

 is unitary.

*/+ Express 

–2 –
–

–2

+ +

+ +

�

�

�
�
�

�

�

�
�
�

3 1 2
3 4 5 5
1 1 2

i i i

i

i i
 as sum of hermitian and skew hermitian matrices.

6	"+
1
2

4 4
4 8 10
3 2

1
2

6 2
2 0

2 4

–4 –

– –4

–2 –
– –10

–1

i

i

i

i i i

i i

i i i

+
�

�

�
�
�

�

�

�
�
�

+
+

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

*0+ Show that 

1 2 3
1 2 3

–1 –2 –3

�

�

�
�
�

�

�

�
�
�

 is nilpotent.

*1+ Express given matrix A as sum of a symmetric and skew symmetric matrices.

A = 

6 8 5
4 2 3
1 7 1

�

�

�
�
�

�

�

�
�
�
. 6	"+

6 6 7
6 2 5
7 5 1

0 2
0

2 2 0

�

�

�
�
�

�

�

�
�
�

+
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

–2
–2 –2

*2+ Show that A = 

1 0 0 0
1 0 0
1 1 0
1 3

–1
–2
–3 –1

�

�

�
�
�
�

�

�

�
�
�
�

 is involutory.
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*3+ Find the inverse of the matrix A.

A = 

1 1 3
1 3

4
–3

–2 –4

�

�

�
�
�

�

�

�
�
�

. 6	"+ A–1 –5 –1 –3
–1 –1 –1

=
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1
4

12 4 6

*4+ Prove that 
cos sin

sin cos
sec

cos – sin

– sin cos
.

–1α α
α α

α
α α
α α

�
��

�
��

=
�
��

�
��

2

,5+ If ω is one the imaginary cube roots of unity and if

A = 

1 1 1
1
1

1
3

1 1 1
1
1

2

2

2

2

ω ω
ω ω

ω ω
ω ω

�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

, .–1then show that A

3.10  ELEMENTARY ROW AND COLUMN TRANSFORMATIONS

The following transformations on a given matrix are defined as elementary transformations:
(i) Inter-change of any two rows (columns).

(ii) Multiplication of any row (column) by any non-zero scalar k.
(iii) Addition to one row (column) of another row (column) multiplied by any non-zero

scalar.
7�� ����� �"�� ���� �������	
� 	������	"� ��� �$�"�	�� ���� �����	���� ��� ������	�

�$�����	"�

(a) Rij (Cij) or Ri ↔ Rj (Ci ↔ Cj) is used for the inter-change of ith and jth rows (columns).
(b) Ri (K) [Ci (K)] or Ri → KRi (Ci → KCi) will denote the multiplication of the elements of

the ith row (column) by a non-zero scalar K.
(c) Rij (K) [Cij (K)] or Ri → Ri + KRj (Ci → Ci + KCj) is used for addition to the elements of

ith row (column) the elements of jth row (column) multiplied by the constant K.

3.10.1  Elementary Matrices
The square matrices obtained from an identity or unit matrix by any single elementary
transformation (i), (ii) or (iii) are called “elementary matrices”.

3.10.2  Properties of Elementary Transformations
(i) Every elementary row (column) transformation on a matrix can be effected by pre-post

multiplication by the corresponding elementary matrix of an appropriate order.
(ii) The inverse of an elementary matrix is an elementary matrix.

3.10.3  Equivalent Matrices
Two matrices A and B are said to be equivalent, denoted by A ~ B, if one matrix say A can be
obtained from B by the application of elementary transformations.

3.10.4  Properties of Equivalent Matrices
(i) If A and B are equivalent matrices, then there exist non-singular matrices R and C such

that B = RAC.
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(ii) Every non-singular square matrix can be expressed as the product of elementary
matrices.

(iii) If there exist a finite system of elementary matrices R1, R2,....., Rm such that (Rm... R2
R1) A = I and A is non-singular, than A−1 = (Rm ... R2 R1) I.

3.11
METHOD OF FINDING INVERSE OF A NON-SINGULAR MATRIX
BY ELEMENTARY TRANSFORMATIONS

The property III gives a method of finding the inverse of a non-singular matrix A.

In this method, we write A = IA. Apply row transformations successively till A of L.H.S.
becomes identity matrix I. Therefore, A reduces to I, I reduces to A–1.

)���$��� *+ Find the inverse of A = 

0 1 2 2
1 1 2 3
2 2 2 3
2 3 3 3

�

�

�
�
�
�

�

�

�
�
�
�
.

���+� Let A = IA

⇒

0 1 2 2
1 1 2 3
2 2 2 3
2 3 3 3

�

�

�
�
�
�

�

�

�
�
�
�

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�

�

�
�
�
�

�

�

�
�
�
�

A

R1 ↔ R2

1 1 2 3
0 1 2 2
2 2 2 3
2 3 3 3

�

�

�
�
�
�

�

�

�
�
�
�

=

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

�

�

�
�
�
�

�

�

�
�
�
�

A

Applyirg R3 → R3 – 2R1, R4 → R4 – 2R1, we get

1 1 2 3
0 1 2 2
0 0
0 1

–2 –3
–1 –3

�

�

�
�
�
�

�

�

�
�
�
�

=

0 1 0 0
1 0 0 0
0 1 0
0 0 1

–2
–2

�

�

�
�
�
�

�

�

�
�
�
�

A

Applying R2 → R2 + R3, we have

1 1 2 3
0 1 0
0 0
0 1

–1
–2 –3
–1 –3

�

�

�
�
�
�

�

�

�
�
�
�

=

0 1 0 0
1 1 0
0 1 0
0 0 1

–2
–2
–2

�

�

�
�
�
�

�

�

�
�
�
�

A
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Applying R1 → R1 – R2, R4 → R4 – R2, we have

1 0 2 4
0 1 0
0 0
0 0

–1
–2 –3
–1 –2

�

�

�
�
�
�

�

�

�
�
�
�

=

–1 –1
–2
–2

–1 –1

3 0
1 1 0
0 1 0

0 1

�

�

�
�
�
�

�

�

�
�
�
�

A

Applying R1 → R1 + R3, R4 → 2R4 – R3, we get

� � � �

� � �

� �

� � �

��

�� ��

��

�

�

�
�
�
�

�

�

�
�
�
�

=

–1
–2
–2

–2 –3

1 0 0
1 1 0
0 1 0

2 2

�

�

�
�
�
�

�

�

�
�
�
�

A

Applying R1 → R1 + R4, R2 → R2 – R4, R3 → R3 – 3R4

� � � �

� � � �

� � �

� � �

��

��

�

�

�
�
�
�

�

�

�
�
�
�

=

–3 –3
–4 –2
–8 –6

–2 –3

3 2
3 4
6 10

2 2

�

�

�
�
�
�

�

�

�
�
�
�

A

Applying R3 → – 
�

�
 R3, R4 → (– 1) R4, we obtain

� � � �

� � � �

� � � �

� � � �

�

�

�
�
�
�

�

�

�
�
�
�

=

–3 –3
–4 –2

–3 –5
–2 –2

3 2
3 4

4 3
2 3

�

�

�
�
�
�

�

�

�
�
�
�

A

Hence A–1 =

–3 –3
–4 –2

–3 –5
–2 –2

3 2
3 4

4 3
2 3

�

�

�
�
�
�

�

�

�
�
�
�

.

)���$��� ,+ Find by the elementary row transformation inverse of the matrix.

0 1 2
1 2 3
3 1 1

�

�

�
�
�

�

�

�
�
�
. (U.P.T.U., 2000, 2003)

���+� Let A =

0 1 2
1 2 3
3 1 1

�

�

�
�
�

�

�

�
�
�

Now A = IA

∴
0 1 2
1 2 3
3 1 1

�

�

�
�
�

�

�

�
�
�

=

1 0 0
0 1 0
0 0 1

�

�

�
�
�

�

�

�
�
�

A
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Applying R1 ↔ R2, we get

1 2 3
0 1 2
3 1 1

�

�

�
�
�

�

�

�
�
�

=

0 1 0
1 0 0
0 0 1

�

�

�
�
�

�

�

�
�
�

A

R3 → R3 – 3R1

1 2 3
0 1 2
0 –5 –8

�

�

�
�
�

�

�

�
�
�

=

0 1 0
1 0 0
0 1–3

�

�

�
�
�

�

�

�
�
�

A

R1 → R1 – 2R2, R3 → R3 + 5R2

1 0
0 1 2
0 0 2

–1�

�

�
�
�

�

�

�
�
�

=

–2

–3

1 0
1 0 0
5 1

�

�

�
�
�

�

�

�
�
�

A

R1 → R1 + 
1
2

 R3, R2 → R2 – R3, we get

1 0 0
0 1 0
0 0 2

�

�

�
�
�

�

�

�
�
�

=

1 2 1 2 1 2
3

5 1

–
–4 –1

–3

�

�

�
�
�

�

�

�
�
�

A

R3 → 
1
2

 R3

1 0 0
0 1 0
0 0 1

�

�

�
�
�

�

�

�
�
�

=

1 2 1 2 1 2
3

5 2 3 2 1 2

–
–4 –1

–

�

�

�
�
�

�

�

�
�
�

A

Therefore, A–1 =

1 2 1 2 1 2
3

5 2 3 2 1 2

–
–4 –1

–

�

�

�
�
�

�

�

�
�
�

.

)���$���-+ Find the inverse of the following matrix employing elementary transformations:

3 4
2 4
0 1

–3
–3
–1

�

�

�
�
�

�

�

�
�
�

 · [U.P.T.U. (C.O.), 2002]

���+� Let A = IA

∴

3 4
2 4
0 1

–3
–3
–1

�

�

�
�
�

�

�

�
�
�

=

1 0 0
0 1 0
0 0 1

�

�

�
�
�

�

�

�
�
�

A

Applying R1 → R1 – R2, we get

1 0 0
2 4
0 1

–3
–1

�

�

�
�
�

�

�

�
�
�

=

1 0
0 1 0
0 0 1

–1�

�

�
�
�

�

�

�
�
�

A
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R2 → R2 – 2R1

1 0 0
0 4
0 1

–3
–1

�

�

�
�
�

�

�

�
�
�

=

1 0
3 0

0 0 1

–1
–2
�

�

�
�
�

�

�

�
�
�

A

R3 → 3R3 – R2

1 0 0
0 4
0 0

–3
–1

�

�

�
�
�

�

�

�
�
�

=

1 0
3 0

2 3

–1
–2

–3

�

�

�
�
�

�

�

�
�
�

A

R2 → R2 + 4R3

1 0 0
0 0
0 0

–3
–1

�

�

�
�
�

�

�

�
�
�

=

1 1 0
6 9 12
2 3 3

–
–
–

�

�

�
�
�

�

�

�
�
�

A

R2 → – 
1
3

 R2, R3 → (– 1) R3, we obtain

1 0 0
0 1 0
0 0 1

�

�

�
�
�

�

�

�
�
�

=

1 0
3
3

–1
–2 –4
–2 –3

�

�

�
�
�

�

�

�
�
�

A

Hence A–1 =

1 0
3 4
3 3

–1
–2 –
–2 –

�

�

�
�
�

�

�

�
�
�

.

)���$��� /+ Find the inverse of the matrix

A =

–1 –3 –1
–1

–5 –3
–1

.

3
1 1 0
2 2

1 0 1

�

�

�
�
�
�

�

�

�
�
�
�

���+� Let A = IA

⇒

–1 –3 –1
–1

–5 –3
–1

3
1 1 0
2 2

1 0 1

�

�

�
�
�
�

�

�

�
�
�
�

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�

�

�
�
�
�

�

�

�
�
�
�

A

Applying R2 → R2 + R1, R3 → R3 + 2R1, R4 → R4 – R1, we get

–1 –3 –1
–2 –1
–11 –5

–3

3
0 2
0 8
0 4 2

�

�

�
�
�
�

�

�

�
�
�
�

=

1 0 0 0
1 1 0 0
2 0 1 0
1 0 0 1−

�

�

�
�
�
�

�

�

�
�
�
�

A
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R2 → – 
1
2

 R2

–1 –3 –1
–1

–11 –5
–3

3
0 1 1 2
0 8
0 4 2

�

�

�
�
�
�

�

�

�
�
�
�

=

1 0 0 0
1
2

1
2

0 0

2 0 1 0
0 0 1

– –

–1

�

�

�
�
�
�
�

�

�

�
�
�
�
�

A

R3 → R3 + 11R2, R4 → R4 – 4R2

–1 –3 –1
–1
–3

3
0 1 1 2
0 0 1 2
0 0 1 0

�

�

�
�
�
�

�

�

�
�
�
�

=

1 0 0 0
1 2 1 2 0 0
7 2 11 2 1 0
1 2 0 1

– –
– –

�

�

�
�
�
�

�

�

�
�
�
�

A

R3 ↔ R4

–1 –3 –1
–1

–3

3
0 1 1 2
0 0 1 0
0 0 1 2

�

�

�
�
�
�

�

�

�
�
�
�

=

1 0 0 0
1 2 1 2 0 0
1 2 0 1

2
11
2

1 0

– –

– –
7

�

�

�
�
�
�
�

�

�

�
�
�
�
�

A

R4 → 2R4

–1 –3 –1
–1

–6

3
0 1 1 2
0 0 1 0
0 0 1

�

�

�
�
�
�

�

�

�
�
�
�

=

1 0 0 0
1 2 1 2 0 0
1 2 0 1

2 0

– –

–7 –11

�

�

�
�
�
�

�

�

�
�
�
�

Applying R4 → R4 + 6R3, we get

–1 –3 –1
–1
3

0 1 1 2
0 0 1 0
0 0 0 1

�

�

�
�
�
�

�

�

�
�
�
�

=

1 0 0 0
1 2 1 2 0 0
1 2 0 1

1 2 6

– –

–1

�

�

�
�
�
�

�

�

�
�
�
�

A

R2 → R2 + R3

–1 –3 –1
/

3
0 1 0 1 2
0 0 1 0
0 0 0 1

�

�

�
�
�
�

�

�

�
�
�
�

=

1 0 0 0
1 2 3 2 0 1
1 2 0 1

1 2 6–1

�

�

�
�
�
�

�

�

�
�
�
�

A

R2 → R2 – 
1
2

 R4

–1 –3 –13
0 1 0 0
0 0 1 0
0 0 0 1

�

�

�
�
�
�

�

�

�
�
�
�

=

1 0 0 0
1 1
1 2 0 1

1 2 6

–1 –2

–1

�

�

�
�
�
�

�

�

�
�
�
�

A
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Applying R1 → R1 + 3R2, we get

–1 –10 3
0 1 0 0
0 0 1 0
0 0 0 1

�

�

�
�
�
�

�

�

�
�
�
�

=

4 3
1 1
1 2 0 1

1 2 6

–3 –6
–1 –2

–1

�

�

�
�
�
�

�

�

�
�
�
�

A

Applying R1 → R1 – 3R3, we obtain

–1 –10 0
0 1 0 0
0 0 1 0
0 0 0 1

�

�

�
�
�
�

�

�

�
�
�
�

=

1
1 1
1 2 0 1

1 2 6

–3 –3 –9
–1 –2

–1

�

�

�
�
�
�

�

�

�
�
�
�

A

Applying R1 → R1 + R4

–1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�

�

�
�
�
�

�

�

�
�
�
�

=

0
1 1
1 2 0 1

1 2 6

–2 –1 –3
–1 –2

–1

�

�

�
�
�
�

�

�

�
�
�
�

A

In the last, we apply R1 → (– 1) R1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�

�

�
�
�
�

�

�

�
�
�
�

=

0 2 1 3
1 1
1 2 0 1

1 2 6

–1 –2

–1

�

�

�
�
�
�

�

�

�
�
�
�

A

Therefore A–1 =

0 2 1 3
1 1
1 2 0 1

1 2 6

–1 –2

–1

�

�

�
�
�
�

�

�

�
�
�
�

.

)���$��� 0+ With the help of elementary operations, find the inverse of

A =

1 2 1
3 2 3
1 1 2

�

�

�
�
�

�

�

�
�
�
.

���+� Since A = IA

1 2 1
3 2 3
1 1 2

�

�

�
�
�

�

�

�
�
�

=

1 0 0
0 1 0
0 0 1

�

�

�
�
�

�

�

�
�
�

A

Applying R2 → R2 – 3R1, R3 → R3 – R1, we get

1 2 1
0 0
0 1

–4
–1

�

�

�
�
�

�

�

�
�
�

=

1 0 0
1 0
0 1

–3
–1

�

�

�
�
�

�

�

�
�
�

A
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Applying R2 → �
�

�
�

� , we get

1 2 1
0 1 0
0 1–1

�

�

�
�
�

�

�

�
�
�

=

1 0 0
3 4 1 4 0

0 1
–

–1

�

�

�
�
�

�

�

�
�
�

A

Applying R3 → R3 + R2, R1 → R1 – 2R2, we have

1 0 1
0 1 0
0 0 1

�

�

�
�
�

�

�

�
�
�

=

–
–

– –

1 2 1 2 0
3 4 1 4 0
1 4 1 4 1

�

�

�
�
�

�

�

�
�
�

A

Now applying R1 → R1 – R3, we get

1 0 0
0 1 0
0 0 1

�

�

�
�
�

�

�

�
�
�

=

– –1
–

– –

1 4 3 4
3 4 1 4 0
1 4 1 4 1

�

�

�
�
�

�

�

�
�
�

A

Hence A–1 =

– –1
–

– –
.

1 4 3 4
3 4 1 4 0
1 4 1 4 1

�

�

�
�
�

�

�

�
�
�

EXERCISE 3.2

*+ Find the inverse of the following matrices:

1 0 2
0 1 1
2 1 2 1
3 2 1 6

–1
–1

.

�

�

�
�
�
�

�

�

�
�
�
�

6	"+  

2 1
1 1

2 3 0
3 0 1

–1 –1
–5 –3

–1
–1

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

,+

7 6 2
2 4

3 3 8
–1 .
�

�

�
�
�

�

�

�
�
�

6	"+  
1

130

4 20
20 50

20

–42
–30

–9 –3

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

-+

1 1 3
1 3 –3
–2 –4 –4

.
�

�

�
�
�

�

�

�
�
�

6	"+  
1
4

12 4 6
–5 –1 –3
–1 –1 –1

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

/+

2 4 3
3 6 5
2 5 2
4 5 14

�

�

�
�
�
�

�

�

�
�
�
�
.

6	"+  

–23 – –
–12
–2
–2

29 64 5 18 5
10 26 5 7 5
1 6 5 2 5
2 3 5 1 5

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�
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0+

1 2
1 2

2 1

–1
–1

–1
.

�

�

�
�
�

�

�

�
�
�

6	"+  
1
14

3 5
5 3

5 3

–1
–1

–1

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1+

4 1
2 0
1 3

–1
–1

–1
.

�

�

�
�
�

�

�

�
�
�

6	"+  
–1
–7
–2

2 1
11 6
3 2

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

2+

i i–1

–1
.

2
2 0 2

0 1

�

�

�
�
�

�

�

�
�
�

6	"+  
0 1 4 1 2

3 4 1 2
0 1 4 1 2

–
–1 �  � i i
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

3+

1 2 3 1
1 3 3 2
2 4 3 3
1 1 1 1

�

�

�
�
�
�

�

�

�
�
�
�
. 6	"+

1 1 0
1 2
0 1 1

3 3

–2
–2 –3

–1
–2 –2

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

4+

2
5

4 1 2
0 1 0 1

–6 –2 –3
–13 –4 –7

–1
.

�

�

�
�
�
�

�

�

�
�
�
�

6	"+

–2
–1

–4 –3
–1 –2

1 0 1
1 0 2

1 1
0 2

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

*5+

0 1 3
1 2 3
3 1 1

�

�

�
�
�

�

�

�
�
�
. 6	"+

1
2

1 1
6

5 1

–1
–8 –2

–3

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

**+

2 1 2
2 2 1
1 2 2

�

�

�
�
�

�

�

�
�
�
. 6	"+

1
5

2 2
2 2

3 2

–3
–3

–3

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

*,+

1 2
3 0

0 1

–2
–1

–2
.

�

�

�
�
�

�

�

�
�
�

6	"+

3 2 6
1 1 2
2 2 5

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

3.12  RANK OF A MATRIX

A positive number r is said to be the rank of matrix A if matrix A satisfies the following conditions.
(i) There exists at least one non-zero minor of order r.

(ii) Every minor of order (r + 1) and higher, if any, vanishes.
The rank of matrix A is denoted by  ρ(A) or r (A).

Or

The rank of a matrix or a linear map is the dimension of the image of the matrix or the linear
map corresponding to the number of linearly independent rows or columns of the matrix or to
the number of non-zero singular values of the map.
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��"����� (a) Rank of A and A′ is same.
(b) For a rectangular matrix A of order m × n, rank of A ≤ min (m, n) i.e., rank cannot be

exceed the smaller of m and n.
������������	
���� The determinant corresponding to any r × r submatrix of m × n matrix.
A is called a minor of order r of the matrix A of order m × n.

)���$��+� If A = 
2 3 5
1 2 3
�
��

�
��

, then 
2 3
1 2

3 5
2 3

2 5
1 3

, ,  are all minors of order 2 of A.

3.12.1  Normal Form
The normal form of matrix A of rank r is one of the forms

Ir, 
I

I
Ir

r
r0

0 0
0

0
�
��

�
��

�
��
�
��

, ,

where Ir is an identity matrix of order r. This form can be obtained by the application of both
elementary row and column operations on any given matrix A.

3.12.2  Procedure to Obtain Normal Form

Consider Am × n = Im × m· Am × n· In × n

Apply elementary row operations on A and on the prefactor Im × m and apply elementary
column operations on A and on the postfactor In × n, such that A on the L.H.S. reduces to normal
form. Then Im × m reduces to Pm × m and In × n reduces to Qn × n; resulting in N = PAQ.

Here P and Q are non-singular matrices. Thus for any matrix of rank r, there exist non-
singular matrices P and Q such that

PAQ = N = 
�	 �

� �

�
��

�
��

.

3.12.3  Echelon Form

A matrix A = [aij] is an echelon matrix or is said to be in echelon form, if the number of zeros
preceding the first non-zero entry (known as distinguished elements) of a row increases row by
row until only zero rows remain.

In row reduced echelon matrix, the distinguished elements are unity and are the only
non-zero entry in their respective columns.

“The number of non-zero rows in an Echelon form is the rank”.
)���$��� *+ Find the rank of matrix

2 3 4
3 1 2
3 2 3 4

4 0 5

–2
–2

–2

.

�

�

�
�
�
�

�

�

�
�
�
�

(U.P.T.U., 2006)

���+� Let A =

2 3 4
3 1 2
3 2 3 4

4 0 5

–2
–2

–2

�

�

�
�
�
�

�

�

�
�
�
�
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R1 → R1 + R4, R2 → R2 – R3, we get

A ~

0 7 9
0
3 2 3 4

4 0 5

–2
–4 –2 –2

–2

�

�

�
�
�
�

�

�

�
�
�
�

R3 → R3 + R4

� ~

0 7 9
0
1 6 3 9

4 0 5

–2
–4 –2 –2

–2

�

�

�
�
�
�

�

�

�
�
�
�

R1 ↔ R3

~

1 6 3 9
0
0 7 9

4 0 5

–4 –2 –2
–2

–2

�

�

�
�
�
�

�

�

�
�
�
�

R4 → R4 + 2R1

A ~

1 6 3 9
0
0 7 9
0 16 6 23

–4 –2 –2
–2

�

�

�
�
�
�

�

�

�
�
�
�

Now, |A| =

–4 –2 –2
–2 –97

16 6 23
(Expanded w.r. to first column)

= – 4 (–46 –54) + 2 (161 – 144) –2 (42 + 32)
= 400 + 34 – 148 = 286

⇒ |A| ≠ 0
Thus there is a non-singular minor of order 4.
Hence ρ(A) = 4.

)���$��� ,+ Find the rank of matrix A by echelon form.

A =

2 3
1
3 1 3
6 3 0

–1 –1
–1 –2 –4

–2
–7

.

�

�

�
�
�
�

�

�

�
�
�
�

(U.P.T.U., 2005)

���+� Applying R1 ↔ R3, we get

A ~

1
2 3
3 1 3
6 3 0 7

–1 –2 –4
–1 –1

–2
−

�

�

�
�
�
�

�

�

�
�
�
�
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R2 → R2 – 2R1, R3 → R3 – 3R1, R4 → R4 – 6R1

A ~

1
0 5 3 7
0 4 9 10
0 9 12 17

–1 –2 –4�

�

�
�
�
�

�

�

�
�
�
�

Applying R3 → R3 – 
4
5

 R2, R4 → R4 – 
9
5

 R2, we get

~

1
0 5 3 7
0 0 33 5 22 5
0 0 33 5 22 5

–1 –2 –4�

�

�
�
�
�

�

�

�
�
�
�

In the last, we apply R4 → R4 – R3, we get

A ~

1
0 5 3 7
0 0 33 5 22 5
0 0 0 0

–1 –2 –4�

�

�
�
�
�

�

�

�
�
�
�

Here the number of non-zero rows = 3
Therefore ρ(A) = 3

)���$��� -+ Find the rank of following matrix:

A =

3 4 5 6 7
4 5 6 7 8
5 6 7 8 9

10 11 12 13 14
15 16 17 18 16

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

.

���+� Applying R1 → R1 – R2 and then again R1 → – R1

A ~

1 1 1 1 1
4 5 6 7 8
5 6 7 8 9
10 11 12 13 14
15 16 17 18 16

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

R2 → R2 – 4R1, R3 → R3 – 5R1, R4 → R4 – 10R1, R5 → R5 – 15R1

~

1 1 1 1 1
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�
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Applying R3 → R3 – R2, R4 → R4 – R2, R5 → R5 – R2, we get

A ~

1 1 1 1 1
0 1 2 3 4
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

Here number of non-zero rows = 2
Therefore ρ(A) = 2.

)���$��� /+ Reduce the matrix A to its normal form, where

A =

0 1
1 0 1 1
3 1 0 2
1 1 0

–3 –1

–2

�

�

�
�
�
�

�

�

�
�
�
�
 and hence find the rank of A.

���+� Applying R1 ↔ R2, we have

A ~

1 0 1 1
0 1
3 1 0 2
1 1 0

–3 –1

–2

�

�

�
�
�
�

�

�

�
�
�
�

R3 → R3 – 3R1, R4 → R4 – R1

~

1 0 1 1
0 1
0 1
0 1

–3 –1
–3 –1
–3 –1

�

�

�
�
�
�

�

�

�
�
�
�

R3 → R3 – R2, R4 → R4 – R2

~

1 0 1 1
0 1
0 0 0 0
0 0 0 0

–3 –1
�

�

�
�
�
�

�

�

�
�
�
�

C3 → C3 – C1, C4 → C4 – C1

A ~

1 0 0 0
0 1
0 0 0 0
0 0 0 0

–3 –1
�

�

�
�
�
�

�

�

�
�
�
�
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C3 → C3 + 3C2, C4 → C4 + C2, we get

A ~

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0
0 0
2

�

�

�
�
�
�

�

�

�
�
�
�
=
�
��

�
��

I

Hence ρ (A) = 2.

)���$��� 0+ Reduce the matrix A to its normal form, when

A =

1 2 4
2 4 3 4
1 2 3 4

6

–1

–1 –2 –7

.

�

�

�
�
�
�

�

�

�
�
�
�

(U.P.T.U., 2001, 2004)

Hence, find the rank of A.

���+ A =

1 2 4
2 4 3 4
1 2 3 4

6

–1

–1 –2 –7

�

�

�
�
�
�

�

�

�
�
�
�

Applying R2 → R2 – 2R1, R3 → R3 – R1, R4 → R4 + R1

~

1 2 4
0 0 5
0 0 4 0
0 0 5

–1
–4

–3

�

�

�
�
�
�

�

�

�
�
�
�

Applying C2 → C2 – 2C1, C3 → C3 + C1, C4 → C4 – 4C1

~

1 0 0 0
0 0 5
0 0 4 0
0 0 5

–4

–3

�

�

�
�
�
�

�

�

�
�
�
�

C3 ↔ C2

~

1 0 0 0
0 5 0
0 4 0 0
0 5 0

–4

–3

�

�

�
�
�
�

�

�

�
�
�
�

R3 → R3 – 
4
5

 R2, R4 → R4 – R2

~

1 0 0 0
0 5 0
0 0 0 16 5
0 0 0 1

–4
�

�

�
�
�
�

�

�

�
�
�
�
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C3 ↔ C4

~

1 0 0 0
0 5 0
0 0 16 5 0
0 0 1 0

–4
�

�

�
�
�
�

�

�

�
�
�
�

R2 → R2 + 4R4,

~

1 0 0 0
0 5 0 0
0 0 16 5 0
0 0 1 0

�

�

�
�
�
�

�

�

�
�
�
�

Applying R4 → R4 – 
16
5

 R3, then R2 → 
1
5

 R2 and R3 → 
5

16
 R3.

~

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

0
0 0
3

�

�

�
�
�
�

�

�

�
�
�
�
=
�
��

�
��

I

ρ (A) = 3.

)���$���1+ Find the non-singular matrices P and Q such that the normal form of A is PAQ
where

A =

1 3 6
1 4 5 1
1 5 4 3

3 4

–1
.

�

�

�
�
�

�

�

�
�
�

×

 Hence, find its rank.

���+� Here we consider
A3 × 4 = I3 × 3· A3 × 4· I4 × 4 As Am × n = Im × m· Am × n· In × n

1 3 6
1 4 5 1
1 5 4 3

–1�

�

�
�
�

�

�

�
�
�

=
1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

A

Applying R2 → R2 – R1, R3 → R3 – R1 (pre), we get

1 3 6
0 1 2
0 2 4

–1
–1
–2

�

�

�
�
�

�

�

�
�
�

=

1 0 0
1 0
0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

–1
–1

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

A

R3 → R3 – 2R1 (pre)

1 3 6
0 1 2
0 0 0 0

–1
–1

�

�

�
�
�

�

�

�
�
�

=

1 0 0
1 0

1 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

–1
–2

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

A
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Applying C2 → C2 – 3C1, C3 → C3 – 6C1, C4 → C4 + C1 (post), we get

1 0 0 0
0 1 2
0 0 0 0

–1
�

�

�
�
�

�

�

�
�
�

=

1 0 0
1 0

1 1

1 1
0 1 0 0
0 0 1 0
0 0 0 1

–1
–2

–3 –6
�

�

�
�
�

�

�

�
�
�
×

�

�

�
�
�
�

�

�

�
�
�
�

A

C3 → C3 + C2, C4 → C4 – 2C2 (post)

1 0 0 0
0 1 0 0
0 0 0 0

�

�

�
�
�

�

�

�
�
�

=

1 0 0
1 0

1 1

1 7
0 1 1
0 0 1 0
0 0 0 1

–1
–2

–3 –9
–2

�

�

�
�
�

�

�

�
�
�
×

�

�

�
�
�
�

�

�

�
�
�
�

A

Therefore, I2 = N = PAQ, where

P =

1 0 0
1 0

1 1

1 7
0 1 1
0 0 1 0
0 0 0 1

–1
–2

,

–3 –9
–2

�

�

�
�
�

�

�

�
�
�

=

�

�

�
�
�
�

�

�

�
�
�
�

Q

and Rank of A = 2.

)���$���2+ Find non-singular matrices P and Q such that PAQ is the normal form where

A =

1 2
4 2 2
2 2 0

3 4

–1 –1
–1
–2

.
�

�

�
�
�

�

�

�
�
�

×  

���+� Here we consider
A3 × 4 = I3 × 3· A3 × 4· I4 × 4 As Am × n = Im × m Am × n In × n

1 2
4 2 2
2 2 0

–1 –1
–1
–2

�

�

�
�
�

�

�

�
�
�

=
1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

A

Applying R2 → R2 – 4R1, R2 → R2 – 2R1 (pre), we get

1 2
0 6 9 6
0 4 6 2

–1 –1
–
–

  �

�

�
�
�

�

�

�
�
�

=
1 0 0
4 1 0
2 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

–
–

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

A

Applying C2 → C2 + C1, C3 → C3 – 2C1, C4 → C4 + C1 (post)

1 0 0 0
0 6 6
0 4 2

–9
–6

�

�

�
�
�

�

�

�
�
�

=

1 0 0
1 0
0 1

1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

–4
–2

–2
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

A
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R2 → 
1
3

 R2, R3 → 
1
2

 R3 (pre)

1 0 0 0
0 2 2
0 2 1

–3
–3

�

�

�
�
�

�

�

�
�
�

=

1 0 0
4 3 1 3 0

0 1 2

1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

–
–1

–2
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

A

R3 → R3 – R2 (pre)

1 0 0 0
0 2 2
0 0 0

–3
–1

�

�

�
�
�

�

�

�
�
�

=

1 0 0
4
3

1
3

0

1 3 1 3 1 2

1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

–

–

–2�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

A

C3 ↔ C4 (post)

� � � �

� � �

� � �

��

��

�

�

�
�
�

�

�

�
�
�

=

1 0 0
4 3 1 3 0

1 3 1 3 1 2

1 1 1
0 1 0 0
0 0 0 1
0 0 1 0

– /
–

–2
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

A

C3 → C3 – C2, C4 → C4 + 
�

�
 C2 (post)

1 0 0 0
0 2 0 0
0 0 0–1

�

�

�
�
�

�

�

�
�
�

=

1 0 0
4 3 1 3 0

1 3 1 3 1 2

1 1 0 1 2
0 1 3 2
0 0 0 1
0 0 1 0

–
–

–
–1

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

A

Applying R2 → 
�

�
 R2, R3 → (– 1) R3 (pre)

1 0 0 0
0 1 0 0
0 0 1 0

�

�

�
�
�

�

�

�
�
�

=

1 0 0
2 3 1 6 0
1 3 1 3 1 2

1 1 0 1 2
0 1 3 2
0 0 0 1
0 0 1 0

–
– –

–
–1

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

A

⇒ I3 = PAQ

Therefore, P =

1 0 0
2 3 1 6 0
1 3 1 3 1 2

1 1 0 1 2
0 1 3 2
0 0 0 1
0 0 1 0

–
– –

,

–
–1

�

�

�
�
�

�

�

�
�
�

=

�

�

�
�
�
�

�

�

�
�
�
�

Q

And ρ (A) = 3.

����� In such problems other Ans. is possible.
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)���$��� 3+ Find the rank of

A =

6 1 3 8
16 4 12 15
5 3 3 8
4 2 6 –1

.

�

�

�
�
�
�

�

�

�
�
�
�

���+� Applying C1 ↔ C2, C3 → 
�

�
 C3

A ~

1 6 1 8
4 16 4 15
3 5 1 8
2 4 2 –1

�

�

�
�
�
�

�

�

�
�
�
�

By C2 → C2 – 2C1, C3 → C3 – C1, we have

~

1 4 0 8
4 8 0 15
3 4
2 0 0

–1 –2
–1

�

�

�
�
�
�

�

�

�
�
�
�

By R2 → R2 – 2R1

~

� � � 	

� � �

� �

� � �

��

�� ��

��

�

�

�
�
�
�

�

�

�
�
�
�

R3 → R3 – R2, R4 → R4 – R2, we get

~

1 4 0 8
2 0 0
1 5
0 0 0 0

–1
–1 –2

�

�

�
�
�
�

�

�

�
�
�
�

⇒  |A| = 0 i.e., minor of order 4 = 0
Next, we consider a minor of order 3

∴
1 4 0
2 0 0
1 –1 –2

= 1 (0 – 0) – 4 (– 4 – 0) + 0 = 16 ≠ 0

∴ ρ  (A) = 3.

)���$��� 4+ Find the value of a such that the rank of A is 3, where

A =

1 1 0
4 4 1

2 2 2
9 9 3

–1
–3

.
a

a

�

�

�
�
�
�

�

�

�
�
�
�
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���+ A =

1 1 0
4 4 1

2 2 2
9 9 3

–1
–3

a
a

�

�

�
�
�
�

�

�

�
�
�
�

Applying R2 → R2 – 4R1, R3 → R3 – 2R1, R4 → R4 – 9R1, we have

A ~

1 1 0
0 0 1 1

2 0 4 2
0 0 9 3

–1

–a

a+

�

�

�
�
�
�

�

�

�
�
�
�

Again R3 → R3 – 4R2, R4 → R4 – 3R2

~

1 1 0
0 0 1 1

2 0 0
0 0 6 0

–1

– –2a
a+

�

�

�
�
�
�

�

�

�
�
�
�

R4 ↔ R3

~

1 1 0
0 0 1 1
0 0 6 0

2 0 0

–1

– –2
a

a
+

�

�

�
�
�
�

�

�

�
�
�
�

��"�"�� (i) If a = 2, |A| = 1·0·8. (– 2) = 0, rank of A = 3.
(ii) If a = – 6, no. of non-zero rows is 3, rank of A = 3.

)���$���*5+� For which value of ‘b’ the rank of the matrix.

A =

1 5 4
0 3 2

13 10b

�

�

�
�
�

�

�

�
�
�

 is 2. (U.P.T.U., 2008)

���+� Since the rank of matrix A is 2 so the minor of 3rd order must be zero i.e., |A| = 0.

Thus

1 5 4

0 3 2

13 10b

= 0

(30 – 26) – 5 (0 – 2b) + 4 (0 – 3b) = 0
⇒ 4 + 10b – 12b = 0 ⇒ 4 – 2b = 0
Hence b = 2
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EXERCISE 3.3

Find the rank of the following matrix by reducing normal form:

*+

1 2 3
4 1 2 1
3 1 2
1 2 0 1

–1

–1
.

�

�

�
�
�
�

�

�

�
�
�
�

(U.P.T.U., 2001) ,+

1 2 9
1 0 1
3 1

1 0 9
3 1 0 9

–3
–1

–1 –1
–1

.

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

[6	"+� 4]

[6	"+ ρ(A) = 3]

-+

1 2 3
1 4 2
2 6 5

�

�

�
�
�

�

�

�
�
�
. [6	"+� 2] /+

9 7 3 6
5 4 1
6 8 2 4

–1 .
�

�

�
�
�

�

�

�
�
�

[6	"+� 3]

0+

1 2 3
4 1 2 1
3 1 2
1 2 0 1

–1

–1
.

�

�

�
�
�
�

�

�

�
�
�
�

[6	"+� 3] 1+

0 0 0 0 0
0 1 2 3 4
0 2 3 4 1
0 3 4 1 2

�

�

�
�
�
�

�

�

�
�
�
�
. [6	"+� 3]

(U.P.T.U. special exam., 2001)

2+

1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

�

�

�
�
�
�

�

�

�
�
�
�
. [6	"+� 3] 3+

–1 –2

–1 –1
.

2
1 2 1

0

�

�

�
�
�

�

�

�
�
�

[6	"+� 3]

4+

1 2 1 0
3 2 1 2
2 2 5
5 6 3 2
1 3

–1

–1 –3

.

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

[6	"+� 3] *5+

1 1 2
1 2 3
0 –1 –1

.
�

�

�
�
�

�

�

�
�
�

[6	"+� 2]

Find the rank of the following matrix.

**+

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

�

�

�
�
�
�
�

�

�

�
�
�
�
�

. [6	"+� 3] *,+

2 1 3 4
0 3 4 1
2 3 7 5
2 5 11 6

�

�

�
�
�
�

�

�

�
�
�
�
. [6	"+� 3]

*-+

3 0
0 2 2 1
1 1
0 1 2 1

–2 –1 –7
–5

–2 –3 –2
–6

.

�

�

�
�
�
�

�

�

�
�
�
�

[6	"+� 4] */+

1 2 3
2 3 1
3 1 2

�

�

�
�
�

�

�

�
�
�
. [6	"+� 3]

*0+

1 2 4
2 4 3 5

2 6

–1

–1 –7
.

�

�

�
�
�

�

�

�
�
�

[6	"+� 2] *1+

0
0
1 0

i i

i i

–
– –
–3

.
�

�

�
�
�

�

�

�
�
�

[6	"+� 3]
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*2+

3
2

3 1

–1 –2
–6 –4

–2
.

�

�

�
�
�

�

�

�
�
�

[6	"+� 2] *3+

0 2 3
0 4 6
0 6 9

�

�

�
�
�

�

�

�
�
�
. [6	"+� 1]

*4+

1 2 3 1
2 4 6 2
1 2 3 2

�

�

�
�
�

�

�

�
�
�
. [6	"+ 2] ,5+

4 2 3
8 4 6

–2 –1 –15
.

�

�

�
�
�

�

�

�
�
�

[6	"+� 1]

Find the Echelon form of the following matrix and hence find the rank.

,*+

1 3
2 2
3 1 2

–2
–1 .

�

�

�
�
�

�

�

�
�
�

[6	"+� 3] ,,+

1 2
1

6 3

–5
–4 –6

–4
.

�

�

�
�
�

�

�

�
�
�

[6	"+� 2]

,-+

3 4 5 6 7
4 5 6 7 8
5 6 7 8 9

10 11 12 13 14
15 16 17 18 19

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

. [6	"+� 2] ,/+

2 3
1
3 1 3
6 3 0

–1 –1
–1 –2 –4

–2
–7

.

�

�

�
�
�
�

�

�

�
�
�
�

[6	"+� 3]

,0+

5 6 7 8
6 7 8 9

11 12 13 14
16 17 18 19

�

�

�
�
�
�

�

�

�
�
�
�
. [6	"+� 3] ,1+

–2 –1 –3 –1
–3 –1

–1

.
1 2
1 0 1 1
0 1 1

�

�

�
�
�
�

�

�

�
�
�
�

[6	"+� 3]

,2+

5 3 14 4
0 1 2 1
1 2 0–1

.
�

�

�
�
�

�

�

�
�
�

[6	"+� 3] ,3+

0 1 3
0 4 3
0 0 2 1
0 5 4

–2
–1

–3

.

�

�

�
�
�
�

�

�

�
�
�
�

[6	"+� 2]

,4+ Determine the non-singular matrices P and Q such that PAQ is in the normal form for
A. Hence find the rank of A.

A = 

3 2 5
5 1 4
1 11

–1
–2

–4 –19
.

�

�

�
�
�

�

�

�
�
�

6	"+ P Q=

�

�

�
�
�
�

�

�

�
�
�
�

=

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

=

0 0 1
0 1 3 5 3
1
2

1 3 1 6

1 4 17
9

119
9

217
0 1 7

7 7
0 0

17
0

0 0 0
1
31

2–

–

–1 –1

–1 rank

(other forms are also possible)
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-5+ A = 

2 1
3 1 2
1 1 1 2

–3 –6
–3 .

�

�

�
�
�

�

�

�
�
�

(U.P.T.U., 2002)

6	"+ P Q=

�

�

�
�
�
�

�

�

�
�
�
�

=

�

�

�
�
�
�

�

�

�
�
�
�

=

�

�

�
�
�
�
�

�

�

�
�
�
�
�

0 0 1
0 2

14
1
28

9
28

1 4 0
0 1 0
0 0 1
0 0 0 1

3–1
–3

,

–1
–5

–2
and rank

-*+ A = 

1 1 2
1 2 3
0 –1 –1

.
�

�

�
�
�

�

�

�
�
�

6	"+ P Q=
�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1 0 0
1 0
1 1

1
0 1
0 0 1

–1
–1

,
–1 –1

–1

-,+ A = 

1 2 3
2 1 3
3 0 4 1

–2
–2 .

�

�

�
�
�

�

�

�
�
�

6	"+ P Q=
�

�

�
�
�

�

�

�
�
�

=

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

=
1 0 0

1 0
1

1 1 3 3
1
3

0 1 6 5 6 7 6
0 0 1 0
0 0 0 1

2–2
–1 –1

,

–4/ –

– – rank

3.13  SYSTEM OF LINEAR EQUATIONS (NON-HOMOGENEOUS)

Let us consider the following system of m linear equations in n unknowns x1, x2, ....., xn:

a x a x a x b

a x a x a x b

a x a x a x b

n n

n n

m m mn n n

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =
+ + + =

=
+ + + =

�

�
��

�
�
�

....
....

.... .... .... ...
....

...(i)

In matrix notation these equations can be put in the form
AX = B ...(ii)

where A =

a a a

a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

....

....
.... .... ....

�

�

�
�
�
�

�

�

�
�
�
�

X =

x

x

x

B

b

b

bn n

1

2

1

2

� �

�

�

�
�
�
�

�

�

�
�
�
�

=

�

�

�
�
�
�

�

�

�
�
�
�

and
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6�
��	���� ������� The augmented matrix [A : B] or Ã of system (i) is obtained by
augmenting A by the column B.

i.e., Ã = [A : B] = 

a a a b

a a a b

a a a b

n

n

m m mn n

11 12 1 1

21 22 2 2

1 2

� �

� �

� � � � � �

�

�

�

�
�
�
�

�

�

�
�
�
�

3.13.1  Conditions for Solution of Linear Equations [U.P.T.U., (C.O.), 2003]

��	"�"��	��� If the ranks of A and augmented matrix [A : B] are equal, then the system is said to
be consistent otherwise inconsistent. There are following conditions for exist the solution of any
system of linear equations :

 (i) If ρ(A) = ρ[A : B] = r = n (where n is the number of variables) then the system has a
unique solution.

(ii) If ρ(A) = ρ[A : B] = r < n.

then the system has infinitely many solutions in terms of remaining n – r unknowns which are
arbitrary.

If n – r = 1 (then solution is one variable independent solution and let equal to K).
n – r = 2 (then solution is two variable independent solution and let variables equal to K1, and
K2) and so on.

#�&���� "������	�� It is a solution where all xi are zero i.e., x1 = x2 ... = xn = 0.

)���$��� *+ Check the consistency of the following system of linear nonhomogeneous
equations and find the solution, if exists: (U.P.T.U., 2007)

7x1 + 2x2 + 3x3 = 16

2x1 + 11x2 + 5x3 = 25

x1 + 3x2 + 4x3 = 13.

���+� Here, A =

7 2 3
2 11 5
1 3 4

16
25
13

1

2

3

�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

, ,X

x

x

x

B

The augmented matrix [A : B] =

7 2 3 16
2 11 5 25
1 3 4 13

�

�

�

�

�

�
�
�

�

�

�
�
�

Applying R1 ↔ R3, we get

[A : B] ~
1 3 4 13
2 11 5 25
7 2 2 16

�

�

�

�

�

�
�
�

�

�

�
�
�

Again R2 → R2 – 2R1, R3 → R3 – 7R1

~
1 3 4 13
0 5
0

�

�

�

–3 –1
–19 –25 –75

�

�

�
�
�

�

�

�
�
�
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R3 → R3 + 
19
5

 R2

~

1 3 4 13

0 5

0 0
5

394
5

�

�

�

–3 –1
–182

–

�

�

�
�
�
�
�

�

�

�
�
�
�
�

⇒ ρ (A) = ρ [A : B] = 3
⇒ r = n = 3. ∴  The system is consistent.
The given system has a unique solution.
Now from AX = B

1 3 4

0 5

0 0
5

1

2

3

–3
–182

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

x

x

x

=

13

5

–1
–394

�

�

�
�
�
�

�

�

�
�
�
�

⇒

x x x

x x

x

1 2 3

2 3

3

3 4

5 3

5

+ +�

�

�
�
�
�
�

�

�

�
�
�
�
�

–
–182

=

13

5

–1
–394

�

�

�
�
�
�
�

�

�

�
�
�
�
�

⇒ x1 + 3x2 + 4x3 = 13 ...(i)

5x2 – 3x3 = –1 ...(ii)

182
5 3x =

394
5

...(iii)

On solving these equations, we get the final solution

x1 =
95
91

100
91

197
912 3, , .  x x= =

)���$���,+ Test the consistency of following system of linear equations and hence find the
solution. (U.P.T.U., 2005)

4x1 – x2 = 12
– x1 + 5x2 – 2x3 = 0

– 2x2 + 4x3 = – 8

���+� The augmented matrix [A : B] = 

4 0 12
5 0

0 4

–1
–1 –2

–2 –8

�

�

�

�

�

�
�
�

�

�

�
�
�

Applying R1 ↔ R2, we get

[A : B] ~

–1 –2
–1
–2 –8

5 0
4 0 12
0 4

�

�

�

�

�

�
�
�

�

�

�
�
�
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R2 → R2 + 4R1

~
–1 –2

–8
–2 –8

5 0
0 19 12
0 4

�

�

�

�

�

�
�
�

�

�

�
�
�

R1 → – R1, R3 → R3 + 
�

�

 R2,

~

1 2 0

0 19 12

0 0
60
19 19

–5

–8
–128

�

�

�

�

�

�
�
�
�

�

�

�
�
�
�

∴ ρ (A) = ρ [A : B] = 3
i.e., r = n = 3 (The system is consistent).
Hence, there is a unique solution

⇒

–1 –5

–8

2

0 19

0 0
60
19

1

2

3

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

x

x

x

=

0

12

19
–128

�

�

�
�
�
�

�

�

�
�
�
�

⇒ x1 – 5x2 + 2x3 = 0 ...(i)

19x2 – 8x3 = 12 ...(ii)
60

19
3x

=
–128

19
...(iii)

⇒ x3 = –
32
15

putting the value of x3 in equation (ii), we get

19x2 – 8 –
32
15

�
��

�
�� = 12

⇒ 19x2 = 12
256
15

76
15

– –=

⇒ x2 =
–76

–
15 19

4
15×

=

and putting the values of x1, x2 in equation (i), we get

x1 – 5 −���
�
�� + −���

�
��

4
15

2
32
15

= 0

x1 + 
20
15

64
15

– = 0

⇒ x1 – 
44
15

= 0

⇒ x1 =
��

��

Hence, x1 =
44
15

, x2 = –
4

15
 and x3 = – .

32
15
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)���$��� -+ Solve
2x1 – 2x2 + 4x3 + 3x4 = 9

x1 – x2 + 2x3 + 2x4 = 6
2x1 – 2x2 + x3 + 2x4 = 3

x1 – x2 + x4 = 2
���+� The augmented matrix is

[A : B] =

2 4 3 9
1 2 2 6
2 1 2 3
1 0 1 2

–2
–1
–2
–1

�

�

�

�

�

�

�
�
�
�

�

�

�
�
�
�

R1 ↔ R2

~

1 2 2 6
2 4 3 9
2 1 2 3
1 0 1 2

–1
–2
–2
–1

�

�

�

�

�

�

�
�
�
�

�

�

�
�
�
�

R2 → R2 – 2R1, R4 → R4 – R1, R3 → R3 – 2R1

~

1 1 2 2 6
0 0 0
0 0
0 0

−�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�

–1 –3
–3 –2 –9
–2 –1 –4

R2 → (– 1) R2, R3 → (– 1) R3, R4 → (– 1) R4

~

1 2 2 6
0 0 0 1 3
0 0 3 2 9
0 0 2 1 4

–1 �

�

�

�

�

�

�
�
�
�

�

�

�
�
�
�

R3 → R3 – R4

~

1 2 2 6
0 0 0 1 3
0 0 1 1 5
0 0 2 1 4

–1 �

�

�

�

�

�

�
�
�
�

�

�

�
�
�
�

R3 ↔ R2

~

1 2 2 6
0 0 1 1 5
0 0 0 1 3
0 0 2 1 4

–1 �

�

�

�

�

�

�
�
�
�

�

�

�
�
�
�
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R4 ↔ R3

~

1 2 2 6
0 0 1 1 5
0 0 2 1 4
0 0 0 1 3

–1 �

�

�

�

�

�

�
�
�
�

�

�

�
�
�
�

R3 → R3 – 2R2

~

1 2 2 6
0 0 1 1 5
0 0 0 1
0 0 0 1 3

1 2 2 6
0 0 1 1 5
0 0 0 1 6
0 0 0 1 3

3 3

–1

–6
~

–1

–

�

�

�

�

�

�

�

�

−

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

→R R� 

R4 → R4 – R3 and then R4 → (– 1) R4

~

1 2 2 6
0 0 1 1 5
0 0 0 1 6
0 0 0 0 3

–1 �

�

�

�

�

�

�
�
�
�

�

�

�
�
�
�

Hence, ρ (A) = 3 and ρ [A : B] = 4 ⇒  ρ (A) ≠ ρ [ A : B].
So the given system is inconsistent and therefore it has no solution.

)���$��� /+ Investigate for what values of λ, µ the equations
x + y + z = 6, x + 2y + 3z = 10, x + 2y + λz = µ

have (i) no solution (ii) a unique solution (iii) an infinity of solutions. (U.P.T.U., 2001)
���+� The augmented matrix

[A : B] =

1 1 1 6
1 2 3 10
1 2

�

�

�λ µ

�

�

�
�
�

�

�

�
�
�

R2 → R2 – R1, R3 → R3 – R1

~

1 1 1 6
0 1 2 4
0 1 1 6

�

�

�λ µ– –

�

�

�
�
�

�

�

�
�
�

R3 → R3 – R1

~

1 1 1 6
0 1 2 4
0 0 3 10

�

�

�λ µ– –

�

�

�
�
�

�

�

�
�
�

(i) For no solution ρ (A) ≠ ρ [A; B] it is only possible when λ = 3.
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(ii) For unique solution ρ (A) = ρ [A � B] it is only possible when λ – 3 ≠ 0 i.e., λ ≠ 3 and
µ ≠ 10.

(iii) For infinite number of solutions ρ (A) = ρ [A : B] = r < n it is only possible when
λ = 3 and µ = 10.

)���$��� 0+ Show that the equations
x + y + z = 6

x + 2y + 3z = 14
x + 4y + 7z = 30

are consistent and solve them.
���+� The augmented matrix is

[A : B] =

1 1 1 6
1 2 3 14
1 4 7 30

�

�

�

�

�

�
�
�

�

�

�
�
�

R2 → R2 – R1, R3 → R3 – R1

~

1 1 1 6
0 1 2 8
0 3 6 24

�

�

�

�

�

�
�
�

�

�

�
�
�

R3 → R3 – 3R2

~

1 1 1 6
0 1 2 8
0 0 0 0

�

�

�

�

�

�
�
�

�

�

�
�
�

Hence, ρ (A) = ρ [A : B] = 2
i.e., r = 2 < 3 (n = 3)
∴ n – r = 3 – 2 = 1 (one variable independent solution).
The system is consistent and have infinitely solutions.
Now AX = B

∴
1 1 1
0 1 2
0 0 0

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

y

z
=

6
8
0

�

�

�
�
�

�

�

�
�
�

x + y + z = 6 ...(i)
y + 2z = 8 ...(ii)

Let z = k
Putting z = k in (ii), we get

y + 2k = 8 ⇒ y = 8 – 2k

From (i) x + 8 – 2k + k = 6 ⇒ x = k – 2
Therefore, x = k – 2, y = 8 – 2k and z = k.   6	"+
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�������� 	
� Solve
3x + 3y + 2z = 1

x + 2y = 4
10y + 3z = – 2

2x – 3y – z = 5
���
 The augmented matrix is

[A : B] =

3 3 2 1
1 2 0 4
0 10 3 2
2 3 1 5

:
:
:
:

−
− −

L

N

M
M
M
M

O

Q

P
P
P
P

R1 ↔ R3

~

1 2 0 4
3 3 2 1
0 10 3 2
2 3 1 5

:
:
:
:

−
− −

L

N

M
M
M
M

O

Q

P
P
P
P

R2 → R2 – 3R1, R4 → R4 – 2R1

~

1 2 0 4
0 3 2 11
0 10 3 2
0 7 1 3

:
:
:
:

− −
−

− − −

L

N

M
M
M
M

O

Q

P
P
P
P

R3 → R3 + 
10
3

R2, R4 → R4 – 
7
3

R2

~

1 2 0 4

0 3 2 11

0 0
29
3

116
3

0 0
17
3

68
3

:

:

:

:

− −
−

−

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

R3 → 
3

29
R3, R4 → 

3
17

R4

~

1 2 0 4
0 3 2 11
0 0 1 4
0 0 1 4

:
:
:
:

− −
−

−

L

N

M
M
M
M

O

Q

P
P
P
P

R4 → R4 + R3

~

1 2 0 4
0 3 2 11
0 0 1 4
0 0 0 0

:
:
:
:

− −
−

L

N

M
M
M
M

O

Q

P
P
P
P
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⇒ ρ (A) = ρ [A : B] = 3
i.e., r = 3 = n = number of variables.

Hence, the system is consistent and has unique solution.
Now, AX = B

⇒

1 2 0
0 3 2
0 0 1
0 0 0

−
L

N

MMMM

O

Q

PPPP

L

N
MMM

O

Q
PPP

x
y
z

=

4
11
4
0

−
−

L

N

MMMM

O

Q

PPPP

⇒ x + 2y = 4 ...(i)
– 3y + 2z = – 11 ...(ii)

z = – 4 ...(iii)
On solving (i) and (ii), we get x = 2, y = 1. Hence, x = 2, y = 1 and z = – 4.

Example 7. Apply the matrix method to solve the system of equations
x + 2y – z = 3

3x – y + 2z = 1
2x – 2y + 3z = 2

x – y + z = – 1 [U.P.T.U., 2003; U.P.T.U. (C.O.), 2003]
Sol. The augmented matrix is

[A : B] =

1 2 1 3
3 1 2 1
2 2 3 2
1 1 1 1

−
−
−
− −

L

N

MMMM

O

Q

PPPP

:
:
:
:

R2 → R2 – 3R1, R3 → R3 – 2R1, R4 → R4 – R1

~

1 2 1 3
0 7 5 8
0 6 5 4
0 3 2 4

−
− −
− −
− −

L

N

MMMM

O

Q

PPPP

:
:
:
:

R3 → R3 – 
6
7 R2, R4 → R4 – 

3
7 R2

~

1 2 1 3

0 7 5 8

0 0
5
7

20
7

0 0
1
7

4
7

−

− −

− −

L

N

MMMMMMM

O

Q

PPPPPPP

:

:

:

:
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R4 → R4 + 
1
5 R3

~

1 2 1 3

0 7 5 8

0 0 5
7

20
7

0 0 0 0

−

− −

L

N

MMMMM

O

Q

PPPPP

:

:

:

⇒ ρ (A) = ρ [A : B] = 3 = number of variables.
Hence, the system is consistent and has a unique solution.
Now, AX = B

⇒

1 2 1

0 7 5

0 0 5
7

0 0 0

−

−

L

N

MMMMM

O

Q

PPPPP

L

N
MMM

O

Q
PPP

x
y
z

=

3
8

20
7
0

−
L

N

MMMMMM

O

Q

PPPPPP
⇒ x + 2y – z = 3 ...(i)

– 7y + 5z = – 8 ...(ii)

5
7 z =

20
7  ⇒ z = 4

From (i) and (ii), we get, x = – 1, y = 4
⇒ x = – 1, y = 4, z = 4.

3.14   SYSTEM OF HOMOGENEOUS EQUATIONS

If in the set of equations (1) of (3.13), b1 = b1 = ... = bn = 0, the set of equation is said to be
homogeneous.

Result 1: If r = n, i.e., the rank of coefficient matrix is equal to the number of variables, then
there is always a trivial solution (x1 = x2 = ... = xn = 0).

Result 2: If r < n, i.e., the rank of coefficient matrix is smaller than the number of variables,
then there exist a non-trivial solution.

Result 3: For non-trivial solution always |A| = 0.

Example 8. Solve the following system of homogeneous equations:

x + 2y + 3z = 0
3x + 4y + 4z = 0

7x + 10y + 12z = 0

Sol. Here, A =

1 2 3
3 4 4
7 10 12

L

N
MMM

O

Q
PPP
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~

1 2 3
0 2 8
0 4 9

− −
− −

L

N
MMM

O

Q
PPP

R3 → R3 – 2R2

A ~
1 2 3
0 2 5
0 0 1

− −
L

N
MMM

O

Q
PPP

This shows rank (A) = 3 = number of unknowns. Hence, the given system has a trivial
solution i.e., x = y = z = 0.

Example 9. Solve
x + y – 2z + 3w = 0

x – 2y + z – w = 0
4x + y – 5z + 8w = 0
5x – 7y + 2z – w = 0

Sol. The coefficient matrix A is

A =

1 1 2 3
1 2 1 1
4 1 5 8
5 7 2 1

−
− −

−
− −

L

N

MMMM

O

Q

PPPP
R2 → R2 – R1, R3 → R3 – 4R1, R5 → R5 – 5R1

~

1 1 2 3
0 3 3 4
0 3 3 4
0 12 12 16

−
− −
− −

− −

L

N

MMMM

O

Q

PPPP
R3 → R3 – R2, R4 → R4 – 4R2

~

1 1 2 3
0 3 3 4
0 0 0 0
0 0 0 0

−
− −

L

N

MMMM

O

Q

PPPP
⇒ ρ (A) = 2 < 4 (n = 4), so there exist a non-trivial solution.
Now, AX = B

⇒

1 1 2 3
0 3 3 4
0 0 0 0
0 0 0 0

−
− −

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP

x
y
z
w

=

  
 
 
 

0
0
0
0

L

N

MMMM

O

Q

PPPP
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⇒ x + y – 2z + 3w = 0 ...(i)
– 3y + 3z – 4w = 0 ...(ii)

Choose z = k1, w = k2, then from (ii) and (i), we get

– 3y + 3k1 – 4k2 = 0 ⇒ y = k1 – 
4
3 k2

and x + k1 – 
4
3 k2 – 2k1 + 3k2 = 0 ⇒ x = k1 – 

5
3 k2.

where k1 and k2 are arbitrary constants.

Example 10. Find the value of λ such that the following equations have unique solution.
λx + 2y – 2z – 1 = 0, 4x + 2λy – z – 2 = 0, 6x + 6y + λz – 3 = 0 (U.P.T.U., 2003)
Sol. We have

λx + 2y – 2z = 1
4x + 2λy – z = 2
6x + 6y + λz = 3

The coefficient matrix A is

A =
λ

λ
λ

2 2
4 2 1
6 6

−
−

L

N
MMM

O

Q
PPP

For unique solution |A| ≠ 0

∴
λ

λ
λ

2 2
4 2 1
6 6

−
−

L

N
MMM

O

Q
PPP

= λ3 + 11λ – 30 ≠ 0

⇒ (λ – 2) (λ2 + 2λ + 15) ≠ 0 ⇒ λ ≠ 2.

Example 11. Determine b such that the system of homogeneous equations  (U.P.T.U., 2008)
2x + y + 2z = 0

x + y + 3z = 0
4x + 3y + bz = 0

has (i) trivial solution and (ii) non-trivial solution.
Sol. (i) For trivial solution, |A| ≠ 0

∴ |A| =

2 1 2
1 1 3
4 3 b

 ≠ 0

⇒ 2 (b – 9) – (b – 12) + 2 (3 – 4) ≠ 0

⇒ 2b – 18 – b + 12 – 2 ≠ 0 ⇒ b – 8 ≠ 0 ⇒ b ≠ 8.

(ii) For non-trivial solution, |A| = 0

⇒ b – 8 = 0 ⇒ b = 8.
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3.15  GAUSSIAN ELIMINATION METHOD

Gaussian elimination method is an exact method which solves a given system of equations in n
unknowns by transforming the coefficient matrix into an upper triangular matrix and then solve
for the unknowns by back substitution.

Example 12. Solve the system of equations:
2x1 + 3x2 + x3 = 9
x1 + 2x2 + 3x3 = 6
3x1 + x2 + 2x3 = 8 (U.P.T.U., 2006)

by Gaussian elimination method.
Sol. The augmented matrix is:

[A : B] =
2 3 1 9
1 2 3 6
3 1 2 8

:
:
:

L

N
MMM

O

Q
PPP

R1 ↔ R2

~

1 2 3 6
2 3 1 9
3 1 2 8

:
:
:

L

N
MMM

O

Q
PPP

R2 → R2 – 2R1, R3 → R3 – 3R1

~
1 2 3 6
0 1 5 3
0 5 7 10

:
:
:

− − −
− − −

L

N
MMM

O

Q
PPP

R3 → R3 – 5R2

~

1 2 3 6
0 1 5 3
0 0 18 5

:
:
:

− − −
L

N
MMM

O

Q
PPP

which is upper triangular form

∴ 18x3 = 5 ⇒ x3 = 
5

18
and x1 + 2x2 + 3x3 = 6 ...(i)

– x2 – 5x3 = – 3 ...(ii)

From (ii) x2 + 
25
18 = 3 ⇒ x2 = 3 – 

25
18  = 

29
18

again from (i), we have

x1 + 2 × 
29
18  + 3 × 

5
18 = 6 ⇒ x1 + 

73
18  = 6

⇒ x1 = 6 – 
73
18  = 

35
18

Hence, x1 =
35
18 , x2 = 

29
18  and x3 = 

5
18

.
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Example 13. Solve by Gaussian elimination method

10x1 – 7x2 + 3x3 + 5x4 = 6

– 6x1 + 8x2 – x3 – 4x4 = 5

3x1 + x2 + 4x3 + 11x4 = 2

5x1 – 9x2 – 2x3 + 4x4 = 7

Sol. The augmented matrix is

[A : B] =

10 7 3 5 6
6 8 1 4 5
3 1 4 11 2
5 9 2 4 7

−
− − −

− −

L

N

MMMM

O

Q

PPPP

:
:
:
:

R3 ↔ R2

~

10 7 3 5 6
3 1 4 11 2
6 8 1 4 5
5 9 2 4 7

−

− − −
− −

L

N

MMMM

O

Q

PPPP

:
:
:
:

R2 → R2 – 
3
10 R1, R3 → R3 + 

6
10 R1, R4 → R4 – 

1
2 R1

~

10 7 3 5 6

0
31
10

31
10

19
2

1
5

0
19
5

4
5

1
43
5

0
11
2

7
2

3
2

4

−

−

− −

L

N

MMMMMMMMMM

O

Q

PPPPPPPPPP

:

:

:

:

R2 → 
10
31 R2, R3 → 

5
19 R2, R3 → −

2
11 R3

~

10 7 3 5 6

0 1 1
95
31

2
31

0 1
4

19
5

19
43
19

0 1
7

11
3

11
8

11

−

−

− −

L

N

MMMMMMMMMM

O

Q

PPPPPPPPPP

:

:

:

:
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R3 → R3 – R2, R4 → R4 – R2

~

10 7 3 5 6

0 1 1
95
31

2
31

0 0
15
19

1960
589

1295
589

0 0
4

11
1138
341

270
341

−

− −

− − −

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

:

:

:

:

R3 → −
19
15 R3, R4 → −

11
4 R4

~

10 7 3 5 6

0 1 1
95
31

2
31

0 0 1
392
93

259
93

0 0 1
569
62

135
62

−

−

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

:

:

:

:

R4 → R4 – R3

~

10 7 3 5 6

0 1 1
95
31

2
31

0 0 1
392
93

259
93

0 0 0
923
186

923
186

−

−

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

:

:

:

:

Hence, the coefficient matrix is an upper triangular form

∴
923
186 x4 =

923
186  ⇒ x4 = 1

x3 + 
392
93 x4 = −

259
93  ⇒ x3 + 

392
93  = −

259
93

or x3 = − −
259
93

392
93  = −

651
93  = – 7

and x2 + x3 + 
95
31 x4 =

2
31  ⇒ x2 – 7 + 

95
31  = 

2
31

⇒ x2 –
122
31 = 

2
31  ⇒ x2 = 

2
31

122
31

124
31

+ =  = 4

Again  10x1 – 7x2 + 3x3 + 5x4 = 6

⇒  10x1 – 7 × 4 + 3 × (–7) + 5 × 1 = 6 ⇒ 10x1 – 28 – 21 + 5 = 6
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⇒  10x1 – 44 = 6 ⇒ 10x1 = 50 ⇒ x1 = 5
Therefore, x1 = 5, x2 = 4, x3 = – 7 and x4 = 1.

3.15.1  Gauss-Jordan Elimination Method

Apply elementary row operations on both A and B such that A reduces to the normal form. Then
the solution is obtained.

Example 14. Solve by Gauss-Jordan elimination method:
2x1 + x2 + 3x3 = 1

4x1 + 4x2 + 7x3 = 1
2x1 + 5x2 + 9x3 = 3

Sol.  Here A =

2 1 3
4 4 7
2 5 9

L

N
MMM

O

Q
PPP

,  B = 

1
1
3

L

N
MMM

O

Q
PPP

∴ Augmented matrix

[A : B] =

2 1 3 1
4 4 7 1
2 5 9 3

:
:
:

L

N
MMM

O

Q
PPP

R2 → R2 – 2R1, R3 → R3 – R1

~

2 1 3 1
0 2 1 1
0 4 6 2

:
:
:

−
L

N
MMM

O

Q
PPP

R3 → R3 – 2R2

~
2 1 3 1
0 2 1 1
0 0 4 4

:
:
:

−
L

N
MMM

O

Q
PPP

R1 → 
1
2 1R , R2 → 

1
2 2R ,  R3 → 

1
4 3R

~

1
1
2

3
2

1
2

0 1
1
2

1
2

0 0 1 1

:

:

:

−

L

N

MMMMMM

O

Q

PPPPPP
R1 → R1 − 

1
2 2R

~

1 0
5
4

3
4

0 1
1
2

1
2

0 0 1 1

:

:

:

−

L

N

MMMMMM

O

Q

PPPPPP
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R1 → R1 – 
5
4 3R , R2 → R2 – 

1
2 3R

~
1 0 0 1

2
0 1 0 1

0 0 1 1

:

:

:

−

−

L

N

MMMM

O

Q

PPPP
Hence, the matrix A is in normal form

∴ x1 = – 
1
2 , x2 = – 1, x3 = 1.

Example 15. Solve by Gauss-Jordan elimination method:
2x1 + 5x2 + 2x3 – 3x4 = 3
3x1 + 6x2 + 5x3 + 2x4 = 2

4x1 + 5x2 + 14x3 + 14x4 = 11
5x1 + 10x2 + 8x3 + 4x4 = 4

Sol. [A : B] =

2 5 2 3 3
3 6 5 2 2
4 5 14 14 11
5 10 8 4 4

−L

N

MMMM

O

Q

PPPP

:
:
:
:

R2 → R2 – R1, R3 → R3 – R2, R4 → R4 – R3

~

2 5 2 3 3
1 1 3 5 1
1 1 9 12 9
1 5 6 10 7

−
−

−
− − −

L

N

MMMM

O

Q

PPPP

:
:
:
:

R1 ↔ R4, R2 ↔ R3

~

1 5 6 10 7
1 1 9 12 9
1 1 3 5 1
2 5 2 3 3

− − −
−

−
−

L

N

MMMM

O

Q

PPPP

:
:
:
:

R2 → R2 – R1, R3 → R3 – R1, R4 → R4 – 2R1

~

1 5 6 10 7
0 6 15 22 16
0 4 9 15 6
0 5 14 17 17

− − −
−
−
−

L

N

MMMM

O

Q

PPPP

:
:
:
:

R2 → R2 – R4, then R2 → – R2, R3 → R3 – 4R2, then again R3 → –R3 , R4 → R4 – 5R2 , then also
again R4 → –R4

~

1 5 6 10 7
0 1 1 5 1
0 0 5 5 10
0 0 9 8 22

− − −
− −
− −

−

L

N

MMMM

O

Q

PPPP

:
:
:
:
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R3 → – 
1
5 3R , then R4 → R4 – 9R3

~

1 5 6 10 7
0 1 1 5 1
0 0 1 1 2
0 0 0 1 4

− − −
− −

−

L

N

MMMM

O

Q

PPPP

:
:
:
:

R3 → R3 + R4, R2 → R2 + 5R4, R1 → R1 + 10R4

~

1 5 6 0 33
0 1 1 0 21
0 0 1 0 6
0 0 0 1 4

−
−

L

N

MMMM

O

Q

PPPP

:
:
:
:

R2 → R2 + R3, R1 → R1 + 6R3

~

1 5 0 0 69

0 1 0 0 27

0 0 1 0 26

0 0 0 1 4

:

:

:

:

L

N

MMMMM

O

Q

PPPPP
R1 → R1 – 5R2

~

1 0 0 0 66
0 1 0 0 27
0 0 1 0 6
0 0 0 1 4

:
:
:
:

−L

N

MMMM

O

Q

PPPP
Hence, the coefficient matrix is in normal form
∴ x1 = – 66, x2 = 27, x3 = 6 and x4 = 4.

Example 16. Find the values of λ for which the equations
3x + y – λz = 0; 4x – 2y – 3z = 0; 2 λx + 4y + λz = 0

have a non-trivial solution. Obtain the most general solutions in each case.
Sol. The coefficient matrix is

A =

3 1
4 2 3

2 4

−
− −

L

N
MMM

O

Q
PPP

λ

λ λ

for non-trivial solution A  = 0

∴ A =

3 1
4 2 3

2 4

−
− −

L

N
MMM

O

Q
PPP

λ

λ λ
 = 0 ⇒ 3 (–2λ + 12) – (4λ + 6λ) – λ (16 + 4λ) = 0

⇒ – 6λ + 36 – 10λ – 16λ – 4λ2 = 0
⇒ – 4λ2 – 32λ + 36 = 0 ⇒ λ2 + 8λ – 9 = 0
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⇒ λ2 + 9λ – λ – 9 = 0 ⇒ (λ – 1) (λ + 9) = 0
⇒ λ = 1, – 9.
Case I. If λ = 1,

A =

3 1 1

4 2 3

2 4 1

−

− −

L

N

MMMM

O

Q

PPPP
R2 → R2 – 

4
3 1R , R3 → R3 – 

2
3 1R

~

3 1 1

0
10
3

5
3

0
10
3

5
3

−
− −

L

N

MMMMM

O

Q

PPPPP
R3 → R3 + R2

~

3 1 1

0
10
3

5
3

0 0 0

−

− −

L

N

MMMM

O

Q

PPPP
This shows ρ (A) = 2 < 3 (n = 3)
∴ Let z = k

− −
10

3
5
3

y z
= 0 ⇒ 2y + k = 0 ⇒ y = – 

k
2

and 3x + y – z = 0 ⇒ 3x – 
k
2  – k = 0 ⇒ x = 

k
2 . Ans.

Case II. If λ = – 9

A =

3 1 9
4 2 3
18 4 9

− −
− −

L

N
MMM

O

Q
PPP

Solve itself like case I.

x = −
3
2
k

, y = −
9
2
k

, z = k.

EXERCISE 3.4

Examine whether the following systems of equations are consistent. If consistent solve.
1. x + y + z = 6

2x + 3y – 2z = 2
5x + y + 2z = 13 (U.P.T.U., 2000) [Ans. x = 1, y = 2, z = 3]

2. 3x + 3y + 2z = 1
x + 2y = 4
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10y + 3z = – 2
2x – 3y – z = 5 [Ans. x = 2, y = 1 and z = – 4]

3. x1 + 2x2 − x3 = 3
3x1 – x2 + 2x3 = 1

2x1 – 2x2 + 3x3 = 2
x1 – x2 + x3 = – 1 (U.P.T.U., 2002) [Ans. x1 = –1, x2 = 4, x3 = 4]

4. x + y + z = 7
x + 2y + 3z = 8

y + 2z = 6 [Ans. inconsistent; no solution]

5. 5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5 [Ans. x = (7 – 6k)/11, y = (3 + k)/11, z = k]

6. – x1 + x2 + 2x3 = 2
3x1 – x2 + x3 = 6

– x1 + 3x2 + 4x3 = 4 [Ans. x1 = 1, x2 = – 1, x3 = 2]

7. Find the values of a and b for which the system has (i) no solution, (ii) unique solution
and (iii) infinitely many solution.

2x + 3y + 5z = 9 (i)        a = 5, b ≠ 9
7x + 3y – 2z = 8 Ans. (ii) a ≠ 5, b any value
2x + 3y + az = b (iii)        a = 5, b = 9

8. Discuss the solutions of the system of equations for all values of λ.
 x + y + z = 2, 2x + y – 2z = 2, λx + y + 4z = 2.

[Ans. Unique solution if λ ≠ 0; infinite number of solutions if λ = 0]

9. x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30 [Ans. x = k – 2, y = 8 – 2k, z = k]

10. 2x – y + z = 7
3x + y – 5z = 13

x + y + z = 5 [Ans. x = 4, y = 1, z = 0]

Solve the following homogeneous equations:

11. x + 2y + 3z = 0
2x + y + 3z = 0
3x + 2y + z = 0 [Ans. x = y = z = 0]

12. x + y + 3z = 0
x – y + z = 0

x – 2y = 0
x – y + z = 0 [Ans. x = – 2k, y = –k, z = k]

13. x + 2y + 3z = 0
3x + 4y + 4z = 0

7x + 10y + 12z = 0 [Ans. x = y = z = 0]
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14. 4x + 2y + z + 3w = 0
6x + 3y + 4z + 7w = 0

2x + y + w = 0 [Ans. x = k1, y = – 2k1 – k2, z = – k2, w = k2]

15. For what values of λ the given equations will have a non-trivial solution.
x + 2y + 3z = λx
2x + 3y + z = λx
3x + y + 2z = λy [Ans. λ = 6]

16. Find the value of ‘a’ so that the following system of homogeneous equations have exactly
2 linearly independent solutions.

ax1 – x2 – x3 = 0
– x1 + ax2 – x3 = 0
– x1 – x2 + ax3 = 0 [Ans. a = – 1]

17. Apply the test of rank to examine if the following equations are consistent:
2x – y + 3z = 8

– x + 2y + z = 4
3x + y – 4z = 0

and if consistent, find the complete solution. [Ans. x = y = z = 2]

18. Show that the equations
– 2x + y + z = a

x – 2y + z = b
x + y – 2z = c

have no solutions unless a + b + c = 0, in which case they have infinitely many solutions.
Find their solutions a = 1, b = 1 and c = – 2. [Ans. x = k – 1, y = k – 1, z = k]

19. Show that the system of equations x + 2y – 2w = 0, 2x – y – w = 0, x + 2y – w = 0.                     4x
– y + 3z – w = 0 do not have a non-trivial solution.

20. Show that the homogeneous system of equations x + y cos γ + z cos β = 0, x cos γ + y              +
z cos α = 0, x cos β + y cos γ + z = 0, has non-trivial solution if α + β + γ = 0.

Solve the following system of equations by Gaussian elimination method:

21. x1 + 2x2 – x3 = 3
2x1 – 2x2 + 3x3 = 2

3x1 – x2 + 2x3 = 1
x1 – x2 + x3 = – 1 [Ans. x1 = 1, x2 = 4, x3 = 4]

22. 2x1 + x2 + x3 = 10
3x1 + 2x2 + 3x3 = 18

x1 + 4x2 + 9x3 = 16 [Ans. x1 = 7, x2 = – 9, x3 = 5]

23. 2x1 + x2 + 4x3 = 12
8x1 – 3x2 + 2x3 = 20
4x1 + 11x2 – x3 = 33 [Ans. x1 = 3, x2 = 2, x3 = 1]
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24. x1 + 4x2 – x3 = –5
x1 + x2 – 6x3 = – 12
3x1 – x2 – x3 = 4 Ans. x x x1 2 3

117
71

81
71

148
71

= = − =L
NM

O
QP, ,

25. 2x1 + x2 + 2x3 + x4 = 6
6x1 – 6x2 + 6x3 + 12x4 = 36

4x1 + 3x2 + 3x3 – 3x4 = –1

2x1 + 2x2 – x3 + x4 = 10 [Ans. x1 = 2, x2 = 1, x3 = – 1, x4 = 3]
26. 2x1 – 7x2 + 4x3 = 9

x1 + 9x2 – 6x3 = 1
– 3x1 + 8x2 + 5x3 = 6 [Ans. x1 = 4, x2 = 1, x3 = 2]

Solve by Gauss-Jordan method:
27. x – 3y – 8z = – 10

3x + y = 4
2x + 5y + 6z = 13 [Ans. x = y = z = 1]

28. x + y + z = 6
2x + 3y – 2z = 2
5x + y + 2z = 13 [Ans. x = 1, y = 2, z = 3]

29. 3x + y + 2z = 3
2x – 3y – z = – 3
x + 2y + z = 4 [Ans. x = 1, y = 2, z = – 1]

30. 4x + 3y + 3z = – 2
x + z = 0

4x + 4y + 3z = – 3 [Ans. x = 1, y = 1, z = – 1]
31. Test the consistency and solve 2x – 3y + 7z = 5, 3x + y – 3z = 13, 2x + 19y – 47z = 32.

[Ans. Inconsistent]
Solve the following system by any method:
32. 2x + 6y + 7z = 0

6x + 20y  – 6z = – 3
6y – 18z = – 1 [Ans. Inconsistent]

33. 4x – y + 6z = 16
x – 4y – 3z = – 16

2x + 7y + 12z = 48
5x – 5y + 3z = 0 Ans. x k y k z k= − + = − + =L

NM
O
QP

9
5

16
3

6
5

16
3

, ,

34. 2x1 + x2 + 5x3 + x4 = 5
x1 + x2 – 3x3 – 4x4 = – 1

3x1 + 6x2 – 2x3 + x4 = 8

2x1 + 2x2 + 2x3 – 3x4 = 2 Ans. x x x x1 2 3 42 1
5

0 4
5

= = = =L
NM

O
QP, , ,

35. 5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 11z = 5 A ns. x y z= = =L

NM
O
QP

7
11

3
11

0, ,
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3.16 LINEAR DEPENDENCE OF VECTORS

The set of vectors* (row or column matrices) X1, X2, ... Xn is said to be linearly dependent if there
exist scalars a1, a2,... an not all zero such that

a1X1 + a2X2 + ... + anXn = O [O is null matrix]

3.16.1  Linear Independence of Vectors

If the set of vectors is not linearly dependent then it is said to be linearly independent.
i.e., if every relation of the type

a1X1 + a2X2 + ... + anXn = O

⇒ a1 = a2 = ... = an = 0.

Example 1. Show that the vectors (3, 1, – 4), (2, 2, – 3) and (0, – 4, 1) are linearly dependent.
Sol. Let X1 = (3, 1, – 4), X2 = (2, 2, – 3), X3 = (0, – 4, 1)

Now, a1X1 + a2X2 + a3X3 = O    |linear dependence

a1(3, 1, – 4) + a2 (2, 2, – 3) + a3 (0, – 4, 1) = (0, 0, 0)
⇒ (3a1 + 2a2, a1 + 2a2 – 4a3, – 4a1 – 3a2 + a3) = (0, 0, 0)
⇒ 3a1 + 2a2 = 0, a1 + 2a2 – 4a3 = 0, – 4a1 – 3a2 + a3 = 0
The system of equations is homogeneous.
Now the coefficient matrix is

A =

3 2 0

1 2 4

4 3 1

−

− −

L

N

MMM

O

Q

PPP
R1 ↔ R2

~

1 2 4

3 2 0

4 3 1

−

− −

L

N

MMM

O

Q

PPP
R2→ R2 – 3R1, R3 → R3 + 4R1

~

1 2 4

0 4 12

0 5 15

−

−

−

L

N

MMM

O

Q

PPP

R2 → –
1
4 R2, R3 → 

1
5 R3

~

1 2 4
0 1 3
0 1 3

−
−
−

L

N
MMM

O

Q
PPP

* An ordered set of n numbers belonging to a field F and denoted by X = [x1, x2, ... xn] or 

x

x

xn

1

2

:

L

N

MMMM

O

Q

PPPP
 is called

an n-dimensional vector over F.
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R3 → R3 – R2

~

1 2 4
0 1 3
0 0 0

−
−

L

N
MMM

O

Q
PPP

⇒ ρ(A) = 2 and n = 3
Let a3 = k

and a2 – 3a3 = 0 ⇒ a2 – 3k = 0 ⇒ a2 = 3k

Again a1 + 2a2 – 4a3 = 0 ⇒ a1 + 6k – 4k = 0 ⇒ a1 = – 2k

Therefore, a1 = – 2k, a2 = 3k, a3 = k.

Hence, a1, a2 and a3 cannot be zero otherwise there is a trivial solution which is impossible.
So the vectors X1, X2 and X3 are linearly dependent and the relation is

– 2kX1 + 3kX2 + kX3 = O

⇒  2X1 – 3X2 – X3 = O.

Example 2. Find the value of λ for which the vectors (1, – 2, λ), (2, – 1, 5) and (3, – 5, 7λ) are
linearly dependent. (U.P.T.U., 2006)

Sol. Let X1 = (1, – 2, λ), X2 = (2, – 1, 5), X3 = (3, – 5, 7λ)
Now a1X1 + a2X2 + a3X3 = 0 |For linear dependence
⇒  a1 (1, – 2, λ) + a2 (2, – 1, 5) + a3 (3, – 5, 7λ) = (0, 0, 0)
⇒ a1 + 2a2 + 3a3 = 0

– 2a1 – a2 – 5a3 = 0 ...(i)
λa1 + 5a2 + 7λa3 = 0

The system is homogeneous
∴ For non-trivial solution* |A| = 0

⇒ |A| =

1 2 3

2 1 5

5 7

− − −

λ λ

 = 0

=  (– 7λ + 25) – 2 (– 14λ + 5λ) + 3 ( – 10 + λ) = 0
=  – 7λ + 25 + 18 λ – 30 + 3 λ = 0

=  14λ – 5 = 0 ⇒ λ = 
5
14

.

Example 3. Show that the vectors [0, 1, – 2], [1, – 1, 1] [1, 2, 1] form a linearly independent
set.

Sol. Let X1 = [0, 1, – 2], X2 = [1, – 1, 1] X3 = [1, 2, 1]
Also suppose a1X1 + a2X2 + a3X3 = O

⇒  a1 [0, 1, –2] + a2 [1, – 1, 1] + a3 [1, 2, 1] = O
⇒  {a2 + a3, a1 – a2 + 2a3, – 2a1 + a2 + a3] = [0, 0, 0]
⇒ a2 + a3 = 0

a1 – a2 + 2a3 = 0

* For linear dependence the solution must be non-trivial otherwise it will be linear independence.

U
V|
W|
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– 2a1 + a2 + a3 = 0

Now A =

0 1 1
1 1 2
2 1 1

−
−

L

N
MMM

O

Q
PPP

R1 ↔ R2

A ~

1 1 2
0 1 1
2 1 1

−

−

L

N
MMM

O

Q
PPP

R3 → R3 + 2R1

~

1 1 2
0 1 1
0 1 5

−

−

L

N
MMM

O

Q
PPP

R3 → R3 + R2

~

1 1 2
0 1 1
0 0 6

−L

N
MMM

O

Q
PPP

 = ρ (A) = 3

Now

1 1 2
0 1 1
0 0 6

1

2

3

−L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

a
a
a

=

0
0
0

L

N
MMM

O

Q
PPP

⇒ a1 – a2 + 2a3 = 0
a2 + a3 = 0

a3 = 0
⇒ a1 = a2 = a3 = 0
All a1, a2 and a3 are zero. Therefore, they are linearly independent.

Example 4. Examine the vectors
X1 = [1, 1, 0]T, X2 = [3, 1, 3]T, X3 = [5, 3, 3]T

are linearly dependent.

Sol. Here X1 = 

1
1
0

L

N
MMM

O

Q
PPP

, X2 = 

3
1
3

L

N
MMM

O

Q
PPP

, X3 = 

5
3
3

L

N
MMM

O

Q
PPP

Now a1X1 + a2X2 + a3X3 = O

⇒ a a a1 2 3

1
1
0

3
1
3

5
3
3

L

N
MMM

O

Q
PPP

+
L

N
MMM

O

Q
PPP

+
L

N
MMM

O

Q
PPP

=

0
0
0

L

N
MMM

O

Q
PPP

⇒

a a a
a a a

a a

1 2 3

1 2 3

2 3

3 5
3

0 3 3

+ +
+ +

+ +

L

N
MMM

O

Q
PPP =

0
0
0

L

N
MMM

O

Q
PPP

⇒ a1 + 3a2 + 5a3 = 0
a1 + a2 + 3a3 = 0

0.a1 + 3a2 + 3a3 = 0
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∴ A =

1 3 5
1 1 3
0 3 3

L

N
MMM

O

Q
PPP

R1 → R2 – R1

A ~
1 3 5
0 2 2
0 3 3

− −
L

N
MMM

O

Q
PPP

R3 → R3 + 
3
2 2R

~

1 3 5
0 2 2
0 0 0

− −
L

N
MMM

O

Q
PPP

Here ρ(A) = 2 but n = 3 so let a3 = k.

and

1 3 5
0 2 2
0 0 0

− −
L

N
MMM

O

Q
PPP

 

a
a
a

1

2

3

L

N
MMM

O

Q
PPP

=

0
0
0

L

N
MMM

O

Q
PPP

a1 + 3a2 + 5a3 = 0 ...(i)
a2 + a3 = 0 ...(ii)

⇒ a2 + k ⇒ a2 = – k

From (i) a1 + 3 (–k) + 5k = 0 ⇒ a1 = 2k

Since all a1, a2, a3 are not zero.
Therefore, they are linearly dependent
And the relation is

2kX1 – kX2 + kX3 = O

⇒ 2X1 – X2 + X3 = O.

Example 5. Show that the vectors [2, 3, 1, –1], [2, 3, 1, – 2], [4, 6, 2, – 3] are linearly
independent.

Sol. Consider the relation a1X1 + a2X2 + a3X3 = O
⇒  a1[2, 3, 1, –1] + a2 [2, 3, 1, – 2] + a3 [4, 6, 2, –3] = O
⇒ 2a1 + 2a2 + 4a3 = 0

3a1 + 3a2 + 6a3 = 0
a1 + a2 + 2a3 = 0

a1 + 2a2 + 3a3 = 0

∴ A =

2 2 4
3 3 6
1 1 3
1 2 2

L

N

MMMM

O

Q

PPPP
, R1 ↔ R4, R2 ↔ R3 ~ 

1 2 2
1 1 3
3 3 6
2 2 4

L

N

MMMM

O

Q

PPPP
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R2 → R2 – R1, R3 → R3 – 3 R1, R4→ R4 – 2R1

~

1 2 2
0 1 1
0 3 0
0 2 0

−
−
−

L

N

MMMM

O

Q

PPPP
, R3 → R3 – 3R2, R4 → R4 – 2R2 ~ 

1 2 2
0 1 1
0 0 3
0 0 2

−
−
−

L

N

MMMM

O

Q

PPPP

R4 → R4 −
2
3

R3

~

1 2 2
0 1 1
0 0 3
0 0 0

−
−

L

N

MMMM

O

Q

PPPP
 ⇒ ρ(A) = 3 and n = 3

∴ The system has a trivial solution
Hence, a1 = a2 = a3 = 0

i.e., they are linearly independent.

EXERCISE 3.5

1. Examine the following vectors for linear dependence and find the relation if it exists.
X1 = (1, 2, 4), X2 = (2, –1, 3), X3 = (0, 1, 2), X4 = (–3, 7, 2). (U.P.T.U., 2002)

[Ans. Linearly dependent, 9X1 – 12X2 + 5X3 – 5X4 = 0]
2. Show the vectors X1 = [1, 2, 1], X2 = [2, 1, 4], X3 = [4, 5, 6] and X4 = [1, 8, – 3] are linearly

independent?
3. Show that the vectors [1, 2, 3], [3, –2, 1] , [1, – 6, – 5] are linearly dependent.
4. If the vectors (0, 1, a), (1, a, 1), (a, 1, 0) are linearly dependent, then find the value of a.

 [Ans. a = 0, 2 , – 2 ]

5. Examine for linear dependence [1, 0, 2, 1], [3, 1, 2, 1] [4, 6, 2, – 4], [–6. 0, – 3, –4] and find
the relation between them, if possible.

[Ans. Linear dependent and the relation is 2X1 – 6X2 + X3 – 2X4 = 0]
6. Show that the vectors X1 = [2, i, – i]. X2 = [2i, – 1, 1], X3 = [1, 2, 3] are linearly dependent.
7. If X1 = [1, 1, 2], X2 = [2, – 1, – 6], X3 = [13, 4, – 4] prove that 7X1 + 3X2 – X3 = 0.
8. Show that the vectors [3, 1, – 4], [2, 2, – 3] form a linearly independent set but [3, 1, – 4],

[2, 2, – 3] and [0, – 4, 1] are linearly dependent.

3.17   EIGEN VALUES AND EIGEN VECTORS

Introduction: At the start of 20th century, Hilbert studied the eigen values. He was the first to use
the German word eigen to denote eigen value and eigen vectors in 1904. The word eigen mean—
own characteristic or individual.

More formally in a vector space, a vector function A (matrix) defined if each vector X of vector
space, there corresponds a unique vector Y = AX. So here we consider a linear transform Y = AX
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transforms X into a scalar multiple of itself say λ so AX = λX which is called Eigen value equation.
In this section, we study the problem

AX = λX ...(i)
where A is a n × n matrix, X is an unknown n × 1 vector and λ is an unknown scalar. From equation
(i) it can be understand that AX is a scalar multiple of X say λX. Geometrically each vector on the
line through the origin determined by X gets mapped back onto the same line under multiplication
by A.

Geometrical representation: The eigen value equation
means that under the transformation, a eigen vector experi-
ence only changes in magnitude and sign. The direction of
AX is the same as that of X.

Here A acts to stretch the vector X, not change its
direction. So X is an given vector of A.

The eigen value determines the amount, the eigen vector
is scaled under the linear transformation. For example, the
eigen value λ = 2 means that the eigen vector is doubled in
length and point in the same direction. The eigen value λ =
1, means that the eigen vector is unchanged, while an eigen
value λ = – 1 means that the eigen vector is reversed in
direction.

Thus, the eigen value λ is simply the amount of “stretches” or “shrinks” to which a vector
is subjected when transformed by A.

3.17.1  Characteristic Equation (U.P.T.U., 2007)

If we re-express (i) as AX = λIX (where I is an identity matrix).

or AX – λIX = O

⇒ (A – λI)X = O ...(ii)

Which is homogeneous system of n equations  in the n variables x1, x2 ... xn. The system (ii)
must have non-trivial solutions otherwise X = 0 (which is impossible).

∴ For non-trivial solution the coefficient matrix (A – λI) will be singular

⇒ |A – λI| = 0  ...(iii) |singular matrix |A| = 0

Expansion of the determinant gives an algebraic equation in λ, known as the ‘‘characteristic
equation’’ of A. The determinant |A – λI| is called characteristic polynomial of A.

3.17.2  Characteristic Roots or Eigen Values [U.P.T.U. (C.O.), 2003, 2007]
The roots of characteristic equation are called characteristic roots or eigen values.

3.17.3  Eigen Vectors [U.P.T.U. (C.O.), 2003, 2007]
The corresponding non-zero vector X is called characteristic eigen vector.

Notes: 1. If there is one linearly independent solution and two eigen values are same then there
will be same eigen vectors of both eigen values.

2. If there is two linearly independent solution and two eigen values are same then there
will be different eigen vectors of each eigen value.

lw

w

m

v

v lv
v

_
v
>[
>lv

v

Fig. 3.1
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3.17.4  Properties of Eigen Values and Eigen Vectors
1. If A is real, its eigen values are real or complex conjugate in pairs.
2. Determinant of A = product of eigen values of A.
3. A and AT has same eigen values.

4. A–1 exists iff 0 is not an eigen value of A, eigen values of A–1 are 1 1 1

1 2λ λ λ
, ,....,

n
.

(U.P.T.U., 2008)
5. Eigen vector cannot correspond to two distinct characteristic values.
6. Eigen values of diagonal, upper triangular or lower triangular matrices are the principal

diagonal elements.
7. KA (scalar multiples) has eigen values Kλi.
8. Am has eigen values λm.
9. Two vectors X and Y are said to be orthogonal if XTY = YTX = 0. (U.P.T.U., 2008)

Theorem 1. The latent roots of a Hermitian matrix are all real [U.P.T.U. (C.O.), 2003]
Proof. We have AX = λX ...(i)

To prove that λ is a real number, we have to prove λ = λ
From (i)

X*(AX) = X* (λX) ⇒ X*AX = λX*X

⇒ (X* AX)* = (λX* X)* ⇒ X*A*X = λ X*X, (X** = X)

⇒ X* AX = λ X*X (A* = A)

⇒ X* λX = λ X*X ⇒ λX*X = λ X*X

⇒ (λ – λ ) X*X = 0 ⇒ λ = λ
—

. Proved.

Theorem 2. The latent roots of a skew-Hermitian matrix are either zero or purely imaginary.
[U.P.T.U. (C.O.), 2003]

Proof. Let A be a skew-Hermitian matrix so that A* = – A.
Now we are to prove that λ = 0 or purely imaginary number

Here (iA)* = i A* = –iA* = –i(–A) = iA (As A* = –A)
Hence, iA is a Hermitian matrix.
Let λ be an eigen value relative to the eigen vector X of A, then

AX = λX ...(i)
⇒ iAX = iλX ⇒ (iA)X = (iλ)X

⇒  iλ is an eigen root relative to the vector X of Hermitian matrix iA.
⇒  iλ is a real number, for eigen values of a Hermitian matrix are all real.
⇒  λ = 0 or purely imaginary number.  Proved.

Theorem 3. The characteristic roots of a unitary matrix are of unit modulus.
[U.P.T.U. Special Exam., 2001]

Proof. Let A be unitary matrix so that A*A = I.
We have AX = λX ...(i)
To prove |λ| = 1
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From (i), we have

(AX)* = (λX)* ⇒ X*A* = λ X* ...(ii)

Pre-multiplying (i) by (ii),

(X*A*) (AX) = ( λ X*) (λX)

⇒ X* (A*A)X = λ λX*X

⇒ X*IX = |λ|2 X*X ⇒ (1 – |λ|2) X*X = 0
⇒ 1 – |λ|2 = 0 ⇒ |λ|2 = 1 or |λ| = 1. Proved.

Theorem 4. Prove that the product of all eigen values of A is equal to the determinant (A).
(U.P.T.U., 2004)

Proof. We have AX = λIX ⇒ (A – λI) X = 0
For non-trivial solution |A – λI| = 0

⇒

a a a

a a a

n

n n nn

11 12 1

1 2

−

−

λ

λ

...

...

= 0

⇒  (–1)n λ λ λn n n
nb b b+ + + +− −

1
1

2
2 ...m r = 0

⇒  (λ – λ1) (λ – λ2) ... (λ – λn) = 0
putting λ = 0, we get

|A| = λ1, λ2, λ3 ... λn. Proved.

Theorem 5. The latent roots of real symmetric matrix are all real.
Proof. Let A be a real symmetric matrix so that

A = A, A ′ = A.

The A* = ( A )′  = A′  = A or A* = A, meaning thereby, A is a Hermitian matrix. Hence, the
latent roots of A are all real, by Theorem 1.

Theorem 6. The characteristic roots of an idempotent matrix are either zero or unity.
Proof. Let A be idempotent matrix so that A2 = A.
Let AX = λX ...(i)

premultiplying by A on equation (i), we get
A(AX) = A(λX) = λ(AX)

⇒ (AA)X = λ(λX) ⇒ A2X = λ2X or AX = λ2X (As A2 = A)
⇒ λX = λ2X
⇒ (λ2 – λ)X = 0 ⇒ λ2 – λ = 0 (As X ≠ 0)
⇒ λ = 0, 1. Proved.
Example 1. Show that 0 is a characteristic root of a matrix if the matrix is singular.

(U.P.T.U., 2008)
Sol. The characteristic equation is

|A – λI| = 0
or |A| – λ|I| = 0

As |A| = 0 (singular matrix)
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∴ 0 = λ |I| = 0 ⇒ λ = 0
Conversely, if λ = 0 then |A| = 0. Proved.

Example 2. Find the characteristic equation of the matrix 
1 2 2
0 2 1
1 2 2−

L

N
MMM

O

Q
PPP

. Also find the eigen

values and eigen vectors of this matrix. (U.P.T.U., 2006)

Sol. Let A =
1 2 2
0 2 1
1 2 2−

L

N
MMM

O

Q
PPP

Now, A – λI =
1 2 2
0 2 1
1 2 2−

L

N
MMM

O

Q
PPP

 – λ 

1 0 0
0 1 0
0 0 1

L

N
MMM

O

Q
PPP

 = 

1 2 2
0 2 1
1 2 2

−
−

− −

L

N
MMM

O

Q
PPP

λ
λ

λ

∴  Characteristic equation is |A – λI| = 0

⇒

1 2 2
0 2 1
1 2 2

−
−

− −

L

N
MMM

O

Q
PPP

λ
λ

λ
= 0 ⇒ (1 – λ) ( ) { ( )}2 2 2 0 1 2 0 22− − − +{ } + + −λ λm r  = 0

⇒ (1 – λ) (λ2 – 4λ + 2) – 2 + 4 – 2λ = 0
⇒ λ2 – 4λ + 2 – λ3 + 4λ2 – 2λ + 2 – 2λ = 0
⇒ λ3 – 5λ2 + 8λ – 4 = 0
⇒ λ2(λ – 1) – 4λ (λ – 1) + 4 (λ – 1) = 0
⇒ (λ – 1) (λ2 – 4λ + 4) = 0
Hence, λ = 1, 2, 2. These are eigen values of A.
Now, we consider the relation

AX = λX ⇒ AX = λIX
⇒ (A – λI)X = 0 ...(i)
Taking λ = 1, from (1), we get

1 1 2 2
0 2 1 1
1 2 2 1

1

2

3

−
−

− −

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

x
x
x

= 0

⇒
0 2 2
0 1 1
1 2 1

1

2

3−

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

x
x
x

= 0

R1 ↔ R3

~ 

−L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

1 2 1
0 1 1
0 2 2

1

2

3

x
x
x

= 0
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R3 → R3 – 2R2, R1 → (– 1) R1

~ 

1 2 1
0 1 1
0 0 0

1

2

3

− −L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

x
x
x

= 0

⇒ x1 – 2x2 – x3 = 0
x2 + x3 = 0

Let x3 = k then x2 = – k

and x1 + 2k – k = 0 ⇒ x1 = – k

∴ X1 =

−

−

L

N

MMM

O

Q

PPP
= −

−

L

N

MMM

O

Q

PPP
−

L

N

MMM

O

Q

PPP

k

k

k

k

1

1

1

1

1

1

or

Taking λ = 2, from (1), we get

−

−

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

1 2 2
0 0 1
1 2 0

1

2

3

x
x
x

= 0

R2 ↔ R3

~
−
−
L

N
MMM

O

Q
PPP

1 2 2
1 2 0

0 0 1
 

x
x
x

1

2

3

L

N
MMM

O

Q
PPP

= 0

R2 → R2 – R1, R1 → –R1

~ 

1 2 2
0 0 2
0 0 1

− −
−

L

N
MMM

O

Q
PPP

 

x
x
x

1

2

3

L

N
MMM

O

Q
PPP

= 0

R2 → –
1
2

R2 and then R3 → R3 – R2, we get

~ 

1 2 2
0 0 1
0 0 0

− −L

N
MMM

O

Q
PPP

 

x
x
x

1

2

3

L

N
MMM

O

Q
PPP

= 0

Here the solution is one variable linearly independent.
⇒ x1 – 2x2 – x3 = 0

x3 = 0
Let x2 = k then x1 – 2k – 0 = 0
⇒ x1 = 2k

Hence, X2 =

x
x
x

1

2

3

L

N
MMM

O

Q
PPP

 = 

2

0

k
k
L

N
MMM

O

Q
PPP

 = k 

2
1
0

L

N
MMM

O

Q
PPP

 or 

2
1
0

L

N
MMM

O

Q
PPP
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Thus only one eigen vector X2 corresponds to the repeated eigen value λ = 2.
Hence the eigen values are 1, 2, 2

eigen vectors X1 = – k
1
1
1−

L

N
MMM

O

Q
PPP

,  X2 = X3 = k

2
1
0

L

N
MMM

O

Q
PPP

or X1 =
1
1
1−

L

N
MMM

O

Q
PPP

, X2 = X3 = 

2
1
0

L

N
MMM

O

Q
PPP

Example 3. Find the eigen values and eigen vectors of the matrix

A =

2 1 1
1 2 1
0 0 1

L

N
MMM

O

Q
PPP

Sol. The characteristic equation is |A – λI| = 0

⇒
2 1 1

1 2 1
0 0 1

−
−

−

λ
λ

λ

= (1 – λ) (λ – 1) (λ – 3) = 0

Thus λ = 1, 1, 3 are the eigen values of A.
Now, we consider the relation (A – λI)X = 0
For λ = 3,

−
−

−

L

N
MMM

O

Q
PPP

1 1 1
1 1 1
0 0 2

 

x
x
x

1

2

3

L

N
MMM

O

Q
PPP

= 0    let X

x

x

x

=

L

N

MMMM

O

Q

PPPP

1

2

3

Applying R2 → R2 + R1, then R1 → – R1 on coefficient matrix, we get

~ 

1 1 1
0 0 2
0 0 2

− −

−

L

N
MMM

O

Q
PPP

 
x
x
x

1

2

3

L

N
MMM

O

Q
PPP

= 0

Again R3 → R3 + R2, R2 → 
1
2 2R

~ 
1 1 1
0 0 1
0 0 0

− −L

N
MMM

O

Q
PPP

  

x
x
x

1

2

3

L

N
MMM

O

Q
PPP

= 0

⇒ x1 – x2 – x3 = 0
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x3 = 0
r n

n r
= =

− =
2 3

1
,

Suppose x2 = k, then x1 = k

Here, X1 =

k

k k

0

1

1

0

1

1

0

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP
or

For   λ = 1

1 1 1

1 1 1

0 0 0

1

2

3

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP

x

x

x

= 0

R2 → R2 – R1

~ 

1 1 1

0 0 0

0 0 0

1

2

3

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP

x

x

x

= 0

Here r = 1, n = 3 ⇒ n – r = 3 – 1 = 2.
∴ There is two variables linearly independent solution
Let x2 = k1, x3 = k2 and x1 + x2 + x3 = 0
⇒ x1 + k1 + k2 = 0 ⇒ x1 = – (k1 + k2)

⇒ X2 =

− +L

N

MMMM

O

Q

PPPP

k k

k

k

1 2

1

2

b g
.

Since the vectors are linearly independent so, we choose k1 and k2 as follows:
(a) If we suppose x2 = k1 = 0, x3 = k2 (any arbitrary)

Then X2 =

−L

N

MMMM

O

Q

PPPP
= −

−

L

N

MMMM

O

Q

PPPP −

L

N

MMMM

O

Q

PPPP

k

k

k

2

2

20

1

0

1

1

0

1

or

(b) If we suppose x2 = k1 (any arbitrary) and x3 = k2 = 0

Then X3 =

−L

N

MMMM

O

Q

PPPP
= − −

L

N

MMMM

O

Q

PPPP
−

L

N

MMMM

O

Q

PPPP

k

k k

1

1 1

0

1

1

0

1

1

0

or
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Hence the eigen values are λ = 1, 2, 2

Eigen vectors are X1 = k X k X k

1

1

0

1

0

1

1

1

0

2 2 3 1

L

N

MMMM

O

Q

PPPP
= −

−

L

N

MMMM

O

Q

PPPP
= −

L

N

MMMM

O

Q

PPPP
; ; –

or X1 =

1

1

0

1

0

1

1

1

0
2 3

L

N

MMM

O

Q

PPP
=

−

L

N

MMM

O

Q

PPP
= −

L

N

MMM

O

Q

PPP
; ;X X .

Example 4. Find the eigen values and eigen-vectors of matrix

A =

3 1 4
0 2 6
0 0 5

L

N
MMM

O

Q
PPP

. [U.P.T.U., 2004 (C.O.), 2002]

Sol. The characteristic equation is |A –λI| = 0

⇒
3 1 4

0 2 6
0 0 5

−
−

−

λ
λ

λ
= 3 2 5 0 0 0−( ) − − − + =λ λ λ( )( )l q

∴ λ = 2, 3, 5
Now, we consider the relation (A – λI) X = 0 ...(i)
For  λ = 2,

3 2 1 4
0 2 2 6
0 0 5 2

−
−

−

L

N
MMM

O

Q
PPP

 

x
x
x

1

2

3

L

N
MMM

O

Q
PPP

= 0            X

x

x

x

=
L

N
MMM

O

Q
PPP

1

2

3

⇒

1 1 4
0 0 6
0 0 3

L

N
MMM

O

Q
PPP

 

x
x
x

1

2

3

L

N
MMM

O

Q
PPP

= 0

  R3 → R3 – 
1
2 2R  on coefficient matrix

~ 

1 1 4
0 0 6
0 0 0

L

N
MMM

O

Q
PPP

 

x
x
x

1

2

3

L

N
MMM

O

Q
PPP

= 0

⇒ x1 + x2 + 4x3 = 0  and x3 = 0
Let x2 = k then x1 + k + 0 = 0 ⇒ x1 = –k

∴ X1 =

−L

N

MMM

O

Q

PPP
= − −

L

N

MMM

O

Q

PPP
−

L

N

MMM

O

Q

PPP

k

k k

0

1

1

0

1

1

0

or
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For  λ = 3, from (i), we get

0 1 4

0 1 6

0 0 2

1

2

3

−

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP

x

x

x

= 0

R2 → R2 + R1 on coefficient matrix

~ 

0 1 4

0 0 10

0 0 2

1

2

3

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP

x

x

x

= 0

R3 → R3 −
1
5 2R

~ 

0 1 4

0 0 10

0 0 0

1

2

3

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP

x

x

x

= 0

⇒ x2 + 4x3 = 0  and 10x3 = 0 ⇒ x3 = 0
⇒ x2 + 0 = 0  ⇒ x2 = 0, let x1 = K

∴ X2 =

k

k0

0

1

0

0

1

0

0

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP
or

Again, for λ = 5, we get

−

−

L

N

MMMM

O

Q

PPPP

L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

2 1 4

0 3 6

0 0 0

0
0
0

1

2

3

x

x

x

⇒ 2x1 – x2 – 4x3 = 0
3x2 – 6x3 = 0

Let x3 = k, then 3x2 – 6k = 0
⇒  x2 = 2k and 2x1 – 2k – 4k = 0 ⇒ x1 = 3k

∴ X3 =

3

2

3

2

1

3

2

1

k

k

k

k

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP
or

Hence the eigen values are λ = 2, 3, 5

And eigen vectors are X1 =

1

1

0

−

L

N

MMMM

O

Q

PPPP
, X2 = 

1

0

0

L

N

MMMM

O

Q

PPPP
, X3 = 

3

2

1

L

N

MMMM

O

Q

PPPP
.
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��������	
� Determine the latent roots and the corresponding vector of the matrix,

A = 

6 2 2
2 3 1

2 1 3

−
− −

−

�

�

�
�
�

�

�

�
�
�

.

���
� The characteristic equation is |A – λI| = 0

⇒

6 2 2
2 3 1

2 1 3

− −
− − −

− −

λ
λ

λ
= 0

 R2 → R2 + R3, we get

6 2 2
0 2 2
2 1 3

− −
− −
− −

λ
λ λ

λ
= (2 – λ) 

6 2 2
0 1 1
2 1 3

− −

− −

λ

λ
   = 0

Now, C3 → C3 + C2 gives

(2 – λ) 

6 2 0
0 1 2
2 1 2

− −

− −

λ

λ
 = ( ) ( ) ( )2 6 2 2 8 0− − − + − =λ λ λ� �

∴ (2 – λ)(λ2 – 10λ + 16) = 0 ⇒  (2 – λ) (2 – λ) (λ – 8) = 0

⇒ λ = 2, 2, 8
Now, consider the relation

(A – λI)X = 0 ...(i)
For λ = 8, the equation (i), gives

6 8 2 2
2 3 8 1

2 1 3 8

− −
− − −

− −

�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

=

0
0
0

�

�

�
�
�

�

�

�
�
�

⇒

− −
− − −

− −

�

�

�
�
�

�

�

�
�
�

2 2 2
2 5 1

2 1 5
 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

=

0
0
0

�

�

�
�
�

�

�

�
�
�

R2 → R2 – R1, R3 → R3 + R1 on  coefficient matrix

− −
− −
− −

�

�

�
�
�

�

�

�
�
�

2 2 2
0 3 3
0 3 3

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

=

0
0
0

�

�

�
�
�

�

�

�
�
�

R3 → R3 – R2 and R1 → 
−1
2 1R , R2 → 

−1
3 2R

1 1 1
0 1 1
0 0 0

−�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

=

0
0
0

�

�

�
�
�

�

�

�
�
�

⇒ x1 + x2 – x3 = 0
x2 + x3 = 0
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Let x3 = k, then x2 = – k and x1 = 2k

∴ X1 =

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

 = 

2 2
1
1

2
1
1

k

k

k

k−
�

�

�
�
�

�

�

�
�
�

= −
�

�

�
�
�

�

�

�
�
�

−
�

�

�
�
�

�

�

�
�
�

or

For λ = 2, the equation (i) gives

6 2 2 2
2 3 2 1

2 1 3 2

− −
− − −

− −

�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

=

0
0
0

�

�

�
�
�

�

�

�
�
�

⇒
4 2 2
2 1 1
2 1 1

−
− −

−

�

�

�
�
�

�

�

�
�
�

 

x
x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

=

0
0
0

�

�

�
�
�

�

�

�
�
�

R2 → R2 + 
1
2 1R , R3 → R3 – 

1
2 1R , we get

4 2 2
0 0 0
0 0 0

−�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

=  

0
0
0

�

�

�
�
�

�

�

�
�
�

Here r = 1, n = 3 ⇒  n – r = 3 – 1 = 2 (Two linearly independent)
Let x2 = k1 and x3 = k2

and we have 4x1 – 2x2 + 2x3 = 0
⇒ 4x1 – 2k1 + 2k2 = 0

⇒ x1 =
1
2 1 2( )k k−

∴ X2 =

k

k

k k

k

k

k k

1

2

1 2

1

2

1 2
1
2

1
2

2
2

( ) ( )−

�

�

�
�
�
�

�

�

�
�
�
�

=
−

�

�

�
�
�

�

�

�
�
�

Since the vectors are linearly independent so, we choose, k1 and k2 as follows:
(i) Let x2 = k1 = 0 and x3 = k2 (arbitrary)

then X2 =
1
2

0
2

2

0
2
1

0
2
1

2

2

2k

k

k

−

�

�

�
�
�

�

�

�
�
�

=
−

�

�

�
�
�

�

�

�
�
� −

�

�

�
�
�

�

�

�
�
�

or

(ii) Let x3 = k2 = 0 and x2 = k1 (arbitrary)

then X3 =
1
2

2
0

2

2
0
1

2
0
1

1

1

1

k

k

k
�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

or

Hence λ = 8, 2, 2

X1 = k 

2
1
1

2
1
1

2

0
2
1

0
2
1

2

2
0
1

2
0
1

2
2

3
1−

�

�

�
�
�

�

�

�
�
�

−
�

�

�
�
�

�

�

�
�
�

=
−

�

�

�
�
�

�

�

�
�
� −

�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

or or or, ,X
k

X
k

.
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��������
� Find the eigen values of matrix A.

A =
1
3

 

1 2 2
2 1 2
2 2 1

−
−

�

�

�
�
�

�

�

�
�
�

·

���
� The characteristic equation of B is, where

B =

1 2 2
2 1 2
2 2 1

−
−

�

�

�
�
�

�

�

�
�
�

1 2 2
2 1 2
2 2 1

−
− −
− −

λ
λ

λ
= λ3 – 3λ2 – 9λ + 27 = 0

or (λ – 3)2 (λ + 3) = 0 ⇒  λ = 3, 3, – 3

So the eigen values of A = 
1
3

B  = 1, 1, – 1.

�������� �
 Show that the matrix

A =

3 10 5
2 3 4

3 5 7
− − −
�

�

�
�
�

�

�

�
�
�

has less than three independent eigen vectors. Is it possible to obtain a similarity transformation
that will diagonalise this matrix. (U.P.T.U., 2001)

���
� The characteristic equation is
|A – λI| = 0

or

3 10 5
2 3 4

3 5 7

−
− − − −

−

λ
λ

λ
= 0

or λ3 – 7λ2 + 16λ – 12 = 0
⇒ (λ – 2)2 (λ – 3) = 0 ⇒  λ = 2, 2, 3
Now, consider the relation

(A – λI)X = 0 ...(i)
For λ = 3, we have

3 3 10 5
2 3 3 4
3 5 7 3

−
− − − −

−

�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

= 0

⇒

0 10 5
2 6 4
3 5 4

− − −
�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

= 0
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R1 → 
1
5 1R , R2 → – 

1
2 2R , we have

0 2 1
1 3 2
3 5 4

�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

= 0

R1 ↔ R2

1 3 2
0 2 1
3 5 4

�

�

�
�
�

�

�

�
�
�

 

x
x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

= 0

R3 → R3 – 3R1 on coefficient matrix

1 3 2
0 2 1
0 4 2− −

�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

= 0

R3 → R3 + 2R2

1 3 2
0 2 1
0 0 0

�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

=

0
0
0

�

�

�
�
�

�

�

�
�
�

⇒ x1 + 3x2 + 2x3 = 0

0x1 + 2x2 + x3 = 0
Solving these equations by cross-multiplication

x1

3 4
`

−
= −

−
 

x2

1 0
 = 

x3

2 0−

⇒
x1

1−
=

x2

1−
 = 

x3

2

⇒
x1

1
=

x2

1
 = 

x3

2−
∴  The proportional values are

x1 = 1, x2 = 1, x3 = – 2

X1 =

1
1
2−

�

�

�
�
�

�

�

�
�
�

For λ = 2, we have, from equation (i)

3 2 10 5
2 3 2 4

3 5 7 2

−
− − − −

−

�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

= 0

1 10 5
2 5 4
3 5 5

− − −
�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

= 0
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Applying R2 → R2 + 2R1, R3 → R3 – 3R1 on coefficient matrix

1 10 5
0 15 6
0 25 10− −

�

�

�
�
�

�

�

�
�
�

 
x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

= 0

R2 → 
R2

3
, R3 → – 

1
5 3R

1 10 5
0 5 2
0 5 2

�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

= 0

R3 → R3 – R2

1 10 5
0 5 2
0 0 0

�

�

�
�
�

�

�

�
�
�

 

x

x

x

1

2

3

�

�

�
�
�

�

�

�
�
�

= 0

This shows that the solution is one linearly independent
⇒ x1 + 10x2 + 5x3 = 0

5x2 + 2x3 = 0
x1

5−
= − =

x x2 3

2 5

or
x1

5
=

x x2 3

2 5
= −

Taking proportional values, x1 = 5, x2 = 2, x3 = – 5

∴ X2 =

5
2
5−

�

�

�
�
�

�

�

�
�
�

And the third eigen vector corresponding to repeated root λ3 = 2 = λ2 will be same
because the solution is not two linearly independent. Hence the vectors X2 and X3 are not linearly
independent. Similarity transformation is not possible.

Therefore λ = 2, 2, 3 and X1 = 

1
1
2−

�

�

�
�
�

�

�

�
�
�

. X2 = X3 = 

5
2
5−

�

�

�
�
�

�

�

�
�
�

.

���������
� Verify the statement that the sum of the elements in the diagonal of a matrix
is the sum of the eigen values of the matrix.

A =

− −
−

− −

�

�

�
�
�

�

�

�
�
�

2 2 3
2 1 6
1 2 0

·

���
� The characteristic equation is |A – λI| = 0

⇒

− − −
− −

− − −

2 2 3
2 1 6
1 2

λ
λ

λ
= 0
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⇒ (– 2 –λ) [(1 – λ)(– λ) – 12] – 2(– 2λ – 6] – 3[– 4 + (1 – λ)] = 0
⇒ (– 2 – λ) (λ2 – λ – 12) + 4 (λ + 3) + 3 (λ + 3) = 0
⇒ – 2λ2 + 2λ + 24 – λ3 + λ2 + 12λ + 4λ + 12 + 3λ + 9 = 0
⇒ – λ3 – λ2 + 21λ + 45 = 0
⇒ λ 3 + λ2 – 21λ – 45 = 0.
This is cubic equation in λ and hence it has 3 roots i.e., there are three eigen values.

The sum of the eigen values = – 
coefficient of 
coefficient of 

2

3
λ
λ

	

�

�
� = – 1.

The sum of the elements on the diagonal of the matrix A

= – 2 + 1 + 0 = – 1. Hence the result.

���������
� Find the eigen values and corresponding eigen vectors of the matrix,

A =
−

−
�
��

�
��

5 2
2 2

(U.P.T.U., 2008)

���
� The characteristic equation is |A – λI| = 0

⇒
− −

− −
5 2
2 2

λ
λ

= (5 + λ) (2 + λ) – 4 = 0

⇒ λ 2 + 7λ + 6 = 0 ⇒ (λ + 6) (λ + 1) = 0
∴ λ = – 1, – 6
Now, we consider the relation (A – λI) X = 0 ...(i)
For λ = –1

− +
− +

�
��

�
��
�
��
�
��

5 1 2
2 2 1

1

2

x

x
= 0

⇒
−

−
�
��

�
��
�
��
�
��

4 2
2 1

1

2

x

x
= 0

R2 → R2 + 2R1, on coefficient matrix

−�
��

�
��
�
��
�
��

4 2
0 0

1

2

x

x
= 0

⇒ – 2x1 + x2 = 0 ...(ii)
Let x2 = k

∴  From (i) x1 =
k
2

X1 =
k

k
k2

2

1
2

1
2

�
��
�
��

=
�
��
�
��

�
��
�
��

or

For λ = – 6, from (i), we get

1 2
2 4

1

2

�
��

�
��
�
��
�
��

x

x
= 0
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R2 → R2 – 2R1, on coefficient matrix

1 2
0 0

1

2

�
��

�
��
�
��
�
��

x

x
= 0

⇒ x1 + 2x2 = 0 ...(iii)
Let x2 = k ∴ x1 = – 2k

X2 =
−�
��
�
��

=
−�
��
�
��

2 2
1

k

k
k  or 

−�
��
�
��

2
1

Hence, the eigen values are λ = –1, – 6

And eigen vectors are X1 =
1
2
�
��
�
��

X2 =
−�
��
�
��

2
1

.

EXERCISE 3.6

����� ���� ������ ������� ���� ������ �������� ���

�

1 2
1 0
�
��

�
��
. � Ans.  2, 1,  

2
1

−
�
��
�
�� −
�
��
�
��

�
�
�

�
�
�,

1
1

 

6 8
8 6−
�
��

�
��
. Ans.  10, - 10,  

2
1
�
��
�
�� −
�
��
�
��

�
�
�

�
�
�,

1
2

!


1 1 3
1 5 1
3 1 1

�

�

�
�
�

�

�

�
�
�
. Ans.  2,  3,  6,  −

−�

�

�
�
�

�

�

�
�
�

−

−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

2
0
2

1
1
1

1
2
1

, ,

"


8 6 2
6 7 4

2 4 3

−
− −

−

�

�

�
�
�

�

�

�
�
�
. Ans. 0 3 15

1
2
2

2
1
2

2
2

1
, , , , ,

�

�

�
�
�

�

�

�
�
� −

�

�

�
�
�

�

�

�
�
�

−
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

	


−
−
−

�

�

�
�
�

�

�

�
�
�

2 1 1
11 4 5
1 1 0

. Ans. − −
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1 1 2
0
1

1

1
2
1

2
3
1

, , , , ,




2 1 0
0 2 1
0 0 2

�

�

�
�
�

�

�

�
�
�
. Ans. 2 2 2

1
0
0

1
0
0

1
0
0

, , , , ,
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�


1 1 1
1 1 0
1 0 1

− −
−

−

�

�

�
�
�

�

�

�
�
�
. Ans. − ±

−

�

�

�
�
�

�

�

�
�
�

+�

�

�
�
�

�

�

�
�
�

−�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1
0
1
1

1
1
1

1
1
1

, , , ,i

i i
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�


3 1 4
0 2 0
0 0 5

�

�

�
�
�

�

�

�
�
�
. Ans. 2 3 5

0
1

0

1
0
0

3
2
1

, , , , ,−
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�


− −
−

− −

�

�

�
�
�

�

�

�
�
�

2 2 3
2 1 6
1 2 0

. Ans. 5 3 3
1
2

1

2
1
0

3
0
1

, , , , ,− −
−
−
�

�

�
�
�

�

�

�
�
�

−�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�#


3 2 5
4 1 5
2 1 3

− −
− −

− − −

�

�

�
�
�

�

�

�
�
�
. Ans. 5 2 2

3
2
4

1
3
1

1
3
1

, , , , ,
�

�

�
�
�

�

�

�
�
� −

�

�

�
�
�

�

�

�
�
� −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

��


1 1 3
1 5 1
3 1 1

�

�

�
�
�

�

�

�
�
�
. Ans. −

−�

�

�
�
�

�

�

�
�
�

−
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

2 3 6
1

0
1

1
1

1

1
2
1

, , , , ,

� 


4 20 10
2 10 4

6 30 13

− −
−

− −

�

�

�
�
�

�

�

�
�
�
. Ans. 0 1 2

5
1
0

2
0
1

0
1
2

, , , , ,−
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
� −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�!


−�

�

�
�
�

�

�

�
�
�

1 0 2
0 1 2
2 2 0

. Ans. 0 3 3
2
2

1

1
2
2

2
1
2

, , , , ,− −
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
� −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�"


11 4 7
7 2 5
10 4 6

− −
− −
− −

�

�

�
�
�

�

�

�
�
�
. Ans. 0 1 2

1
1
1

1
1

2

2
1
2

, , , , ,
�

�

�
�
�

�

�

�
�
�

−
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�	


−
−
−

�

�

�
�
�

�

�

�
�
�

9 4 4
8 3 4
16 8 7

. Ans. − −
−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1 1 3
0
1
1

1
1
1

1
1
2

, , , , ,

�


2 4 6
4 2 6
6 6 15

−
− − −

�

�

�
�
�

�

�

�
�
�
. Ans. − − −

�

�

�
�
�

�

�

�
�
� −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

2 9 18
1
1

0

2
2
1

1
1
4

, , , , ,

��


1 2 3
2 4 6
3 6 9

�

�

�
�
�

�

�

�
�
�
. Ans. 0 0 14

2
1
0

3
6
5

1
2
3

, , , , ,
−�

�

�
�
�

�

�

�
�
� −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

��


1 4 1 4
2 0 5 4
1 1 2 3
1 4 1 6

− − −
−

− −
− −

�

�

�
�
�
�

�

�

�
�
�
�
. [$��
 λ4 – 5λ3 + 9λ2 – 7λ + 2 = 0, λ = 2, 1, 1, 1  

2
3
2
3

3
6
4
5

−
−

�

�

�
�
�
�

�

�

�
�
�
�

−
−

�

�

�
�
�
�

�

�

�
�
�
�

,
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��


2 2 2
1 1 1
1 3 1

−

−

�

�

�
�
�

�

�

�
�
�
. Ans. 2 2 2

0
1
1

4
1
7

4
1
7

, , , , ,−
�

�

�
�
�

�

�

�
�
�

−�

�

�
�
�

�

�

�
�
�

−�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

 #
 Find the eigen values of A5 when

A = 

3 0 0
5 4 0
3 6 1

�

�

�
�
�

�

�

�
�
�

. Ans. 3 4 15 5 5, ,

 �
 If A and B are n × n  matrices and B is a non-singular matrix prove that A and B–1 AB
have same eigen values.
[%���� �� Characteristic polynomial of B–1 AB = |B–1AB – λI| = |B–1 AB – B–1 (λI)B|
= |B–1 (A – λI)B| = |B–1 |A – λI| |B| = |B–1||B||A – λI| = |B–1B||A – λI|
= |I| |A – λI| = |A – λI| = characteristic polynomial of A].

  
 Find the sum and product of the eigen values.

  A =  

2 3 2
2 1 1

1 0 2

−
−
�

�

�
�
�

�

�

�
�
�

. Ans. Sum  =  2 +  1 +  2 =  5,  product =  |A| =  21

3.18  CAYLEY-HAMILTON THEOREM

�&$&�'�(&

Any square matrix A satisfies its own characteristic equation. (U.P.T.U., 2005)

i.e., if C0 + C1λ + C2λ2 + .... + Cnλn is the characteristic polynomial of degree n in λ then
C0I + C1A + C2A

2 + .... + CnA
n = 0.

)������ Let A be a square matrix of order n.

Let |A – λI| = C0 + C1λ + C2λ
2 + ... + Cnλ

n ...(i)

be the characteristic polynomial of A.

Now, the elements of adj (A – λI) are cofactors of the matrix (A – λI) and are polynomials
in λ of degree not exceeding n – 1.

Thus adj (A – λI) = B0 + B1λ + B2λ
2 + ... + Bn – 1 λ

n – 1 ...(ii)

where Bi are n-square matrices whose elements are the functions of the elements of A and
independent of λ.

We know that (A – λI). adj (A – λI) = |A – λI) I

From (i) and (ii), we have

(A – λI) (B0 + B1λ + B2λ
2 + ... + Bn – 1λ

n–1) = (C0 + C1λ + C2λ
2 + ... + Cnλ

n)I ...(iii)

Equating the like powers of λ on both sides of (iii),  we get

AB0 = C0I

AB1 – B0 = C1I
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��� � �� �

ABn – 1 – Bn – 2 = Cn – iI

–Bn – 1 = CnI

Pre-multiplying the above equations by I, A, A2, ... An respectively and adding; we get

C0I + C1A + C2A
2 + ... + CnA

n = 0 ...(iv)

Since all the terms on the L.H.S. cancel each other. Thus A satisfies its own characteristic
equation. )�����


3.18.1  Inverse by Cayley-Hamilton Theorem

We have C0I + C1A + C2A
2 + ... + CnA

n = 0 ...(i)

Multiplying equation (i) by A–1, we get

C0A
–1 + C1I + C2A + ... + CnA

n – 1 = 0

⇒ C0A
–1 = –[C1I + C2A + ... + CnA

n – 1]

⇒ A–1 = – 
1

0C
[C1I + C2A + ... + CnA

n – 1]

(����� A–1 exists only if C0 = |A|.

*���������
� An expression of the form C0 + C1λ + C2λ
2 +, + Cnλ

n where C0, C1, ..., Cn are
square matrices of the same order and Cn � 0 is called a ‘‘matrix polynomial of degrees n’’.

�������� �
� Verify the Cayley-Hamilton theorem for the matrix 

1 2 3
2 4 5
3 5 6

�

�

�
�
�

�

�

�
�
�

. Also find its

inverse using this theorem. (U.P.T.U., 2006)
���
� The characteristic equation of A is

|A – λI| =

1 2 3
2 4 5
3 5 6

−
−

−

λ
λ

λ
 = 0

⇒   (1 – λ) [(4 – λ) (6 – λ) – 25] – 2[2(6 – λ) – 15] + 3 [10 – 3 (4 – λ)] = 0
⇒ λ 3 – 11λ2 – 4λ + 1 = 0
Cayley-Hamilton theorem is verified if A satisfies the above characteristic equation i.e.

A3 – 11A2 – 4A + 1 = 0 ...(i)

Now, A2 = A·A = 

1 2 3
2 4 5
3 5 6

1 2 3
2 4 5
3 5 6

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

 = 

14 25 31
25 45 56
31 56 70

�

�

�
�
�

�

�

�
�
�

A3 = A·A2 = 

1 2 3
2 4 5
3 5 6

14 25 31
25 45 56
31 56 70

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

 = 

157 283 353
283 510 636
353 636 793

�

�

�
�
�

�

�

�
�
�
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Verification, A3 – 11A2 – 4A + I =

157 283 353
283 510 636
353 636 793

11
14 25 31
25 45 56
31 56 70

�

�

�
�
�

�

�

�
�
�

−
�

�

�
�
�

�

�

�
�
�

  – 

1 2 3
2 4 5
3 5 6

�

�

�
�
�

�

�

�
�
�

+ 

1 0 0
0 1 0
0 0 1

�

�

�
�
�

�

�

�
�
�

 = 
0 0 0
0 0 0
0 0 0

�

�

�
�
�

�

�

�
�
�

⇒ A3 – 11A2 – 4A + 1 = 0
Hence theorem verified.
&�� ����� �+���� Multiplying equation by A–1, we get

A2 – 11A – 4I + A–1 = 0
⇒ A–1 = – A2 + 11A + 4I

⇒ A–1 = – 

14 25 31
25 45 56
31 56 70

11
1 2 3
2 4 5
3 5 6

4
1 0 0
0 1 0
0 0 1

�

�

�
�
�

�

�

�
�
�

+
�

�

�
�
�

�

�

�
�
�

+
�

�

�
�
�

�

�

�
�
�

=

1 3 2
3 3 1

2 1 0

−
− −

−

�

�

�
�
�

�

�

�
�
�

.

��������  
� Express B = A8 – 11A7 – 4A6 + A5 + A4 – 11A3 – 3A2 + 2A + I as a quadratic
polynomial in A, where A is square matrix given in Example 1. Find B as well as A4.

���
 B = A8 – 11A7 – 4A6 + A5 + A4 – 11A3 – 3A2 + 2A + I
= A5 (A3 – 11A2 – 4A + I) + A (A3 – 11A2 – 4A + I) + A2 + A + I
= A5 (0) + A(0) + A2 + A + I  |As A3 – 11A2 – 4A + I = 0 in Example 1
= A2 + A + I

Thus, B =

14 25 31
25 45 56
31 56 70

1 2 3
2 4 5
3 5 6

1 0 0
0 1 0
0 0 1

�

�

�
�
�

�

�

�
�
�

+
�

�

�
�
�

�

�

�
�
�

+
�

�

�
�
�

�

�

�
�
�

B =

16 27 34
27 50 61
34 61 77

�

�

�
�
�

�

�

�
�
�

.

&�� ����� �"� �� We have
A3 – 11A2 – 4A + I = 0

⇒ A3 = 11A2 + 4A – I
Multiplying both sides by A

A4 = 11A3 + 4A2 – IA

A4 = 11
157 283 353
283 510 636
353 636 793

4
14 25 31
25 45 56
31 56 70

1 2 3
2 4 5
3 5 6

�

�

�
�
�

�

�

�
�
�

+
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

–

=

1782 3211 4004
3211 5786 7215
4004 7215 8997

�

�

�
�
�

�

�

�
�
�

.
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��������!
 Find the characteristic equation of the matrix 

2 1
2

1 2

–1
–1 –1

–2

�

�

�
�
�

�

�

�
�
�

 and hence also find

A–1 by Cayley-Hamilton theorem. (U.P.T.U., 2003, 2004, 2005)
���
� The characteristic equation of A is

|A – λ I| =

2 1
2

1 2

– –1
–1 – –1

–2 –

λ
λ

λ
 = 0

⇒  (2 – λ) [λ2 – 4λ + 4 – 2] + [– 2 + λ + 1] + [2 – 2 + λ] = 0
⇒ λ 3 – 6λ2 + 8λ – 3 = 0
By Cayley-Hamilton theorem A3 – 6A2 + 8A – 3I = 0.
Multiplying by A–1 on both sides, we get

A2 – 6A + 8I – 3A–1 = 0

⇒ A–1 =
1
3

 (A2 – 6A + 8I)

Now, A2 = A.A = 

2 1
1 2 1
1 2 2

2 1 1
1 2 1
1 2 2

6 6 6
5 7 5
6 9 7

–1
− −

−

�

�

�
�
�

�

�

�
�
�

−
− −

−

�

�

�
�
�

�

�

�
�
�
=

−
− −

−

�

�

�
�
�

�

�

�
�
�

∴ A2 – 6A + 8I =

6 6 6
5 7 5

6 9 7
6

2 1 1
1 2 1

1 2 2

8 0 0
0 8 0
0 0 8

2 0 1
1 3 1
0 3 3

−
− −

−

�

�

�
�
�

�

�

�
�
�

−
−

− −
−

�

�

�
�
�

�

�

�
�
�

+
�

�

�
�
�

�

�

�
�
�

=
−�

�

�
�
�

�

�

�
�
�

Thus, A–1 =
1
3

2 0 1
1 3 1
0 3 3

−�

�

�
�
�

�

�

�
�
�

.

�������� "
 Evaluate A–1, A–2, A–3 if

A =

4 6 6
1 3 2
1 4 3− − −

�

�

�
�
�

�

�

�
�
�

���
� Characteristic equation is

|A – λI| =

4 6 6
1 3 2
1 4 3

−
−

− − − −

λ
λ

λ
 = 0

⇒ λ 3 – 4λ2 – λ + 4 = 0
By Cayley-Hamilton theorem, we have

A3 – 4A2 – A + 4I = 0
⇒ A2 – 4A – I + 4A–1 = 0  (multiplying byA–1)

A–1 =
1
4

 [–A2 + 4A + I) ...(i)
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Now, A2 =

16 18 18
5 7 6
5 6 5− − −

�

�

�
�
�

�

�

�
�
�

∴ – A2 + 4A + I =

− − −
− − −
�

�

�
�
�

�

�

�
�
�

+
− − −

�

�

�
�
�

�

�

�
�
�

+
�

�

�
�
�

�

�

�
�
�

16 18 18
5 7 6

5 6 5

16 24 24
4 12 8
4 16 12

1 0 0
0 1 0
0 0 1

=

1 6 6
1 6 2

1 10 6
−

− −

�

�

�
�
�

�

�

�
�
�

Thus, A–1 =
1
4

1 6 6
1 6 2

1 10 6
−

− −

�

�

�
�
�

�

�

�
�
�

Multiplying equation (1) by A–1, we get

A–2 =
1
4

4 1− + + −A I IA  = 
1
4

1 4 1 2 9 2
5 4 5 2 3 2

5 4 3 2 11 2

− −
− −
�

�

�
�
�

�

�

�
�
�

Similarly, A–3 =
1
4

 [– I + 4A–1 + A–2]

=
1
64

1 78 78
21 90 26

21 154 90
−

− −

�

�

�
�
�

�

�

�
�
�

.

�������� 	
� Verify Cayley-Hamilton theorem for the matrix A = 
1 2
2 1−
�
��

�
��

 and hence find

A–1. (U.P.T.U., 2008)
���
� The characteristic equation of A is

|A – λI| =
1 2

2 1
−

− −
λ

λ
 = 0 ⇒ – (1 – λ2) – 4 = 0

or λ2 – 5 = 0
By Cayley-Hamilton theorem A2 – 5 = 0 ...(i)

Now A2 =
1 2
2 1

1 2
2 1

5 0
0 5

5
1 0
0 1

5
−

�
��

�
�� −
�
��

�
��

=
�
��

�
��

=
�
��

�
��

= I

Putting value of A2 in equation (i), we get
A2 – 5 = 5I – 5I = 0

Hence, the Cayley-Hamilton theorem is verified.
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&������� �+�� � Multiplying equation (i) by A–1, we get

A – 5A–1 = 0 ⇒ A–1 = 1
5

1
5

1 2
2 1

A =
−

�
��

�
��

.

��������
�Show that the matrix A = 

0
0

0

c b

c a

b a

−
−

−

�

�

�
�
�

�

�

�
�
�

 satisfies its characteristic equation. Also

find A–1.

���
 |A – λI| =

− −
− −

− −
=

λ
λ

λ

c b

c a

b a

0

i.e., – λ[λ2 + a2] – c[λc – ab] – b[ac + bλ] = 0
i.e., λ3 + λ(a2 + b2 + c2) = 0

By Cayley-Hamilton theorem, A3 + A (a2 + b2 + c2) = 0 ...(i)

Now, A2 =
0

0
0

0
0

0

2 2

2 2

2 2

c b
c a

b a

c b
c a

b a

c b ab ac

ab c a bc

ac bc b a

−
−

−

�

�

�
�
�

�

�

�
�
�

−
−

−

�

�

�
�
�

�

�

�
�
�

=

− +

− +

− +

�

�

�
�
�
�

�

�

�
�
�
�

� �
� �

� �

A3 = A·A2 =
0

0
0

2 2

2 2

2 2

c b
c a

b a

b c ab ac

ab c a bc

ac bc b a

−
−

−

�

�

�
�
�

�

�

�
�
�

− +

− +

− +

�

�

�
�
�
�

�

�

�
�
�
�

� �
� �

� �

or A3 = 

0

0

0

0
0

0

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

− + + + +

+ + − + +

− + + + +

�

�

�
�
�
�

�

�

�
�
�
�

= − + +
−

−
−

�

�

�
�
�

�

�

�
�
�

c a b c b a b c

c a b c a a b c

b a b c a a b c

a b c
c b

c a

b a

� � � �
� � � �
� � � �

� �

or A3 = – (a2 + b2 + c2) A ...(ii)
Using (ii) in equation (i), we get
A3 + A (a2 + b2 + c2) = – (a2 + b2 + c2) A + A (a2 + b2 + c2) = 0
&������� �+�� Multiplying equation (i) A–2 on both sides, we get
A + A–1 (a2 + b2 + c2) = 0

⇒ A–1 = −
+ +

⋅1
2 2 2a b c

A
� �

Hence, A–1 = −
+ +

−
−

−

�

�

�
�
�

�

�

�
�
�

1
0

0
0

2 2 2a b c

c b
c a

b a� �
·



238 A TEXTBOOK OF ENGINEERING MATHEMATICS—I

EXERCISE 3.7

�
 Find the characteristic equation of the matrix A

A = 

4 3 1
2 1 2
1 2 1

−
�

�

�
�
�

�

�

�
�
�

. Hence find A–1. (U.P.T.U., 2001)

$��
  Characteristic equation :  3λ λ λ− + − = =
− −

−
− −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

−6 6 11 0
1
11

5 1 7
4 3 10

3 5 2

2 1, A

 
 Find the characteristic equation of the matrix

A = 

2 1 1
0 1 0
1 1 2

�

�

�
�
�

�

�

�
�
�

. Verify Cayley-Hamilton theorem and hence (U.P.T.U., 2002)

evaluate the matrix equation A8 – 5A7 + 7A6 – 3A5 + A4 – 5A3 + 8A2 – 2A + I.

$��
  3λ λ λ− + − = + +
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

5 7 3 0
8 5 5
0 3 0
5 5 8

2 2, ,A A I

!
 Verify Cayley-Hamilton theorem for A and hence find A–1

(i)

2 1 1
15 6 5
5 2 2

−
− −

−

�

�

�
�
�

�

�

�
�
�

����  1A− =
−
−
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

2 0 1
5 1 5

0 1 3

(ii)

1 1 1
1 2 1
1 1 2

�

�

�
�
�

�

�

�
�
�

����  1A− =
− −

−
−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

3 1 1
1 1 0
1 0 1

(iii)

1 0 3
2 1 1
1 1 1

−
−

�

�

�
�
�

�

�

�
�
�

����  1A− = −
− −

− −
−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1
9

0 3 3
3 2 7
3 1 1

"
 Find A–1 if A = 

7 2 2
6 1 2

6 2 1

−
− −

−

�

�

�
�
�

�

�

�
�
�

. ����  1A− =
− −

−
− −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1
3

3 2 2
6 5 2
6 2 5

	
 Show that the matrix A = 

1 2 0
2 1 0
0 0 1

−
−

�

�

�
�
�

�

�

�
�
�

 satisfies its own characteristic equation and hence

or otherwise obtain the value of A–1. ����  1A− =
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1 5 0 0
0 1 5 0
0 0 1

/
/
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 Find A–1 if A = 

1 2 3
1 3 5
1 5 12

�

�

�
�
�

�

�

�
�
�

. ����  1A− =
−

− −
−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1
3

11 9 1
7 9 2
2 3 1

�
 If A = 

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

�

�

�
�
�
�

�

�

�
�
�
�

 find A–1.
����  1A− =

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

�
 Find B = A6 – 4A5 + 8A4 – 12A3 + 14A2 if A = 
1 2
1 3−
�
��

�
��

.

����  2λ λ− + = = − =
−
−

�
��

�
��

�
�
�

�
�
�4 5 0 5 4

1 8
4 7

, B I A

�
 Find A–1 if A = 

3 3 4
2 3 4
0 1 1

−
−

�

�

�
�
�

�

�

�
�
�

· ����  1A− =
− −

−
−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1
11

1 7 24
2 3 4
2 3 15

�#
 Show that the matrix A = 

2 3 1
3 1 3
5 2 4

−

− −

�

�

�
�
�

�

�

�
�
�

 satisfies the equation A (A – I) (A + 2I) = 0.

3.19  DIAGONALIZATION OF A MATRIX

A square matrix ‘A’ is said to be diagonalisable if there exists another non-singular square matrix
P such that P–1AP is a diagonal matrix. In other words, A is diagonalisable if A is similar to a
diagonal matrix.

��������������� Two matrices A and B are said to be similar if there exists a non-singular
matrix P such that B = P–1AP.

This transformation of A to B is known as similarity transformation.

(���� Similar matrices A and B have same eigen values. Further, if X is an eigen vector of A then
Y = P–1X is an eigen vector of the matrix B.

3.19.1  Working Rule

The matrix P is called a model matrix for A. There are following steps to obtain diagonal form
of matrix A.

����� �� First of all obtain eigen values λ1, λ2, ..., λn of the matrix A.
�����  � If there exists a pair of distinct complex eigen values then A is not diagonalisable

over the field R of real numbers.
����� !� If there does not exist a set of n linearly independent eigen vectors, then A is not

diagonalisable.
����� "� If there exist n linearly independent eigen vectors.
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X1 =

x

x

x

X

x

x

x

X

x

x

xn n

n

n

n

nn

11

12

1

2

21

22

2

1

2

� � �

�

�

�
�
�
�

�

�

�
�
�
�

=

�

�

�
�
�
�

�

�

�
�
�
�

=

�

�

�
�
�
�

�

�

�
�
�
�

, .... ,

then let, P =

x x x

x x x

x x x

n

n

n n nn

11 21 1

12 22 2

1 2

�

�

� � �

�

�

�

�
�
�
�

�

�

�
�
�
�

and diagonal matrix D = P–1 AP.

3.19.2  Powers of Matrix A
Consider D = P−1 AP

⇒ D2 = (P−1 AP) (P−1 AP) = P−1 A (PP−1) AP

= P−1 A. IAP = P−1 AAP = P−1 A2 P

Similarly, D3 = P−1 A3 P, ...., Dn = P−1 An P

We can obtain An pre-multiplying by P and post-multiplying by P–1

⇒ P Dn P−1 = P (P−1 An P) P−1 = (PP−1) An (PP−1)
= IAnI = An

∴ An = PDn P−1

�������� �
 Diagonalize the matrix 

1 6 1
1 2 0
0 0 3

�

�

�
�
�

�

�

�
�
�

. (U.P.T.U., 2006)

���
� The characteristic equation of A is

|A – λ I| =

1 6 1
1 2 0
0 0 3

−
−

−

λ
λ

λ
 = 0

⇒ (λ + 1) (λ – 3) (λ – 4) = 0 ⇒  λ = – 1, 3, 4
Consider the equation

(A – λ I) X = 0
For, λ = – 1,

2 6 1
1 3 0
0 0 4

1

2

3

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0

R1 ↔ R2 on coefficient matrix, we get

1 3 0
2 6 1
0 0 4

1

2

3

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0
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R2 → R2 – 2R1

1 3 0
0 0 1
0 0 4

1

2

3

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0

R1 → R1 – R2, R3 → R3 – 4R2

1 3 1
0 0 1
0 0 0

1

2

3

−�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0

⇒ x1 + 3x2 – x3 = 0
x3 = 0

Let, x2 = k, then x1 = – 3k

∴ X1 =

−�

�

�
�
�

�

�

�
�
�

=
−�

�

�
�
�

�

�

�
�
�

=
−�

�

�
�
�

�

�

�
�
�

3

0

3
1
0

3
1
0

k

k k

For, λ = 3

−
−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

2 6 1
1 1 0
0 0 0

1

2

3

x
x

x
= 0

⇒ – 2x1 + 6x2 + x3 = 0
x1 – x2 + 0·x3 = 0

x1

1
=

–x x x x x2 3 1 2 3

1 4 1 1 4−
=

−
= =

−
or

⇒ x1 = 1, x2 = 1, x3 = – 4

∴ X2 =

1
1
4−

�

�

�
�
�

�

�

�
�
�

For, λ = 4

−
−

−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

3 6 1
1 2 0
0 0 1

1

2

3

x

x

x
= 0

R1 ↔ R2

1 2 0
3 6 1

0 0 1

1

2

3

−
−

−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0

R2 → R2 + 3R1

1 2 0
0 0 1
0 0 1

1

2

3

−

−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0
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R1 → R1 + R2, R3 → R3 + R2

1 2 1
0 0 1
0 0 0

1

2

3

−�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0

⇒ x1 – 2x2 + x3 = 0

0x1 + 0x2 + x3 = 0

⇒
x1

2−
= –

x x2 3

1 0
=

or
x1

2
=

x x2 3

1 0
=  ⇒  x1 = 2, x2 = 1, x3 = 0

∴ X3 =

2
1
0

�

�

�
�
�

�

�

�
�
�

Thus, P =

−

−

�

�

�
�
�

�

�

�
�
�

3 1 2
1 1 1
0 4 0

&�� �,����� �+�� |P| = – 3 (4) – 1 (0) + 2 (– 4) = – 20

matrix of cofactors B =

4 0 4
8 0 12
1 5 4

−
− −
− −

�

�

�
�
�

�

�

�
�
�

∴ adj P = B′ = 

4 8 1
0 0 5
4 12 4

− −

− − −

�

�

�
�
�

�

�

�
�
�

and P–1 =
adj P

P| |
–=

− −

− − −

�

�

�
�
�

�

�

�
�
�

=
−

−
�

�

�
�
�

�

�

�
�
�

1
20

4 8 1
0 0 5
4 12 4

1
20

4 8 1
0 0 5
4 12 4

*���������������
D = P–1 AP

D =
1
20

4 8 1
0 0 5
4 12 4

1 6 1
1 2 0
0 0 3

3 1 2
1 1 1
0 4 0

−
−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

−

−

�

�

�
�
�

�

�

�
�
�

=
1
20

4 8 1
0 0 15

16 48 16

3 1 2
1 1 1
0 4 0

− −
−

�

�

�
�
�

�

�

�
�
�

−

−

�

�

�
�
�

�

�

�
�
�

=
1
20

20 0 0
0 60 0
0 0 80

1 0 0
0 3 0
0 0 4

−�

�

�
�
�

�

�

�
�
�

=
−�

�

�
�
�

�

�

�
�
�

.
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��������  
 Reduce the matrix A = 

− −

− −

�

�

�
�
�

�

�

�
�
�

1 2 2
1 2 1
1 1 0

 to the diagonal form.

(U.P.T.U., 2001, 2004)

���
 |A – λI| =

− − −
−

− − −

1 2 2
1 2 1
1 1

λ
λ

λ
 = 0

⇒ λ 3 – λ2 – 5λ + 5 = 0

On solving, we get λ = 1, + 5 , – 5

For, λ = 1 (A – λI) X = 0

⇒
− −

− − −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

2 2 2
1 1 1
1 1 1

1

2

3

x

x

x
= 0

R1 ↔ R2

1 1 1
2 2 2
1 1 1

1

2

3

− −
− − −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0

R2 → R2 + 2R1, R3 → R3 + R1

1 1 1
0 4 0
0 0 0

1

2

3

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0

⇒ x1 + x2 + x3 = 0

0x1 + 4x2 + 0x3 = 0

x1

4−
= − = = =

−
x x x x x2 3 1 2 3

0 4 1 0 1
or

⇒ x1 = 1, x2 = 0, x3 = – 1

∴ X1 =

1
0
1−

�

�

�
�
�

�

�

�
�
�

For λ = 5

− − −
−

− − −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1 5 2 2
1 2 5 1
1 1 5

1

2

3

x
x

x
= 0

R1 ↔ R2

1 2 5 1
1 5 2 2

1 1 5

1

2

3

−
− − −

− − −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x

= 0
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R2 → R2 + (1 + 5 ) R1, R3 → R3 + R1

1 2 5 1
0 5 1 5 1
0 1 5 1 5

1

2

3

−
− −

− −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x

= 0

R3 → R3 + R2, and R2 → 
1

5 1−
 R2

1 2 5 1
0 1 1
0 0 0

1

2

3

−�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x
x

x
= 0

⇒ x1 + (2 – 5 ) x2 + x3 = 0

0x1 + x2 + x3 = 0

Solving by cross-multiplication

x1

1 5−
= –

x x2 3

1 1
=

or
x1

5 1−
=

x x2 3

1 1
=

−
 ⇒  x1 = 5 1− , x2 = 1, x3 = – 1

∴ X2 =

5 1
1
1

−

−

�

�

�
�
�

�

�

�
�
�

Similarly, the eigen vector corresponding λ = – 5

X3 =

5 1
1

1

+
−

�

�

�
�
�

�

�

�
�
�

∴  The modal matrix P =

1 5 1 5 1
0 1 1
1 1 1

− +
−

− −

�

�

�
�
�

�

�

�
�
�

&�� �,����� �+��

1 5 1 5 1
0 1 1
1 1 1

− +
−

− −

�

�

�
�
�

�

�

�
�
�

~

1 0 0
0 1 0
0 0 1

�

�

�
�
�

�

�

�
�
�

P

R3 → R3 + R1

1 5 1 5 1
0 1 1
0 5 2 5 2

− +
−

− +

�

�

�
�
�

�

�

�
�
�

~

1 0 0
0 1 0
1 0 1

�

�

�
�
�

�

�

�
�
�

P
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R1 → R1 – 5 1−� �  R2

1 0 2 5
0 1 1
0 5 2 5 2

−
− +

�

�

�
�
�

�

�

�
�
�

~

1 1 5 0
0 1 0
1 0 1

−�

�

�
�
�

�

�

�
�
�

P

R3 → R3 – 5 2−� �  R2

1 0 2 5
0 1 1
0 0 2 5

−

�

�

�
�
�

�

�

�
�
�

~

1 1 5 0
0 1 0
1 2 5 1

−

−

�

�

�
�
�

�

�

�
�
�

P

R1 → R1 – R3

1 0 0
0 1 1
0 0 2 5

−
�

�

�
�
�

�

�

�
�
�

~

0 1 1
0 1 0
1 2 5 1

− −

−

�

�

�
�
�

�

�

�
�
�

P

R3 → 1
2 5

 R3

1 0 0
0 1 1
0 0 1

−
�

�

�
�
�

�

�

�
�
�

~
0 1 1
0 1 0
1

2 5

2 5

2 5

1

2 5

− −

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

P

R2 → R2 + R3

1 0 0
0 1 0
0 0 1

�

�

�
�
�

�

�

�
�
�

~

0 1 1
1

2 5
2 5
2 5

1
2 5

1
2 5

2 5
2 5

1
2 5

− −
+

−

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

P

∴ P–1 =
1

2 5

0 2 5 2 5
1 2 5 1
1 2 5 1

− −
+
−

�

�

�
�
�

�

�

�
�
�

Now, D = P–1 AP = 
1

2 5

0 2 5 2 5

1 2 5 1

1 2 5 1

1 2 2

1 2 1

1 1 0

1 5 1 5 1

0 1 1

1 1 1

− −

+

−

�

�

�
�
�
�

�

�

�
�
�
�

− −

− −

�

�

�
�
�
�

�

�

�
�
�
�

− +

−

− −

�

�

�
�
�
�

�

�

�
�
�
�

=
1

2 5

2 5 0 0
0 10 0
0 0 10

1 0 0
0 5 0
0 0 5−

�

�

�
�
�

�

�

�
�
�

=
−

�

�

�
�
�

�

�

�
�
�

.
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�������� !
 Diagonalise the matrix A = 

11 4 7
7 2 5

10 4 6

− −
− −
− −

�

�

�
�
�

�

�

�
�
�

 and hence find A5.

���
� The characteristic equation of A is |A – λI| = 0

⇒
11 4 7

7 2 5
10 4 6

− − −
− − −

− − −

�

�

�
�
�

�

�

�
�
�

λ
λ

λ
= 0

On simplification, we get
λ3 – 3λ2 + 2λ = 0

⇒ λ  (λ –1) (λ – 2) = 0
∴ λ = 0, 1, 2
The eigen values are real and distinct and hence A is diagonalisable.
Now, consider the relation (A – λI) X = 0
For λ = 0

11 4 7
7 2 5

10 4 6

1

2

3

− −
− −
− −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0

⇒ 11x1 – 4x2 – 7x3 = 0 | Take any two equations.
7x1 – 2x2 – 5x3 = 0

10x1 – 4x2 – 6x3 = 0
Taking the first-two equations, we get

x1

6
=

x x x x x2 3 1 2 3

6 6 1 1 1
= ⇒ = =

∴ X1 =

1
1
1

�

�

�
�
�

�

�

�
�
�

For λ = 1, we have

10 4 7
7 3 5

10 4 7

1

2

3

− −
− −
− −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x
x

x
= 0

⇒ 10x1 – 4x2 – 7x3 = 0
7x1 – 3x2 – 5x3 = 0

10x1 – 4x2 – 7x3 = 0
Taking the first-two equations, we get

x1

1
=

x x2 3

1 2−
=
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∴ X2 =

1
1
2

−
�

�

�
�
�

�

�

�
�
�

,

Similarly,

For λ = 2, X3 = 

−
−
−

�

�

�
�
�

�

�

�
�
�

2
1
2

The three vectors are linearly independent,

Hence the modal matrix P =

1 1 2
1 1 1
1 2 2

−
− −

−

�

�

�
�
�

�

�

�
�
�

∴ P–1 =

−
−
−

�

�

�
�
�

�

�

�
�
�

4 2 3
1 0 1
3 1 2

Now, D = P–1 AP = 

−
−
−

�

�

�
�
�

�

�

�
�
�

− −
− −
− −

�

�

�
�
�

�

�

�
�
�

−
− −

−

�

�

�
�
�

�

�

�
�
�

4 2 3
1 0 1
3 1 2

11 4 7
7 2 5

10 4 6

1 1 2
1 1 1
1 2 2

=

0 0 0
0 1 0
0 0 2

�

�

�
�
�

�

�

�
�
�

.

Next A5 = PD5 P–1

But, D5 =

0 0 0
0 1 0
0 0 2

0 0 0
0 1 0
0 0 32

5

5

�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

∴ A5 =

1 1 2
1 1 1
1 2 2

0 0 0
0 1 0
0 0 32

4 2 3
1 0 1
3 1 2

−
− −

−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

−
−
−

�

�

�
�
�

�

�

�
�
�

=

191 64 127
97 32 65

190 64 126

− −
− −
− −

�

�

�
�
�

�

�

�
�
�

.

�������� "
 Prove that the matrix A = 

0 2 2
1 1 2
1 1 2

− −
−
− −

�

�

�
�
�

�

�

�
�
�

 is not diagonalisable.

���
� The characteristic equation is |A – λI| = 0

⇒
–λ

λ
λ

− −
− −
− − −

2 2
1 1 2
1 1 2

= 0
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⇒ λ 3 – 3λ2 + 4 = 0 ⇒  (λ + 1) (λ – 2)2 = 0
∴ λ = –1, 2, 2. Here the eigen values are real.
Let X be an eigen vector corresponding to λ = 2
∴ (A – 2I) X = 0

⇒
− − −
− −
− −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

2 2 2
1 1 2
1 1 0

1

2

3

x

x

x
= 0

R1 → 
−1
2

 R1

1 1 1
1 1 2
1 1 0

1

2

3

− −
− −

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0

R2 → R2 + R1, R3 → R3 + R1

1 1 1
0 0 3
0 0 1

1

2

3

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0

R2 → 
1
3

 R2 and R3 → R3 – R2

1 1 1
0 0 1
0 0 0

1

2

3

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

x

x

x
= 0

⇒ r = 2, n = 3 ⇒  n – r = 1
there exist only one linearly independent eigen vector corresponding λ = 2.

Hence, there does not exist three linearly independent eigen vectors. Thus A is not
diagonalisable.

��������	
� Find a matrix P which diagonalizes the matrix A = 
4 1
2 3
�
��

�
��

, verify P–1 AP = D

where D is the diagonal matrix. (U.P.T.U., 2008)
���
� The characteristic equation of A is |A – λI| = 0

⇒
4 1

2 3
−

−
λ

λ
= 0 ⇒ (4 – λ) (3 – λ) – 2 = 0

⇒ λ 2 – 7λ + 10 = 0
⇒ (λ – 2) (λ – 5) = 0 ∴ λ  = 2, 5
Now, consider the relation (A – λI) X = 0
For λ = 2

2 1
2 1

1

2

�
��

�
��
�
��
�
��

x

x
= 0, R2 → R2 − 2R1

2 1
0 0

1

2

�
��

�
��
�
��
�
��

x

x
 = 0

⇒ 2x1 + x2 = 0, Here let x2 = k, so x1 = −
k
2
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∴ X1 =
x
x

k

k

k1

2
2 2

1
2

�
��
�
��

=
−�

�
�
�
�

�
�
�

= −
−
�
��
�
��

 or 
1
2−
�
��
�
��

For λ = 5

−
−

�
��

�
��
�
��
�
��

1 1
2 2

1

2

x

x
= 0, R2 → R2 + 2R1

−�
��

�
��
�
��
�
��

1 1
0 0

1

2

x

x
 = 0

⇒  – x1 + x2 = 0. Here again let x2 = k so x1 = k

∴ X2 =
x

x

k

k
k1

2

1
1

�
��
�
��

=
�
��
�
��

=
�
��
�
��

 or 
1
1
�
��
�
��

The modal matrix P = 
1 1
2 1−
�
��

�
��

Verification: |P| = 1 + 2 = 3

∴ P–1 =
1
3

1 1
2 1

−�
��

�
��

P–1 AP =
1
3

1 1
2 1

4 1
2 3

1 1
2 1

1
3

1 1
2 1

2 5
4 5

−�
��

�
��
�
��

�
�� −
�
��

�
��

=
−�

��
�
�� −
�
��

�
��

=
1
3

6 0
0 15

2 0
0 5

�
��

�
��

=
�
��

�
��

= D  (diagonal matrix).

Thus P–1 AP = D verified.

3.20   APPLICATION OF MATRICES TO ENGINEERING PROBLEMS

Matrices have various engineering applications, they can be used to characterize connections in
electrical networks, in nets of roads, in production processes, etc., as follows:

3.20.1  Nodal Incidence Matrix

The network in figure consists of 6 branches (connections) and 4
nodes (point where two or more branches together). One node is
the reference node (grounded node, whose voltage is zero). We
number the other nodes and number and direct the branches.
This we do arbitrarily. The network can now we described by a
matrix A = [aij], where

+1 if branch j leaves node (i)
aij = –1 if branch j enters node (i)

0 if branch j does not touch node (i)

3

2
1

2 5

41 6

(Reference
node)

3

���
� !
 



250 A TEXTBOOK OF ENGINEERING MATHEMATICS—I

A is called the nodal incidence matrix of the network. The matrix for the network in figure
is given below:

-����� 1 2 3 4 5 6
Node 1 1 –1 –1 0 0 0
Node 2 0 1 0 1 1 0
Node 3 0 0 1 0 –1 –1

3.20.2  Mesh Incidence Matrix

A network can also be characterized by the mesh incidence matrix M = [mij], where

+1 if branch j is in mesh i  and has the same orientation

mij = –1 if branch j is in mesh i  and has the opposite orientation

0 if branch j is not in mesh i

And a mesh is a loop with no branch in its interior (or in
its exterior). Here, the meshes are numbered and directed
(oriented) in an arbitrary fashion. Show that for the network
in Figure. The matrix M has the given form, where row 1
corresponds to mesh 1, etc.

M =

1 1 0 1 0 0
0 0 0 1 1 1
0 1 1 0 1 0
1 0 1 0 0 1

−
−

−

�

�

�
�
�
�

�

�

�
�
�
�

���������
 There is a circuit (electrical network) in figure given below. Find the currents
i1, i2 and i3 respectively.

i1

80

20 ohms Q 10 ohms

i2

10 ohms

P 15 ohms

90 volts

i3

���
� !
"

���
� We label the currents as shown, choosing directions arbitrarily; if a current will come
out negative, this will simply mean that the current flows against the direction of our arrow. The
current entering each battery will be the same as the current leaving it. The equations for the
currents results from Kirchhoff’s laws.

.��������/��0�������1�2�3.014� At any point of a circuit, the sum of the inflowing currents
equals the sum of the out flowing currents.

.��������/��5�������1�2�3.514� In any closed loop, the sum of all voltage drops equals the
impressed electromotive force.

3

3

2

1 6

2 5

4

1

���
� !
!
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Node P gives the first equation, node Q the second, the right loop the third, and the left loop
the fourth, as indicated in the figure.

Node P : i1 – i2 + i3 = 0 (i)
Node Q : – i1 + i2 – i3 = 0 (ii)
Right loop : 10 i2 + 25 i3 = 90 (iii)
Left loop : 20 i1 + 10 i2 = 80 (iv)
We solve these equations by matrix method

Augmented matrix [A : B] =

1 1 1 0
1 1 1 0
0 10 25 90

20 10 0 80

−
− −
�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�

Applying R2 → R2 + R1, R4 → R4 – 20 R1

~

1 1 1 0
0 0 0 0
0 10 25 90
0 30 20 80

−

−

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�

R2 ↔ R4

~

1 1 1 0
0 30 20 80
0 10 25 90
0 0 0 0

−
−

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�

R3 → 3R3 – R4

~

1 1 1 0
0 30 20 80
0 0 95 190
0 0 0 0

−
−

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�

R2 → 
1
5

 R2, R3 → 
1
19

 R3

~

1 1 1 0
0 6 4 16
0 0 5 10
0 0 0 0

−
−

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�

Now

1 1 1
0 6 4
0 0 5
0 0 0

0
16
10
0

1

2

3

−
−

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

i

i

i
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⇒ i1 – i2 + i3 = 0
6i2 – 4i3 = 16

5i3 = 10
On solving these equations
i1 = 2 amperes
i2 = 4 amperes
i3 = 2 amperes.

��������  
 An elastic membrane in the x1, x2-plane

with boundary circle x x1
2

2
2+  = 1, is stretched 80 that a

point P : (x1, x2) goes over into the point Q : (y1, y2) given by

y = 
y

y
Ax

x

x
1

2

1

2

5 3
3 5

�
��
�
��

= =
�
��

�
��
�
��
�
��
;

in components y x x1 1 25 3= + ; y x x2 1 23 5= + .

Find the principal directions, that is, the directions of the position vector x of P for which
the direction of the position vector y of Q is the same or exactly opposite. What shape does the
boundary circle take under this deformation?

���
� We are looking for vectors x such that y = λx.
Since y = AX ⇒  AX = λX
∴  The above form is

5x1 + 3x2 = λx1 (5 – λ) x1 + 3x2 = 0
3x1 + 5x2 = λx2         

or 3x1 + (5 – λ) x2 = 0

∴  The characteristic equation is 
5 3

3 5
−

−
λ

λ
 = (5 – λ)2 – 9 = 0

⇒ λ 1 = 8, λ2 = 2

for λ1 = 8, – 3x1 + 3x2 = 0
⇒

x1 – x2 = 0
3x1 – 3x2 = 0 x1 – x2 = 0

���
� x2 = x1, x1 arbitrary.
Let x1 = x2 = 1
For λ2 = 2 our system becomes

 3x1+ 3x2 = 0
3x1 + 3x2 = 0

⇒ x2 = – x1, x1 arbitrary
Let x1 = 1, x2 = – 1
Thus the eigen vector, for instance are

X1 =
1
1

1
12

�
��
�
��

=
−
�
��
�
��

and X

These vectors make 45° and 135° angles with the positive x1-direction. They give the principal
directions.

x2 Prin
cip

al

dir
ec

tio
n

x1

Principal

direction

���
� !
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The eigen values show that in the principal directions the membrane is stretched by factors
8 and 2, respectively. Accordingly if we choose the principal directions as directions of a new
cartesian u1, u2-coordinats system, say with the positive u1-semiaxis in the first quadrant and the
positive u2-semiaxis in the second quadrant of the x1 x2-system and if we get

u1 = r cos φ, u2 = r sin φ
then a boundary point of the unstretched circular membrane has coordinates cos φ, sin φ. Hence
after the stretch we have

Z1 = 8 cos φ, Z2 = 2 sin φ
Since cos2 φ + sin2 φ = 1, this shows that the deformed boundary is an ellipse.

Z Z1
2

2
2
2

28 2
+ = 1

with principal semiaxes 8 and 2 in the principal directions.

EXERCISE 3.8

�
 A square matrix A is defined by A = 

1 2 2
1 2 1
1 1 0

−

− −

�

�

�
�
�

�

�

�
�
�

. Find the modal matrix P and the

resulting diagonal matrix D of A. (U.P.T.U., 2000)

Ans.   =  
–2 –2 2
1 1 1
1 –1 –1

P D
�

�

�
�
�

�

�

�
�
�

= −
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

,
1 0 0
0 1 0
0 0 3

 
 Diagonalise the matrix A = 

3 1 1
1 5 1

1 1 3

−
− −

−

�

�

�
�
�

�

�

�
�
�

 and hence find A4.

Ans.  4A =
−

− −
−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

251 405 235
405 81 405

235 405 251
!
 Diagonalise the matrix A.

A = 

3 1 4
0 2 6
0 0 5

�

�

�
�
�

�

�

�
�
�

· Ans.   =  
2 0 0
0 3 0
0 0 5

D
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

"
 Verify whether the following matrices are diagonalisable or not.

(i) 

− −
−

− −

�

�

�
�
�

�

�

�
�
�

2 2 3
2 1 6
1 2 0

, (ii) 

−
−
−

�

�

�
�
�

�

�

�
�
�

3 2 2
6 5 2
7 4 4

· [$��
 (i) Not diagonalisable (ii) diagonalisable]

	
 Diagonalise 

8 6 2
6 7 4
2 4 3

−
− −

−

�

�

�
�
�

�

�

�
�
�

· Ans.   =  
0 0 0
0 3 0
0 0 15

D
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
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 Diagonalise the following matrices:

(i) 

1 0 2
0 1 2
1 2 0

�

�

�
�
�

�

�

�
�
�

, (ii) 
2 1
8 4

−
−
�
��

�
��

, (iii) 
1 1
1 1
�
��

�
��

Ans.  ( )  =  
1 0 0
0 –2 0
0 0 3

i D ii iii
�

�

�
�
�

�

�

�
�
�

�
��

�
��

�
��

�
��

�

�

�
�
�

�

�

�
�
�

, ( ) , ( )
0 0
0 6

0 0
0 2

�
 Diagonalise the matrix A = 

2 2 1
1 3 1
1 2 2

�

�

�
�
�

�

�

�
�
�

. Ans.   =  
1 0 0
0 1 0
0 0 5

D
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�
 Diagonalise the matrix 
4 1
3 2
�
��

�
��

 hence find A5. Ans.   =  
1 0
0 5

D A
�
��

�
��

=
�
��

�
��

�
�
�

�
�
�, 5 2344 781

2343 782

�
 Verify the matrix 
0 1
0 0
�
��

�
��

 is diagonalisable.

[$��
� Not diagonalisable since only one eigen vector 
k

0
�
��
�
��

 exists]

�#
 Using matrix equation determine the loop current in the following circuits:

(i)  

8 V

10� ��

4 V 6 V

��

i1

i2 i3

$��
  i i i1 2 31 0826 1 4004 1 2775= = =. , . , .

(ii)  

40 V 4�

5�

10 V1�

30 V

2� 20 V

3�i2 i3

i4i1

6�

4�

$��
  i i i i1 2 3 411 43 10 55 8 04 5 84= = = =. , . , . , .
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OBJECTIVE TYPE QUESTIONS

$
� )��6� ���� �������� ���2��� ��� ���� �������� ������ ,���2�

�
 If A = 
1
0 1

a�
��

�
��

, then the value of A4 is

(i)
1
0 1

4a�
�
�
�

�
�
�
�

(ii)
4 4
0 4

a�
��

�
��

(iii)
4
0 4

4a�
�
�
�

�
�
�
�

(iv)
1 4
0 1

a�
��

�
��

 
 If the matrix 

1 2
1 2 5
2 1 1

b�

�

�
�
�

�

�

�
�
�

 is not invertible, then the value of b is

(i) 2 (ii) 0
(iii) 1 (iv) –1

!
 If A = 
3 2
0 1
�
��

�
��

, then (A–1)3 is equal to

(i)
1
27

1 26
0 27

−�
��

�
��

(ii)
1
27

1 26
0 27
−�
��

�
��

(iii)
1
27

1 26
0 27

−
−

�
��

�
��

(iv)
1
27

1 26
0 27
− −

−
�
��

�
��

"
 If A = 
0 0 1
0 1 0
1 0 0

�

�

�
�
�

�

�

�
�
�

, then A–1 is

(i)

1 0 1
0 1 0
0 0 0

�

�

�
�
�

�

�

�
�
�

(ii)

0 1 0
1 0 0
0 0 1

�

�

�
�
�

�

�

�
�
�

(iii)

0 0 1
0 1 0
1 0 0

�

�

�
�
�

�

�

�
�
�

(iv) None of these

	
 If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, then |3AB| =
(i) – 9 (ii) – 27

(iii) – 81 (iv) 81

 The rank of the unit matrix of order n is

(i) 0 (ii) 1
(iii) 2 (iv) 3
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�
 If A = 

1 1 1
1 2 4
1 4 8

�

�

�
�
�

�

�

�
�
�

, then rank (A) is

(i) 0 (ii) 1
(iii) 2 (iv) 3

�
 If a matrix A has a non-zero minor of order r and all minors of higher orders zero, then
(i) ρ(A) < r (ii) ρ(A) ≤ r

(iii) ρ(A) > r (iv) ρ(A) = r

�
 The system of equations 3x + 2y + z = 0, x + 4y + z = 0, 2x + y + 4z = 0.

(i) is consistent (ii) has infinite solutions
(iii) has only a trivial solution (iv) None of these

�#
 The system of equations – 2x + y + z = a, x – 2y + z = b, x + y – 2z = c is consistent,
if

(i) a + b – c = 0 (ii) a – b + c = 0
(iii) a + b + c ≠ 0 (iv) a + b + c = 0

��
 If X1 = (2, 3, 1, –1); X2 = (2, 3, 1, – 2), X3 = (4, 6, 2, – 3) then
(i) X1 + X3 = X2 (ii) X2 + X3 = X1

(iii) X1 + X2 = 2X3 (iv) X1 + X2 = X3

-
� ����� ��� ���� ,���6��

�
 The vectors (1, –1, 1), (2, 1, 1), (3, a, 2) are linearly dependent if the value of a = ..........
 
 If A is non-singular matrix of order 3 then ρ(A) = ..........
!
 If λ is a non-zero characteristic root of a non-singular matrix A, then the characteristic

roots of A–1 are ..........
"
 If λ1, λ2, λ3 are the characteristic roots of a non-singular matrix A, then the characteristic

roots of A–1 are ..........
	
 The characteristic of a real skew symmetric are either ..... or .....

 The product of the characteristic roots of a square matrix is ..........
�
 A system of n linear homogeneous equations in n unknowns has a non-trivial solution

if the coefficient matrix is ..........
�
 A system of n linear homogeneous equations in n unknowns is always ..........
�
 For the set of vectors (X1, X2, ... Xn) to be linearly independent it is necessary that no

Xi is ...........

�#
 The eigen values of A = 

2 2 1
1 3 1
1 2 2

�

�

�
�
�

�

�

�
�
�

 are ..........

0
� � 7�������� &���� ��� ������ ���� ���� �����2���� �����������

�
 (i) If |A| = 0, then at least one eigen value is zero.
(ii) A–1 exists iff 0 is an eigen value of A.
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(iii) If |A| ≠ 0 then A is known as singular matrix.
(iv) Two vectors X and Y are said to be orthogonal if, XTY = YTX ≠ 0.

 
 (i) The eigen values of a real skew symmetric matrix are all real.
(ii) If A is a square matrix, then latent roots of A and A′ are identical.

(iii) If A is a unit matrix, then |A| = 0.
(iv) If |A| ≠ 0, then |A. adj A| = |A|n–1, where A = (aij)n × n.

*
� '����� ���� �����2����

�
 (i) If A is an invertible matrix then (a) |A| = ± 1
(ii) If A is orthogonal then (b) |A| = 0

(iii) (A – λI) is a matrix (c) is 1
(iv) The rank of unit matrix of order n (d) Characteristic

 
 (i) For non-Trivial (a) A–1 is a diagonal
(ii) A is diagonal (b) A

(iii) (A–1)–1 (c) |A| = 0

(iv) For trivial solution (d) ρ(A) < n

!
 (i) Rank of skew symmetric matrix (a) Have same rank
(ii) Two equivalent matrices (b) – A

(iii) The rank of I4 is (c) 1
(iv) A* (d) 4

ANSWERS TO OBJECTIVE TYPE QUESTIONS

$
� )��6� ���� �������� ���2���

�
 (iv)  
 (iii) !
 (i)
"
 (iii) 	
 (iii) 
 (iv)
�
 (iii) �
 (iv) �
 (iii)

�#
 (iv)

-
� ����� ��� ���� ,���6��

�
 0  
 3 !
 adj A

"
 λ1
–1, λ2

–1, λ3
–1 	
 All zero; pure imaginary] 
 |A|

�
 Singular �
 Consistent
�
 Independent �#
 1, 1, 5

0
� � &���� ��� ������

�
 (i) T (ii) F (iii) F (iv) F

 
 (i) F (ii) T (iii) T (iv) F

*
� '����� ���� �����2����

�
 (i) → (b), (ii) → (a), (iii) → (d), (iv) → (c)  
 (i) → (d) (ii) → (a) (iii) → (b) (iv) → (c)
!
 (i) → (c), (ii) → (a), (iii) → (d), (iv) → (b)

���
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UNIT ��

Multiple Integrals

4.1  MULTIPLE INTEGRALS

The process of integration for one variable can be extended to the functions of more than one
variable. The generalization of definite integrals is known as ���������	 �
�������

4.2  DOUBLE INTEGRALS

Consider the region R in the x, y plane we assume
that R is a closed*, bounded** region in the x , y
plane, by the curve y = f1(x), y = f2(x) and the
lines x = a, x = b. Let us lay down a rectangular
grid on R consisting of a finite number of lines
parallel to the coordinate axes. The N rectangles
lying entirely within R (the shaded ones in Fig.
4.1). Let (xr, yr) be an arbitrarily selected point in
the rth partition rectangle for each r = 1, 2, ..., N.
Then denoting the area δxr · δyr = δSr
Thus, the total sum of areas

SN = f x yr r
r

N

,� �
=
∑

1
 δSr

Let the maximum linear dimensions of each
portion of areas approach zero, and n increases
indefinitely then the sum SN will approach a

limit, “namely the double integral f x y dS
R

,� ���  and the value of this limit is given by

* Boundary included i.e., part of the region.
** Can be enclosed within a sufficiently large circle.

(x , y )r r

O x = a x = b

�yr

�xr
R

y = f  (x)1

y = f  (x)2

Y

X

����	 ���
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f x y dS
R

,� ��� = f x y dy
f x

f x

a

b

,� �
� �

� �

1

2

��
�

�
�
�

	



�
�  dx

Similarly if the region is bounded by y =  c, y = d and by the curves x = f1(y), x = f2(y), then

f x y dS
R

,� ��� = f x y dx
f y

f y

c

d

,� �
� �

� �

1

2

��
�

�
�
�

	



�
�  dy

4.3  WORKING RULE

(a) We integrate with respect to y, x is to be regarded as constant and evaluate the result between
the limits y = f1(x) and y = f2(x).

(b) Then we integrate the result of (a) with respect to x between the limits x = a and x = b.

4.4 DOUBLE INTEGRATION FOR POLAR CURVES

Let OP and OQ are two radii vectors of the curve r = f (θ) and the coordinates of P and Q be
(r, θ) and (r + δr, θ + δθ).

The area of portion

K1 L1 K2 L2 =
1
2

 (r + δr)2 δθ – 
1
2

 r2 δθ

= rδrδθ + 
1
2

 δr2δθ

= rδrδθ  |As δr2δθ is very small
Therefore, the area of OPQ

= lim
0δr→

 [Σrδrδθ]

= lim
0δr→

 [Σrδr] δθ

= rdr
f

0

θ� �����
	

�

 δθ

Hence the area OAB

= lim
0δθ

θ
δθ

→ �∑ �
��

	

�

rdr
f

0

� �

=
θ α

θ β

=

=�  rdr
f

0

θ� �����
	

�

 dθ

where α and β are the vectorial angles of A and B.

O �

��

K2
K1

L1L2
A

P (r, )�

Q (r + r,  + )� � ��

B

����	 ���
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������	 �� Evaluate 
1

8log� 0

log y�  ex + y dx dy.

����	 We have I = e dxxy
� 

01

8 loglog �� �
��

	

�  ey dy

= e ex y y
01

8 loglog�  dy

= e e ey yloglog
−� 0

1

8
 dy

= e yy −1
1

8
� �

log
 – ey

1

8log
(As eloge y = y)

= elog 8 · (log 8 – 1) – 0 – (elog 8 – e)
= 8 log 8 – 8 – 8 + e
= 8 log 8 – 16 + e.

������	 �� Evaluate 
0

π�  sin y dy dx
x

0� .

����	 We have I = sin y dy
x

00 �� ���
	

�

π
 dx

= – cos y
x

00

π�  dx, treating x as constant

= −�0
π
 (cos x – cos 0) dx

= − +� �cosx dx dx
0 0

π π
(As cos 0 = 1)

= − +sin x x0 0
π π = π.

������	 �� Evaluate 
0

2

4 2

4 2

2

2

� �− −

−
y dx dy

y

y

� �

� �
.

����	 We have I = dx y dy
y

y

− −

−��
�

�
�
�

	



�
�4 2

4 2

0

2

2

2

� 

� 

=
0

2� x y dy
y

y

− −

−

4 2

4 2
2

2

� �
� �

=
0

2�  2 4 2 2− y�   y dy

= – 
1
2

 t
4

0�  dt  by putting 4 – 2y2 = t, – 4y dy = dt

= – 
1
2

· 
2
3

 t
3
2

4

0�

�
�
�
	



�
�

=
1
3

· 8 = 
8
3

.
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������	 �� Evaluate x y+�� � �2  dx dy over the area bounded by the ellipse

  [U.P.T.U. (C.O.), 2004]

x

a

2

2  + 
y

b

2

2 = 1

����	 We have
x
a

2

2  + 
y

b

2

2 = 1

⇒
y
b

= ± 1
2

2− x
a

⇒ y = ± 
b
a

 a x2 2−

∴ x y+�� � �
2

 dx dy = x y xy2 2 2+ +�� �   dx dy

=
−� a

a
 x y xy

b
a a x

b
a a x

2 2 2
2 2

2 2

+ +−�
�
�
� −

�
�
�
� −� �   dx dy

=
−� a

a
 x y

b
a a x

b
a a x

2 2
2 2

2 2

+
− −

−� � 
� 

� 
 dx dy + 2

−� a

a
xy dy dx

b
a

a x

b
a a x

− −

−�� 

� 
2 2

2 2

= 2 02 2
0

2 2

−

�
��
�
�� −� � + +

a

a
b
a

a x
x y dy dx� 

As when ( ) even when odd
–

f x dx f x dx f x f x
a

a

a

� � � � � �= =�� 2 0
0

= 2
3

2
3

0

2 2

x y
y

b
a

a x

a

a

+
�
��

�
��

�

�
�
�

	



�
�

�
��
�
�� −

−
�  dx

= 2 x
b
a

a x
b

a
a x

a

a

2 2 2
3

3
2 2

3
2

1
3

× − + −
�

�
�
�

	



�
�

−
� �  dx

= 4 
b
a

x a x
b
a

a x

a

2 2 2
3

3
2 2

3
2

0
3

− + −
�

�
�
�

	



�
�� �   dx (Again by definite integral)

[On putting x = a sin θ and dx = a cos θ dθ]

= 4 
b
a a a b

a
a⋅ +�

��
�
��� 2 2 3

3
3 3

0

2

3
sin . cos cosθ θ θ

π

 × a cos θ dθ

x 
=

 –
a

x 
=

 a

O X

Y

����	 ���
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= 4 a b d ab3 2 2 3 4

0

2
3

sin cos cosθ θ θ θ
π

+
�
��

�
���  dθ

= 4a3b sin cos2 2
3

0
2

4
3

θ θ θ
π

d
ab+� sin cos0 4

0

2 θ θ θ
π

d�
= 4a3b ·

3
2

3
2

2
2 2 2

2
+ +

 + 
4

3

3ab
·

1
2

5
2

2
0 4 2

2
+ +

As
0
2 sin cosm n d

m n

m n
θ θ θ

π
=

+ +

+ +�
1

2
1

2

2
2

2

= 4a3b. 

1
2

1
2

1
2

1
2

2 3

.
 + 

4
3

3ab
.  

1
2

3
2

1
2

1
2

2 3

. . .

= 4a3b · 
π
16

 + 
4

3
3
16

3ab ⋅ π As – 1  and 
1

 n n n= − =1
2

� � π

⇒ =
π π πa b ab

ab a b
3 3

2 2

4 4 4
+ = ⋅ +� � .

������	 �� Evaluate xy x y dx dy( )+��  over the area between y = x2 and y = x.

����	 The area is bounded by the curves y = f1(x) = x2, y = f2(x) = x.

When f1 (x) = f2 (x),
x2 = x, i.e., x (x – 1) = 0

or x = 0, x = 1
i.e., the area of integration is bounded by

y = x2, y = x, x = 0, x = 1

∴ = xy x y dx dy
A

+�� � �

= xy x y dy
y x

y x

x
+�

��
	

�=

=

= �� � �20

1
 dx

= x y xy dy
x

x 2 2
0

1
2 +�

��
	

��� �   dx

=
x y xy

x

x2 2 3

0

1

2 3 2

+
�
�
�
�

	


�
��  dx

= 5
6 2 3

4 6 7

0

1 x x x
− −

�
�
�
�

	


�
��  dx

=
x x x5 7 8

0

1

6 14 24
− −

�
�
�

	


�  = 

1
6

1
14

1
24

− −�
��

	

�  = 

3
56

.

������	 �� Find x dx dy
D

2��  where D is the region in the first quadrant bounded by the

hyperbola xy = 16 and the lines y = x, y = 0 and x = 8. (U.P.T.U., 2002)

O
X

x = 1

y = x
2

A

Y

����	 ���
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����	 We have
xy = 16 ...(i)

y = x ...(ii)
y = 0 ...(iii)
x = 8 ...(iv)

From eqns. (i) and (ii), we get x = 4, y = 4
i.e., intersection point of curve and the line

y = x = (4, 4).
Similarly intersection point of (i) and (iv) = (8, 2)
To evaluate the given integral, we divide the area

OABEO into two parts by AG as shown in the Figure 4.5.

Then, x dx dy
D

2�� = x dx dy x dx dy
y

y x

y

y
x

x

x

x

x
2

0

2

0

16

4

8

0

4
+

=

=

=

=

=

=

=

= � ���
= x dx dy x dx dyx

x2
0

4 2
4

8

0

16

0� � �� +  = x y dx x y dx
x

x2

0

4

0

2
0

16

4

8
� � � �� �+

= x dx x dx3
0

4

4

8
16+� �  = 

x 4

0

4

4

�
�
�
	


�  + 8 2

4

8
x

= 64 + 8(64 – 16) = 64 + 384 = 448.

������	 �� Evaluate xy dx dy
A��  over the positive quadrant of the circle x2 + y2 = a2.

����	Here the region of integration is positive quadrant of circle x2 + y2 = a2, where x varies

from 0 to a and y  varies from 0 to a x2 2−�  .

Here, xy dx dy
A�� =  xy dx dy

a xa

00

2 2−�� � �

=
y

x dx
a xa

2

0
0

2

2 2

�
��
	

�

−

�    dx

=
y

x dx
a xa 2

0
0

2

2 2

�
��
	

�

−

�
= 1

2
2 2

0
x a x

a
−� �   dx

=
1
2 2 4

2 2 4

0

a x x
a

−
�
�
�

	


�  = 

1
8

4a .

������	 �� Find x y dx dy
D

2 2+�� �  where D is bounded by y = x and y2 = 4x.

���� x y dx dy
D

2 2+�� �  = x y
x

x 2 22

0

4
+�� �   dy dx

= x y
y

dx
x

x
2

3

0

4
2

3
+

�

�
�
�

	



�
��

O

(4, 0)
G E

B

(8, 2)xy = 16

X

A
(4, 4)

x = 8

y = x
Y

O y = 0
X

x = a

x = 0

y =   a  – x
2 2

Y

����	 ���

����	 ���
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O (0, 0)
X

y = x

(4, 4)
B

y = 2  x

Y

����	 ���

= 2
8
3

4
3

5 2 3 2 3
0

4
x x x dx+ −�

��
�
���

=
768
35

.

������	�� Find x y dx dy
D

3��  where D is the region enclosed by the ellipse 
x

a

2

2  + 
y

b

2

2  = 1

in the first quadrant.

���� x y dx dy
D

3�� = x y dy dx
y

b
a

a xa 3
00

2 2

=

−��

=
x y

b
a

a xa
3 2

0
0

2

2 2

�
�
�
�

	


�
�

−

�
=

b

a

2

22
 a x x

a 2 3 5

0
−� �   dx

=
b

a

a x x
a2

2

2 4 6

02 4 6
−

�
�
�
�

	


�
�

 = 
b a2 4

24
.

������	 ��� Evaluate I = 
0

2π�  rdrd
a

a
θ

θsin� .

���� I =
0

2π� rdrd
r a

a
θ

θ=� sin

=
r

a

a2

0

2

2

�
�
�
	


��

sinθ

π
 dθ = 

1
2

2 2 2

0

2
a a−� sin θ

π
�   dθ

=
a

d
2

2
0

2

2
cos θ θ

π� = 
a

d
2

0

2

2
1 2

2
+�

��
�
��� cos θ

θ
π

I =
a2

4
 θ

θ π

+�
��

	

�

sin 2
2 0

2

=
πa2

2
.

Y

(0, b)

X
(a, 0)

����	 ���
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O

�� � = � = 0
A

X

P (r, )�
Q

��

� =
�
–
2

Y

������	��� Evaluate r d dr
A

2 sin θ θ��  over the area of cordioid r = a(1 + cos θ) above the

initial line.
����	 The region of integration A can be covered by radial strips whose ends are at r = 0,

r = a(1 + cos θ).
The strips lie between θ = 0 and θ = π

Thus r d dr
A

2 sin θ θ�� =
0

π� r d dr
a 2
0

1
sin

cos
θ θ

θ+� � �

= sin θ
π

0�  r dr
a 2

0

1+����
	

�

cosθ� �
 dθ

= sin θ
π

0�  
r

a3

0

1

3

�
�
�
	


�

+cosθ� �

 dθ

=
a3

3
 1

3
0

+� cos sinθ θ θ
π� � d

=
16

3

3a
 cos sin7

0 2 2
θ θ

θ
π

d�
= 16

3
a3 sin cosφ φ φ

π
7

0
2 2⋅� d Put 

2
θ

φ=

= 2 × 
16
3

a3 
−�
�
�

	


�

cos8

0

2

8
φ

π

 = 
4
3

 a3.

������	 ��� Evaluate 
0
2
π

�  r drd
a

a 2
1

θ
θ−� cos� �

.

����
0
2
π

�  dθ r dr
a

a 2

1−� cosθ� � = dθ
π

0
2�  

r

a

a3

1
3
�
��
	

� −cosθ� �

= dθ
π

0
2�  

a a3 3 3

3
1

3
−

−�
�
�

�
�
�

cosθ� �

=
a3

3
 1 1 3

0
2 − −� cosθ
π

� �  dθ

=
a3

3
 1 1 3 3 2 3

0
2 − − + −� cos cos cosθ θ θ
π

�   dθ

=
a3

3
 3 3 2 3

0
2 cos cos cosθ θ θ
π

− +� �   dθ

=
a3

3
 3 3

1
2 2

2
3 10

2sin θ
π

π

− +
⋅

�

�
�
�

	



�
�

=
a3

3
 3

3
4

2
3

− +�
��

	

�

π

=
a3

36
 [44 – 9π].

����	 ���
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������	 ��� Evaluate 
0

π�  r d dr
a 3
0

θ
θ�

����	 We have I =
0

π�  r d dr
a 3
0

θ
θ�

=
0

π�  r dr
a 3

0

θ���� 	

�  dθ

=
0

π� r
a4

0
4

�
�
�
	


�

θ

 dθ

=
1
4

 a d4 4
0

θ θ
π�

=
a 4

4
 

θ
π5

0
5

�
�
�
	


�  = 

a4 5

20
π

.

������	 ��� Evaluate 
0

π� r d dr
a 3
0

1
sin cos

cos
θ θ θ

θ+� � � .

����	 We have I = sin cosθ θ
π

0�  r dr
a 3

0

1+����
	

�

cosθ� �
 dθ

sin cosθ θ
π

0�  
r

d
a4

0

1

4

�

�
�
�
	



�
�

+cosθ

θ
� �

=
a4

4
 1 4

0
+� cos θ

π� �  sin θ cos θ dθ

Put 1 + cos θ = t and – sin θ dθ = dt

=
a 4

4
 t t dt4

2

0
1− −� � �� �

=
a 4

4
 t t5 4

0

2
−� �   dt = 

16
15

 a4.

EXERCISE 4.1

�� Evaluate 
1

8log

�  ex y
y

+�
0

log

 dx dy. �
 .   log 8 –  16 +  8 e

�� Evaluate 
0

1

� dy dx

x y

x

1 2 2
0

1 2

+ +

+

� . �
 .  
4

 log 2
π

+�
��

	

�

1� 

��
0

2
π

�  cos x y+� � �
0

2
π

 dy dx. �
 .  –  2

��
0

a

�  a x y dx dy
a y 2 2 2

0

2 2

− −
−� . �
 .  

6
πa3�

�
�
�

	


�
�
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��
0

1

�  e dx dy
x
y

x

0

2

� . �
 .  
1
2

�
��

	

�

�� Evaluate xy y
S

−�� 2  dy dx where S is the triangle with vertices (0, 0), (10, 1) and (1, 1).

�
 .  6

�� Evaluate x y
S

2 2+�� �   dx dy, where S is the area enclosed by the curves, y = 4x, x + y = 3,

y = 0 and y = 2. �
 .  
463
48

�
��

	

�

�� Evaluate x y2 2��  dx dy over the region x2 + y2 ≤ 1. �
 .  
24
π�

��
	

�

�� Evaluate x y2 2+�� �   dx dy over the region bounded by x = 0, y = 0, x + y = 1.

�
 .
1
6

�
��

	

�

��� Evaluate 
xy

yA 1 2−
��  dx dy, where the region of integration is the positive quadrant of the

circle x2 + y2 = 1. �
 .  
1
6

�
��

	

�

��� Evaluate xy��  dx dy over the region in the positive quadrant for which x + y ≤ 1.

�
 .  
1

24
�
��

	

�

��� Evaluate −� 1 2

1
 x y

x

x 21
+

−

+� �   dy dx. �
 �
63
32

�
��

	

�

��� 4 2xy y
D

−�� �   dx dy, where D is the rectangle bounded by x = 1, x = 2, y = 0, y = 3.

�
 �  18

��� 1 + +�� x y
A

� �  dx dy, A is the region bounded by the lines y = – x, x = y, y = 2, y = 0.

Hint:  Limits  :  –  to  :  0 to 2x y y y; . �
 �
44
15

2 +
13
3

 �
��

	

�

���
0

1� 1 2 2 1

0

1 2

+ +
−+� x y

x
�   dx dy. �
 �

π
4

log 1+ 2  � �
��

	

�

��� Evaluate y dx dy
A�� , where A is bounded by the parabolas y2 = 4x and x2 = 4y.

�
 �  
48
5

�
��

	

���� Show that 

x y

x y
dy

−

+

�

�
�
�

	



�
��� � �20

1

0

1

 dx ≠ 
0

1�
x y

x y
dx

−

+

�

�
�
�

	



�
�� � �20

1

 dy.
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��� Evaluate 
0

1� 1 2
2

+� xy
y

y
�   dx dy. �
 �

41
240

�
��

	

�

��� x y
A

2 2+�� �   dx dy, where A is bounded by x2 + y2 = a2 and x2 + y2 = b2, where b > a.

�
 �
π
2

4 4b a−�
��

	

�� 

���
3

4� dy dx

x y+
⋅� � �21

2
�
 � log

25
24
�
��
�
��

�
��

	

�

! �
�	 ����	 "���#�
�� 	 �$����	 �%�	 &����'�
�	 #��(��	 �
������

���
0

π

� r dr d3
2

4
θ

θ

θ

sin

sin
.� �
 �

45
2
π�

��
	

�

���

0

π

� ρ θ ρ θ
θ

sin .
cos

d d
0� �
 �

1
3

�
��

	

�

���
0

π

� r dr d
a 3

0
sin cos .θ θ θ� �
 � 0

��� r dr d3 θ�� , over the area bounded between the circles r = 2 cos θ and r = 4 cos θ.

�
 �
45
2

π�
��

	

�

��� Show that r dr d
R

2 sin θ θ��  = 
2

3

3a
, where r is the region bounded by the semicircle

r = 2a cosθ.

���
0
2
π

�  r d drn na
sin cosθ θ θ

0� , for n + 1 > 0. �
 �
a

n

n+

+

�

�
�
�

	



�
�

1

21� �

4.5 CHANGE OF THE ORDER OF INTEGRATION

If the limits of x  and y are constant then F x y,� ���  dx dy can be integrated in either order, but

if the limits of y are functions of x, then the new limits of x in functions of y are to be determined.
The best method is by geometrical consideration.

Thus in several problems, the evaluation of double integral becomes easier with the change
of order of integration, which of course, changes the limits of integration also.

)���*�	 If y depends on x and we want that x depend on y i.e., x = f (y) then construct a
strip parallel to x-axis.

������	�� Evaluate the integral 
0

∞

� x
x
y

x

exp −
�
��

�
���

2

0

 dx dy by changing the order of integration.

(U.P.T.U., 2005)
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����	 Here y = 0 and y = x
x = 0 and x = ∞

Here x start from x = y and goes to x → ∞ and
y varies from y = 0 to y → ∞

∴
0

∞

� x
x
y

x

exp −
�
��

�
���

2

0
 dx dy

=
y

x
y

x y

xe dy dx
=

∞ −

=

∞

� � ⋅
0

2

=
0

∞

�  − −
�

�
�
�

�

�
�
�

−∞

� y x
y

e
x
y

y
2

2
2

dy dx

=
0

∞

� −
�

�
�
�

	



�
�

−
∞

y
e

x
y

y2

2

 dy Put   –  
2

2 2

ye t
x
y

e dx dt
x
y

x− −
= ⇒ =.

=
0

∞

�  0
2

2

+
�

�
�
�

	



�
�

−y
e

y
y

 
 dy = 

y
e dyy

2
0

–
∞

�
=

y
e ey y

2
1
2 0

− −�
��

	

�

− −
∞

�  �  (Integration by parts)

= (0 – 0) + 0
1
2

+���
�
��  = 

1
2

.

������	 �� Change the order of integration in 
0

a� f x yx
a

a x
,� �2

2 −�  dx dy. (U.P.T.U., 2007)

����	 Here the limits are
x2 = ay and y = 2a – x

i.e., x2 = ay and x + y = 2a
also x = 0 and x = a

 Now
0

a� f x y dx dyx
a

a x
,� �2

2 −�

=
0

a� f x y dy dx
ay

,� �
0�

+ 
a

a2� f x y dy dx
a y

,� �
0

2 −� .

������	 �� Evaluate 
0

2� dx dy
ex

1� changing the order of integration. (U.P.T.U., 2003)

����	 The given limits are x = 0, x = 2, y = 1 and y = ex.

Here
0

2� dx dy
ex

1� =
1

2e� dy dx
x y=� log

2
As  varies from  =  log  to  =  2x  x y x

Y

y 
= 

x

x ���

x ���

XO

O x = a

L A (a, a)

x  = ay
2

x + y = 2a

B (0, 2a)

����	 ����

����	 ����
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O x = 2
X

B
y = 1

(0, 1)
A

y =
 e

 
 x 

= lo
g y

x �

C (2, e )
2

Y

����	 ����

= 2
1

2

−� log y
e
� �  dy

= 2
1

2

y y y y
e− +log� �  = 3

1

2

y y y e− log� �
= (3e2 – 2e2) – 3
= e2 – 3.

������	 ��  
−� 2

1
dy dx

x x

x
2 4

3 2

+

+� .

����	Here the curves y = x2 + 4x, and the straight lines y = 3x + 2, x = – 2 and x = 1 as shown

shaded in Figure 4.13. Here A(– 2, – 4) B (0, 0), E (1, 5), F (0, 2), G −���
�
��

2
3

0, .

Considering horizontal strip, x varies from the

upper curve x = 4 2+ −y  the lower curve

x = 
y −�
��

�
��

2
3

 and then y varies from – 4 to 5.

Changing the order of integration to first x and later
to y, the double integral becomes

=
–2

1�  dy dx
y x x

x

= +

+� 2 4

3 2

=
−� 4

5
 dx dy

x
y

y

=
−

+ −� 2

3

4 2

=
−� 4

5
 y

y
+ − −

−�
��

�
��

�
��

	

�

4 2
2

3
 dy

=
2
3

4
6

4
3

3
2

2

4

5

y
y

y+ − −
�

�
�
�

	



�
�−

� �  = 
9
2

.

A

Gx = –2

B (0,0)
X

x = 1

F (0, 2)

y = x  + 4x
2

y = 3x + 2

E (1, 5)

Y

����	 ����
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������	�� Change the order of integration in I = 
0

1� xy dx dy
x

x
2

2−�  and hence evaluate the

same. (U.P.T.U., 2004)
����	 The limits are y = x2 and y = 2 – x

x = 0 and x = 1
The point of intersection of the parabola

y = x2 and the line y = 2 – x is B (1, 1).
We have taken a strip parallel to x axis in

the area OBC and second strip in the area ABC.

The limits of x in the area OBC are 0 and y

and the limits of x in the area ABC are 0 and
2 – y.

∴
0

1� xydxdy
x

x

2

2−� = y dy
0

1� xdx
y

0�  + y dy
1

2� x dx
y

0

2−�

= y dy
x

ydy
x

y y

0

1 2

0

2

0

2

1

2

2 2� ��

�
�
�
	



�
�

+
�

�
�
�
	



�
�

−

=
1
2

 y dy2

0

1 1
2

+�  y y2 2

1

2
−� � �  dy = 

1
2

 
y3

0

1

3

�
�
�
�
	


�
�  + 

1
2

 4 4 2 3

1

2
y y y− +� �   dy

=
1
6

 + 
1
2

 2
4
3 4

2 3
4

1

2

y y
y

− +
�
�
�
�

	


�
�

 = 1
6

 + 1
2

 8
32
3

4 2
4
3

1
4

− + − + −�
��

	

�

=
1
6

 + 
1
2

 
96 128 48 24 16 3

12
− + − + −�

��
	

�

=
1
6

 + 
5
24

=
9

24
 = 

3
8

.

������	 �� Change the order of integration in 
0

a

� φ x y dx dy

a x

x a

,� �
2 2

2

−

+

� .

����	 Here the limits are y = a x2 2−  and y = x + 2a and x = 0, x = a.

Now, y = x a2 2−  i.e., x2 + y2 = a2 is a circle and the straight line y = x + 2a and the limits

of x are given by the straight lines x = 0 and x = a.

The integral extends to all points in the space bounded by the axis of y the circle with centre
O, and the straight line x = a.

We draw BN, KP perpendiculars to AM.

Now the order of integration is to be changed. For this, we consider parallel strips.

The integral is broken into three parts.

Ist part is BAN, bounded by lines x = 0, x = a and the circle.

X
O

x = 0

C

x = 1 X

B (1, 1)

x = 0

x 
= 

 y

x = 2 – y

A
(0, 2)

Y

����	 ����
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2nd part is KPNB, bounded by lines y = a, y = 2a and
x = 0, x = a.

3rd part is triangle KPM bounded by the lines y = 2a,
y = x + 2a, x = a.

Hence
0

a� φ x y dx dy

a x

x a

,� �
� �2 2

2

−

+

�

=
0

a� φ x y dy dx

a y

a

,� �
2 2−
�  + 

a

a2�  φ x y dy dx
a

,� �
0�

= + 
2

3

a

a� φ x y dy dx
y a

a
,� �

−� 2
.

������	�� Change the order of integration and hence
evaluate

0

a� y dx dy

y a xax

a
2

4 2 2−
� .

����	 The limits are y2 = ax, y = a and x = 0, x = a, y = 0 to y = a

and x varies from x = 0 to x = 
y
a

2

.

By changing the order of integration. Hence, the given integral,

x

a

=� 0
 

y dx dy

y a xy ax

a 2

4 2 2−=� =
y

a

=� 0

y dy dx

y a xx

y a 2

4 2 20

2

−=�

=
1

0a

a� y dy dx

y
a

x

y
a

2

2 2
2

0

2

�
��
�
��

−

�

=
1 2

0
a

y
a

� sin− �
��
�
��

�

�
�
�

	



�
�

1
2

0

2

ax
y

dy

y
a

=
1 2

0a
y

a�  [sin–1 (1) – sin–1 (0)] dy

=
π
2a

 y dy
a 2

0�  = 
π
2 3

3

0
a

y
a�

��
�
��

=
π
6a

 (a3) = 
πa2

6
.

������	 �� By changing the order of integration of 
0

∞� e px dx dyxy−∞� sin
0

 show that

sin px
x0

∞� dx = 
π
2

· (U.P.T.U., 2004, 2008)

(2a, 0) O

B

A

x = 0
x = a

N (a, a)

(0, 2a)
P

M
(a, 3a)

x = y – 2a

K

O
y = 0 X

x = 0 x =
y
—a

2

A
y = a

Y

B

����	 ����

����	 ����
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����	 We have

0

∞� e px dx dyxy−∞� sin
0

= sin px e dyxy−∞∞ �� ���
���00

dx As the limits are constants.

=  sin px
e

x
dx

xy− ∞
∞

−
�
�
�
�

	


�
��

0
0

=
sin px

x0

∞�  dx ...(i)

Again
0

∞� e px dx dyxy−∞� sin
0

=
0

∞� e px dxxy−∞����
	

�

sin
0

dy

=
0

∞�  
−

+
+

�
�
�
�

	


�
�

− ∞
e

p y
p px y px

xy

2 2
0

cos sin� � dy

=
0

∞� p

p y2 2+
 dy = tan−

∞�
��
�
��

�

�
�
�

	



�
�

1

0

y
p

= 
π
2

...(ii)

Hence from (i) and (ii)

0

∞�  
sin px

x
 dx =

π
2

.  +�
"�	 ���$�#�

������	 �� Change the order of integration in the following integral and evaluate:

0

4a� dydxx
a

ax
2

4

2� ⋅

����	 The limits are y = 
x

a

2

4
 and y = 2 ax  and

x = 0, x = 4a.

From the parabola y2 = 4ax i.e., x = 
y

a

2

4
 and from

parabola x2 = 4ay i.e., x = 2 ay  i.e., x varies from 
y

a

2

4

to 2 ay .

 ∴
0

4a� dy dxx
a

ax
2

4

2� =
0

4a� dy dx
y

a

ay

2

4

2�

=
0

4a� 2
4

2
ay

y
a

−
�
��

�
��

 dy

= 2 3
2

12

3
2 3

0

4

a
y y

a

a

. −

�

�

�
�
�
�

	




�
�
�
�

 =
4
3 a  . 4

64
12

3
2

3

a
a
a

� � −

O

x  = 4ay
2

X

(4a, 4a)
A

y  = 4ax
2

Y

����	 ����
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=
32

3

2a
 – 

16
3

2a

=
16

3

2a
.

������	 ���	 Change the order of integration evaluate 
y

a x ax y
dx dy

y a

ya

− −�� � � 20 2
.

����	 Here the limits are x = 
y
a

2

 i.e., y2 = ax, x = y and y = 0, y = a

intersection point of parabola and line y = x is A(a, a).

Here x varies from 0 to a and y varies from x to ax

∴  
y

a x ax y
dx dy

y a

ya

− −�� � � 20 2

= 
y

a x ax y
dy dx

x

axa

− −�� � � 20

=
1 2 1 2

0 a x
ax y dx

x

axa

−
− −�
��

	

�� � � � 

ax y t
ydy dt

y

ax y
dy ax y

− =
− =

−
= − −�

2

2

2 1 2

2

� 

=
1

0 2 1 2

0 a x
ax x dx

a

−
+ −�

��
	

�� � 

= ax x
a x

dx
x a x

a x
dx

x

a x
dx

aaa −
−

=
−

−
=

−���
2

000 � � � �
Let x = a sin2 θ i.e., dx = 2a sin θ cos θ dθ

=
a

a

. sin

. cos

θ
θ

π
0

2�  . 2a sin θ cos θ dθ

= 2 2
1 2

2
1 22

0
2

0
2

0
2

a d a a dsin
cos

cosθ θ
θ

θ θ
π π π

=
−�

��
�
�� = −� � � � �

= a a
aθ

θ π ππ
−�

��
	

�

= −�
��

	

�

=
sin

.
2

2 2
0

20

2

4.6 CHANGE OF VARIABLES IN A MULTIPLE INTEGRAL

Sometimes it becomes easier to evaluate definite integrals by changing one system of variables to
another system of variables, such as cartesian coordinates system to polar coordinates system.

O

(0,0)

Y

Q
y = ax 2

P y 
= x 

A(a, a) 

X

����	 ����
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Let us consider the transformation of

= F x y dx dy
S

,� ��� ...(i)

when the variables are changed from x and y to u and v by the relations
x = φ (u, v), y = ψ (u, v) ...(ii)

Let these relations transform the function F (x, y) to F (u, v) to express dx dy in terms of new
variables u, v, we proceed as follows:

First solve equations (ii) for u, v, to get
u = F1 (x, y) and v = F2 (x, y) ..(iii)

Then u = constant and v = constant form two systems
of curves in the xy-plane. Divide the region S into
elementary areas by the curve u = constant, u + δu
= constant, v = constant and v + δv = constant.

Let P be the intersection of u = constant and
v = constant, and Q is the intersection of u + δu = constant
and v = constant.

Thus, if P is the point (x, y), so that x = φ (u, v),
y = ψ (u, v)

Then Q is the point
[( φ(u + δu, v), ψ (u + δu, v)]
Now using Taylor ’s theorem to the first order of

approximation, we obtain

φ (u + δu, v) = φ (u, v) + 
δφ
δu

δu

and ψ (u + δu, v) = ψ (u, v) + 
δψ
δu

 δu

Therefore, the coordinates of Q are x
x
u

u y
y
u

u+ +�
��

�
��

δ
δ

δ
δ
δ

δ,
As =x u v

y u v

φ
ψ

,

,

� �
� �=

 Similarly, P′ is the point x
x
v

v y
y
v

v+ +�
��

�
��

δ
δ

δ
δ
δ

δ,

and Q′  is the point x
x
u

u
x
v

v y
y
u

u
y
v

v+ + + +�
��

�
��

δ
δ

δ δ
δ

δ
δ
δ

δ
δ
δ

δ,

Therefore, to the first order of approximation PQQ′  P′ will be a parallelogram and its area
would be double that of the triangle PQP′ .

Hence the elementary area PQP′  Q′ = [2 ∆ PQP′]

= 2 × 
1
2

 

x y

x
x
u

u y
y
u

u

x
x
v

v y
y
v

v

1

1

1

+ +

+ +

δ
δ

δ
δ
δ

δ

δ
δ

δ
δ
δ

δ

=  

x y
x
u

u
y
u

u

x
v

v
y
v

v

1

0

0

δ
δ

δ
δ
δ

δ

δ
δ

δ
δ
δ

δ

 = 

δ
δ

δ
δ

δ
δ

δ
δ

δ δ

x
u

y
u

x
v

y
v

u v.

O
X

Y

P�

Q�

v + v�

u + u�

Q

P

v

u

����	 ����
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=
δ
δ

x y

u v

,

,
� �
� �

. δu δv = J.δu δv ..(iv)

Thus, if the whole region S be divided into elementary areas by the system of curves
F1 = constant and F2 = constant then, we have

lim Σ F (x, y) δS = lim ΣF (u, v) J . δu δv

i.e., F x y dx dy
S

,� ��� = F u v J du dv
S

,� ��� ...(v)

J =
δ
δ

x y

u v

,

,
� �
� �  = 

δ
δ

δ
δ

δ
δ

δ
δ

x
u

y
u

x
v

y
v

  or  

δ
δ

δ
δ

δ
δ

δ
δ

x
u

x
v

y
u

y
v

Hence, dx dy =

δ
δ

δ
δ

δ
δ

δ
δ

x
u

y
u

x
v

y
v

 du dv.

������	 ��� Transform to polar coordinates and integrates

1

1

2 2

2 2

− −
+ +

�
��

�
���� x y

x y  dx dy

the integral being extended over all positive values of x and y subject to x2 + y2 ≤ 1.
����	 Put x = r cos θ, y = r sin θ

then
δ
δ θ

x y

r

,

,
� �
� � =

δ
δ

δ
δθ

δ
δ

δ
δθ

x
r

x

y
r

y  = 
cos sin
sin cos

θ θ
θ θ

r

r
 = r

Therefore, dx dy = rdθ dr and limits of r are from 0 to 1 and those of θ from 0 to 
π
2

,

Hence I =
1

1

2 2

2 2

− −
+ +

�
��

�
���� x y

x y
 dx dy

=  
1
1

2

20

1

0
2 −

+

�
��

�
���� r

r

π

 r dθ dr

=
π
2

1

1

2

20

1 −
+

�
��

�
��� r

r
r dr

Now, suppose r2 = cos φ, 2rdr = – sin φ dφ

=
π
2

1
2

1
12

0 −
+

�
��

�
��� cos

cos
φ
φπ  (– sin φ) dφ
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=
π
4

1
0
2 −� cos φ
π
� � dφ As 

0
F x dx F x dx

a

a � � � �= �� –
0

= π
4

φ φ
π

− sin 0
2  = 

π π
4 2

1−�
��

�
�� .

������	��� Evaluate x y
R

+�� � �2  dx dy, where R is region bounded by the parallelogram

x + y = 0, x + y = 2, 3x – 2y = 0, 3x – 2y = 3. (U.P.T.U., 2006)
����	 By changing the variables x, y to the new variables u, v, by the substitution x + y = u,

3x – 2y = v, the given parallelogram R reduces to a rectangle R* as shown in the Figure 4.20.

δ
δ

v v
x y

,
,
� �
� � =

δ
δ

δ
δ

δ
δ

δ
δ

u
x

u
y

v
x

v
y

 = 
1 1
3 2−

 = – 5

x + y = 0

x + y = 2

RO 3x
 –

 2
y =

 3

3x
 –

 2
y =

 0

Y

X R*

v = 3

v

u

u = 2

O

����	 ����

So required Jacobian J =
δ
δ

x y

u v

,

,
� �
� �  = – 

1
5

Since u = x + y = 0 and u = x + y = 2, u varies from 0 to 2, while v varies from 0 to 3 since
3x – 2y = v = 0, 3x – 2y = v = 3.

Thus, the given integral in terms of the new variables u, v is

x y
R

+�� � �2  dx dy = u
R

2 1
* –5��  du dv

=
1
5

u du dv2
0

2

0

3��
=

1
5 3

3

0

2

0

3 u�
��
	

�� dv v= ⋅

8
15

0
3  = 

8
5

.

������	 ��� e x y− +∞∞ �� 2 2

00

� � dx dy by changing to polar coordinates hence, show that

e x−∞� 2

0
dx = 

π
2

. (U.P.T.U., 2002)

����	 Let x = r cos θ, y = r sin θ
⇒ x2 + y2 = r2

Here r varies from 0 to ∞

and θ = tan–1 
y
x
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Now, θ = tan–1 0 = 0, θ = tan–1 ∞ = 
π
2

⇒ θ  varies from 0 to 
π
2

Hence, e x y− +∞∞ �� 2 2

00

� � dx dy = e r dr dr−∞�� 2

00
2 θ
π

= –
1
2

  − −∞�� 2
2

00
2 r e r� �
π

 dr dθ = –
1
2

e r−
∞

� 2

00
2
π

 dθ

= –
1
2

  0 1
0
2 −� � �
π

 dθ = 
1
2 1

0
2 dθ
π

�  = 
π
4

.

Let I = e x−∞� 2

0
 dx ...(i)

I = e y−∞� 2

0
 dy ...(ii)

[Property of definite integrals]
Multiplying (i) and (ii), we get

I2 = e
x y− +∞∞ ��

2 2

00

�   dx dy = 
π
4

.

[As obtained above]

I =
π
4

 = 
π

2
. ,��$�#�

������	���	 Evaluate x y
x 2 2

00

1
+��  dx dy, the transformation is x = u, y = uv.

����	Region of integration R is the triangle bounded
by y = 0, x = 1 and y = x

Put x = u, y = uv

J = Jacobian = 
δ
δ

x y

u v

,

,
� �
� �  = 

δ
δ

δ
δ

δ
δ

δ
δ

x
u

x
v

y
u

y
v

=
1 0
v u  = u

In the given region R, x: varies from 0 to 1 while y
varies from 0 to x. Since u = x, so u varies from 0 to 1.

Similarly, since 0 ≤ y = uv ≤ x = u, so v varies from
0 to 1. Thus

= x y
x 2 2

00

1
+��  dx dy

= u v1 2

0

1

0

1
+�� udu dv = 

1
3

1 2

0

1
+� v  dv

O
r = 0

� = 0
X

r ���

Y

O (0, 0) A (1, 0)
X

R x = 1

y = x

B (1, 1)
Y

����	 ����

����	 ����
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1
3

 
v v

h v
1

2
1
2

2

1

0

1

+
+

�

�

�
�
�

	




�
�
�

−� 
sin

=
1
3

 
2

2
1
2

11+
�
�
��

	


��

−sin .h

������	���	Evaluate x y
R

+�� � �2  dx dy, where R is the parallelogram in the xy-plane with

vertices (1, 0), (3, 1), (2, 2), (0, 1) using the transformation u = x + y and v = x – 2y.
(U.P.T.U., 2003)

����	 Since u = x + y and v = x – 2y
∴  u = 1 + 0 = 1, v = 1 – 0 = 1
Similarly, u = 4 v = 1, u = 4, v = – 2

and u = 1, v = – 2

and J =

2
3

1
3

1
3

1
3
−

 = − 1
3

∴  dx dy = J  du dv = 
1
3

 du dv

Thus, x y
R

+�� � �2  dx dy = u2

1

41 1
3

.
–2��  du dv

=
1
3 3

3

1

4
1 u�
�
�
	


��–2  dv = 7

1
dv

–2�  = 21.

������	 ���	 Evaluate the following by changing into polar coordinates

y x y dy dx
a ya

2 2 2

00

2 2

+
−�� . (U.P.T.U., 2007)

����	 Here y = 0, y = a and x = 0, x = a y2 2−

Let x = r cos θ, y = r sin θ ∴ x2 + y2 = r2 or r = a

Also, when x = 0, r cos θ = 0 ⇒  r = 0, or θ = 
π
2

when y = 0, r sin θ = 0 ⇒  r = 0 or θ = 0

when y = a, r sin θ = a ⇒  a sin θ = a ⇒  θ = 
π
2

Hence, we have

y x y dy dx
a ya

2 2 2

00

2 2

. +
−�� = r r r dr d d r dr

a

r

a 2 2 2 4
00

2

00

2
sin . sin . .θ θ θ θ

π
θ
π

= ���� ==

v

A (1, 1) v = 1 B (4, 1)

O u

u = 4

u = 1

V = –2 C (4, –2)D
(1, –2)

����	 ����
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=
a

d
a5 5

0

2

0

2

5
1 2

2 10
2

2
−�

��
�
�� = −�

��
	

�� cos sinθ θ θ θ ππ

=
πa5

20
.

������	 ���	 Transform 
sin
sin

φ
θ

φ θ
ππ

d d
0

2

0

2 ��  by the transformation x = sin φ cos θ,

y = sin φ. sin θ and show that its value is π.
����	 We have x = sin φ cos θ, y = sin φ sin θ

∴ x2 + y2 = sin2 φ and θ = tan–1 
y
x

when θ = 0, tan–1 
y
x

 = 0 ⇒  y = 0

when θ =
π
2

, tan–1 
y
x

 = 
π
2

 ⇒  x = 0

when φ = 0, x2 + y2 = 0 ⇒  x = 0 or y = 0

when φ =
π
2

, x2 + y2 = 1

Now J =

∂
∂θ

∂
∂φ

∂
∂θ

∂
∂φ

=
−

x x

y y
sin .cos cos cos

sin cos cos sin
φ θ φ θ

φ θ φ θ
 = – sin φ cos φ

∴ dφ dθ =
1 1
J

dxdy dxdy=
sin cos

.
φ φ

Thus sin
sin

φ
θ

φ θ
ππ

d d
0

2

0

2 �� =
sin
sin sin cos

φ
θ φ φ

⋅ ⋅
−�� 1

0

1

0

1 2

dy dx
y

=
1

0

1

0

1 2

cos sin sinφ φ φ
⋅

−�� dy dx
y

=
1

1 20

1

0

1 2

−�
�

�
�

−��
sin φ y

dy dx
y

=
dy dx

x y y

dy dx

y x y

yy

1 12 2 2 20

1

0

1

0

1

0

1 22

− + ⋅
=

− −

−− ����
�  � 

= sin−

−

−

−

�

�
�
�

	



�
� ⋅ = �� 1

2
0

1

1 2
0

1

0

1

1 2

2

x

y

dy

y
y dy

y

π

=
π π
2

2 1 2
0

1
y = . ������ ���	�
�

x=0

B (0,1)

O

x +y =1
2 2

A
(1,0)

����	 ����
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EXERCISE 4.2

-%
��	 �%�	 ��#��	 �&	 �
�������
	 
#	 �%�
	 �$����	 �%�	 &����'�
�	 #��(��	 �
����� .

�� y
y

y 24 2

0

2

3�� dx dy. �
 .  
160
21

�
��

	

�

�� x y+�� � �
3

4

1

2
dx dy. �
 .  5

�� f x y
y

y
,� �2

1 3

0

1�� dx dy. �
 .  
0

1
f x y dy dx

x

x
,� �3���

��
	

�

�� f x y
x

x
,

–

–

–1
� �

22 2

�� dy dx. �
 .  
–

2 -

–2

1
f x y dx dy f x y dx dy

y

y

y

y
, ,� � � �+

�

�
�
�

	



�
�� ��� − −

−

2

2

1

2

�� y dx dy
y

y

− −

−�� 4 2

4 2

0

2
2

2

. �
 .  
8
3

�
��

	

�

�� x y
x
a

x
a

a 2 2
0

+�� �  dy dx. �
 .  
28

3a a
+

�
�
�
�

	


�
�20

�� dx dy
ay ya

0

2

0

2 2−�� . �
 .  
2

πa2�
�
�
�

	


�
�

�� a x y
a xa 2 2 2

00

2 2

− −
−�� dy dx. �
 .  

πa
a

3�
�
�
�

	


�
�

-%
��	 �%�	 &����'�
�	 �
����� 	 �
	 ��	 ����	 "���#�
�� 	 
#	  %�'	 �%�

��
1

2 20 x yy

aa

+��  dy dx = 
πa
4

.

��� x y
x

x x 2 22

0

1 2

+
−�� � 

�   dx dy = 
3
8
π

 –1.

��� y x y
a xa 2 2

00

2 2

+
−�� � 

� �
 dx dy = 

πa5

20
.

�$����	 �%�	 &����'�
�	 (/	 "%
��
�	 �%�	 ��#��	 �&	 �
�������
.

��� x dy dx
bx aa

00 �� . �
 .  
1
3

a b2�
��

	

�

��� xy dx dy
a
b

b yb

00

2 2−�� � �
. �
 .  

8

2 2a b�
�
�
�

	


�
�
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���        xy dx dy
a a y

a a y
a

− −

+ −

��
2 2

2 2

0
. �
 .=�

��
	

�

2
3

a4  

��� dy dxx
a

axa
2

4

2

0

4 �� . �
 . =
�
�
�
�

	


�
�

16
3

2a
 

��� x y dx dy x y dx dy
y2 2 2 2

0

2

1

2

0

1

0

1
+ + +

−���� �  �  . �
 .=�
��

	

�

5
3

 

���
1

0

1

log y
dx dy

e

e

x
⋅�� �
 .= −e 1

���
e
y

y

x

−∞∞ ��0  dx dy. �
 . = 1 

-%
��	 �%�	 ��#��	 �&	 �
�������
	 �
	 �%�	 &����'�
�	 �
����� .

��� V x y
mx

lxa
,� ���0  dx dy. �
 . V x y dy dx V x y dy dxy

l

a

ma

la

y l

y mma
, , .� � � �+

�

�
�
�

	



�
�����0

���       Vdx dy

ax x

ax
a

.

2

2

0

2

2−

��
� 

� �

�
 . Vdy dx Vdy dx Vdy dx
a a y

a

y
a

a

a

aa
y

a

a a ya
+ +

�

�

�
�
�

	




�
�
�+ −

− − � �����
2 2

2 2 2

2
2

22

02
2

0

� 

��� f x y
x a

a x

a

a a
,

tan

cos � �� 2 2−��  dx dy. Ans. , ,
sin

cotsin
f x y dy dx f x y dy dx

a x

a a

ay aa a
� � � �� �

+
�

�
�
�

	



�
�

−���� 000

2 2

��� x y
x

x 2 2
1

2 2

+�� �  dx dy. �
 . 9
61

105
�
��

	

�

���
x dx dy

x yx

x

2 2

2

0

1 2

+

−��
� 

� �
. �
 . 1

2
2

−
�
�
��

	


��

��� Using the transformation x + y = u, y = uv show that

e x yyx
/ +

−�� � �
0

1

0

1
	dy dx = 

1
2

(e – 1).

��� [ ]xy x y1
1
2− −�� � �  dx dy = 

2
105

π
,  integration being taken over the area of the triangle

bounded by the lines x = 0, y = 0, x + y = 1.
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��� y x
D

−�� � �  dx dy, D: region in xy-plane bounded by the straight lines y = x + 4,

y = x – 3, y = – 
1
3

x + 
7
3

, y = – 
1
3

x + 5. �
 . 8

��� x y
R

+�� � �2 dx dy. R: parallelogram in the xy-plane with vertices (1, 0), (3, 1), (2, 2), (0, 1).

�
 . 21

��� x y x y
De

− +�� � � � �/  dx dy, D: triangle bounded by y = 0, x = 1 and y = x. Use x = u – uv,

y = uv to transfrom the double integrals. �
 .
e

e

2 1

4

−�

�
�
�

	



�
�

� 

��� Find r dr d
a 3

00
sin cosθ θ θ

π ��  by transforming it into cartesian coordinate. �
 .= 0

4.7 BETA AND GAMMA FUNCTIONS (U.P.T.U., 2007)

The first and second Eulerian Integrals which are also called “Beta and Gamma functions”
respectively are defined as follows:

β (m, n) = x xm n− −−� 1 1

0

1
1� �  dx

and n = e x dxx n− −∞� 1
0

[U.P.T.U. (C.O.), 2003]

β (m, n) is read as “Beta m, n” and n  is read as “Gamma n”. Here the quantities m and

n are positive numbers which may or may not be integrals.

4.7.1  Properties of Beta and Gamma Functions
01	 2%�	 &�
"���
	 βββββ	 0�3	 �1	 � 	  /������"�	 '�����	 �3	 �	 �����

βββββ	 0�3	 
1 4 βββββ	 0
3	 �1

we have β (m, n) = x xm n− −� −1

0

1 11� �  dx

putting 1 – x =  t ⇒  dx = – dt

= − − ⋅ = − ⋅− − − −� �1 11
1

0 1 1
0

1 1t t dt t t dtm n m n� � � �

= 1 1

0

1 1– x xm n� � − −⋅� · dx = x xn m− −� 1
0

1 11 –� �  By f t dt f x dx
a

b

a

b
� � � �� �=�

�
�
�

⇒ β  (m, n) = β (n, m)   .
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���� ������	
��� �� ��	�� ����	
��� βββββ� ���� ��

βββββ� ���� �� �
m n

m n

− −

+ −

1 1

1� � ���
m n

m n+
(U.P.T.U., 2008)

We have β (m, n) = xm−� 1

0

1
(1 – x)n–1. dx

=
x
m

x
m

n1 1

0

1

−
�
�
�

�
�
	−� �  + 

n
m
−1� �

 xm

0

1�  (1 – x)n – 2 · dx

(Integrate by part)

or β (m, n) =
n

m
−1� �

 xm

0

1�  (1 – x)n – 2. dx

Again integrate by parts above, we get

β (m, n) =
n

m

−1� �
. 

n

m

−
+

2
1

� �
 xm+� 1

0

1
(1 – x)n – 3. dx

Continuing the above process of integrating by parts

β (m, n) =
n n

m m m n
− − ⋅
+ + −
1 2 2 1
1 2

� �� �
� � � �

...
...

 xm n+ −� 2

0

1
. dx

or βββββ� ���� �� �
� �

� � � � � �

−

+ + − + −� � �� � � �� �. . .
...(i)

n is a positive integer
In case n is alone a positive integer.
Similarly, if m is positive integer, then β (m, n) = β (n, m)

βββββ� ���� �� �
m

n n n m

−

+ + −

1

1 1� � � �...
...(ii)

In case both m and n are positive integer, then multiplying (i) numerator and denominator
by 1·2·3... (m – 1) or (ii) by 1·2·3... (n – 1), then, we get

β (m, n) =
1 2 3 1 1

1 2 3 1 1 1

⋅ ⋅ − −

⋅ ⋅ − ⋅ + + −

....

... ...

m n

m m m m n

� �
� � � � � �

or β (m, n) =
m n

m n

− −

+ −

1 1

1
 = 

m n

m n+
    .

���� ������	
��� �� ������ ����	
��

n � ��� �� ��� n −1 ���� n + 1 ��� n n ��� n

we know that n = x en x− −
∞

� 1

0

. · dx

Integrating by parts keeping xn–1 as first function

n = − ⋅ − ∞
e xx n– 1

0
 + (n – 1) x en x− −

∞

⋅� 2

0

dx
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= – lim –

x

x ne x
→∞

−⋅ +�
��

�
�	

1 0  + (n – 1) x en x− −
∞

� 2

0

. dx ...(i)

As lim .–

x

x ne x
→

− =
0

1 0

But lim
x → ∞

 e–x · xn–1 = lim
x → ∞

· 
x

e

n

x

−1

 = lim
x → ∞

 x
x x x

n

n

n

−

+ + + + +

1

2

1
1 2

... ...

= lim
x → ∞

1
1 1 1

21 2 3x x xn n n− − −+ +
⋅

...
 = 

1
∞

 = 0

∴  From (i), we get

n = 0 + (n – 1) x en x− −
∞

⋅� 2

0

dx = (n – 1) x en x− − −
∞

⋅� 1 1

0

� � dx

⇒ n = (n – 1) n −1   . ...(ii)

Replace n by n + 1 in equation (ii) then, we get

n +1 = n n    . ...(iii)

��� n +1 = n

from (i) n = (n – 1) (n – 2) .... 3. 2. 1

n = n −1

replace n by (n + 1), then

n +1 = n     .

4.8 TRANSFORMATIONS OF GAMMA FUNCTION

We have n = e xx n− −∞� 1

0
 dx ...(i)

� ���� Put  x = λy or dx = λ dy

Then from (i), we get n = e yy n− −∞� λ λ
 � 1

0
 λ dy

= λn e yy n− −∞� λ 1

0
 dy

or yn−∞� 1

0
 e–λy dy =

n
nλ

...(ii)
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� ��� Put xn = z in (i) then nxn–1 dx = dz and x = z1/n

∴  From (i), we get n = e z n−∞� 1

0

1
n
�
�
�
��  dz

or e z n−∞� 1

0
dz = n n  = n +1� � ...(iii)

 ���� Put e–x = t in (i).

Then – e–x dx = dt and ex = 
1
t

∴  From (i), we get n = – log t
n
 � −� 1

1

0
(–dt)

= log
1

1

0

1

t

n�
�
�
��

�
��

�
�	

−

�  dt

∴ log
1

1

0

1

t

n�
�
�
��

�
��

�
�	

−

�  dt = n ...(iv)

� ������������  
1
2
�
�
�
�� . Putting n = 

1
2

 in (iii), we get

1
2

1
2

= e z−∞� 2

0
 dz = 

1
2

π As 
0

e dxx−∞
=� 2

2
π

or
1
2

= π� �    .

4.9 TRANSFORMATIONS OF BETA FUNCTION

We know that β (m, n) = xm−� 1

0

1
 (1 – x) n–1 dx ...(i)

���� Putting x = 1
1 + y

 or dx = –
1

1 2+ y
 �
 dy

Also (1 – x) = 1 – 
1

1 + y
 = 

y
y1 +
 �

Also, when x = 0 then y = ∞ and when x = 1 then y = 0

∴  From (i), we get β (m, n) =
1

1 1
1

1

1 1

2

0

+
�
�

�
��

⋅
+

�
�

�
��

−

+

�
��
��

�
��
��

− −

∞� y

y

y y
dy

m n


 �

=
y dy

y

n

m n

−

− + − +

∞

+�
1

1 1 20 1
 �

or β (m, n) =
y dy

y

n

m n

−

+

∞

+�
1

0 1
 �
...(ii)
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��� Also, as β (m, n) = β (n, m),
therefore interchanging m and n in (ii), we have

β (n, m) =
y dy

y

m

m n

−

+
∞

+
�

1

0 1
 �
    . (U.P.T.U., 2008)

4.10 RELATION BETWEEN BETA AND GAMMA FUNCTIONS

[U.P.T.U. (C.O.), 2002, U.P.T.U., 2003]

We know that y e dyn xy−∞� 1

0

– =
n

xn [ § 4.8 eqn. (ii)]

or n = x y e dyn n xy− −∞� 1
0

...(i)

Also m = x e dxm x− −∞� 1
0

...(ii)

Multiplying both sides of (i) by xm –1 e–x, we get

n x em x⋅ − −1 = x y e dyn m n y x+ − − − +∞� 1 1 1

0

 �

Integrating both sides with respect to x within limits x = 0 to x = ∞, we have

n  x e dxm x− −∞� 1

0
= x e dx y dyn m y x n+ − − + −∞∞ �� ��� �

�	
1 1 1

00


 �

But x e dxn m y x+ − − +∞� � � 
 �1 1

0
=

n m

y
m n

+

+ +
� �

 �1

...(iii)

[by putting λ = 1 + y and ‘n’ = m + n in 4.8 on (ii)]
Using this result in (ii), we get

n  m = n m
y

y
dy

n

m n+ ⋅
+

−

+
∞� � �


 �

1

0 1

= m n
y dy

y

n

m n+
+

−

+
∞�
 �

 �

1

0 1

= m n m n+ ⋅
 � 
 �β ,

∴ β  (m, n) =
m n

m n

⋅
+

   .

4.11 SOME IMPORTANT DEDUCTIONS

���� ��� ������ 	 �	� n  1 −( )n  = 
π

πsin n (U.P.T.U., 2008)

We know that β (m, n) =
m n

m n

⋅
+� �

.
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Putting m + n = 1 or m = (1 – n), we get

n n⋅ −1

1

� �
= β (n, 1 – n) ...(i)

But β (m, n) =
y dy

y

n

m n

−

+

∞

+�
1

0 1
 �

∴ β  (n, 1 – n) =
y dy

y

n−∞

+�
1

0 1
 � As
x

x
dx

n

n−∞

+
=�

1

0 1
π

πsin

=
π

πsin n
, n < 1

∴  From (i), we have n n( )1 − = π
πsin n

   .

���� ��� ������ 	 �	 ( ) ( )1 1+ −n n  = 
n

n
π

πsin
·

We have n . (1 – n) =
π

πsin n
Multiplying both sides by n, we get

n n n( )1 − =
n

n
π

πsin

or ( ) ( )1 1+ −n n = n
n
π

πsin
· As 1+n n n=

��� ��� ������ 	 �	 sin cosm n dθ θ θ
π

0
2� =

m n

m n

+�


�
�

+�


�
�

+ +�


�
�

1
2

1
2

2
2

2

·

We know that β (p, q) = x x dxp q− −−� 1 1

0

1
1� � ...(i)

=
q q

p q

⋅

+ ⋅
 �
Putting x = sin2θ and dx = 2 sin θ cos θ dθ, then, we get from (i)

 β(p, q) = sin sin2 1 2 1

0

2
1θ θ

π
� � � �

p q− −
−� . 2 sin θ cos θ dθ

= 2 2 1
0

2 2 1sin cosp q d− −�π θ θ θ

∴ sin cos2 1
0

2 2 1p q d− −�π θ θ θ =
1
2

 β(p, q)

=
p q

p q

⋅

+2 
 �
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Putting 2p – 1 = m and 2q – 1 = n,

or p = m+�
�

�
��

1
2

 and q = n +�
�

�
��

1
2

, we get

sin cosm n dθ θ θ
π

0

2� =

m n

m n

+�


�
�

+�


�
�

+ +�


�
�

1
2

1
2

2
2

2

  .

4.12  DUPLICATION FORMULA

��������� 	 �	� m  m +�
�

�
��

1
2

 = 
π� �

22 1m− . 2m . (U.P.T.U., 2001)

Hence show that β (m, m) = 21–2m β m,
1
2

�
�

�
�� .

Since sin cos2 1 2 1
0

2 m n d− −� θ θ θ
π

=
m n

m n

� � � �
� �2 +

...(i)

Putting 2n – 1 = 0 or n = 
1
2

, we obtain

sin2 1
0

2 m d−� θ θ
π

=
m

m

� � 1
2

2
1
2

�

�
�

+�


�
�

sin2 1
0

2 m d−� θ θ
π

=
m

m

⋅

+�


�
�

π

2
1
2

...(ii)

�

1
2
�
�
�
�� =

�
�
��

�
�
		

π

Again putting n = m in (i), we get

sin cos2 1 2 1
0

2 m m d− −� θ θ θ
π

=
m

m

� �� �
� �

2

2 2

i.e.,
1

2
22 1

2 1

0

2

m
m

d−
−� sin cosθ θ θ

π 
 � =
m

m

� �� �
� �

2

2 2

i.e.,
1

2
2 22

2 1

0

2

m
m

dsin θ θ
π 
 � −� =

m

m

� �� �
� �

2

2 2
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Putting 2θ = φ and 2 dθ = dφ, we get

1

22
2 1

0m
m dsin −� φ φ

π
=

m

m

� �� �
� �

2

2 2

or
2

22
2 1

0

2

m
m dsin −� φ φ

π
=

m

m

� �� �
� �

2

2 2
As

0
f x dx f x dx

a � � � �= �� 2
0

2π

or sin2 1
0

2 m d−� θ θ
π =

2

2 2

2 1
2

m m

m

− � �� �
� �

...(iii)

As f x dx f t dt
a

b

a

b

� � � �=
�
�

�
��� �

Equating two values of sin2 1
0

2 m d−� θ θ
π  from (ii) and (iii), we get

2

2 2

2 1 2m m

m

− � �
� � =

m

m

� � � �⋅

+�


�
�

π

2
1
2

As
1
2

= π

Hence, m m +�
�

�
��

1
2

=
π� � � �

2
22 1m m−

⇒  Multiplying above by m , we get

m m  m +�
�

�
��

1
2

=

1
2

2

22 1

m m

m

⋅
−

As π = 1
2

m m

m2 =
2

1
2

1
2

1 2−

+

m m

m

β (m, m) = 21−2m β m,
1
2

�
�

�
�� As,  ,β m n

m n

m n
� � =

+
·

�!������ �" Compute: −��
�
�� −��

�
�� −��

�
��

1
2

3
2

5
2

, , .

#��"� We have n n( )1 −  = 
π

πsin n
...(i)

��� Putting n = – 
1
2

, in (i), we get

−��
�
�� ⋅ ��

�
��

1
2

3
2

=
π

π
π

sin
–

−�
�
�

=
1
2
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or −��
�
�� = −

1
2 3

2

π
= −

�

�
�

=
π

π
1
2

1
2

2– ...(ii)

⇒ −��
�
��

1
2

= −2 π .

��� Putting n = – 
3
2

, in (i), we get

−��
�
��
�
�
�
��

3
2

5
2

= π

π

π

π
π

sin
–

sin−�
�
�

= �


�
�

=
3
2

3
2

or −��
�
�� =

�

�
�

3
2 5

2

π
=

π

π

π
3
2

1
2

4
3⋅

= . ...(iii)

��� Putting n = – 
5
2

, in (i), we get

−��
�
��
�
�
�
��

5
2

7
2

= π

π

π

π
π

sin
–

sin
–

−�
�
�

= �


�
�

=
5
2

5
2

or −��
�
�� =

�

�
�

5
2 7

2

π
= −

⋅ ⋅ ⋅
= −π

π

π
5
2

3
2

1
2

8
15

. ...(iv)

�!������ �" Evaluate 
dx

x1 40 +
∞� ·

#��"� Putting x4 = y or dx = 
dy

x4 3 ,  we have

dx
x1 40 +

∞� =

1
4

1

3
4

0

y dy

y

−

∞

+� 
 �

=
1
4 1

1
4

1

0

y
y

dy

−�
�

�
��∞

+
⋅�

Also, we have x
x

dx
n−∞

+�
1

0 1
=

π
πsin

,
n

 we get

dx
x1 40 +

∞� =
1
4

4

2
4

⋅ �

�
�

=
π

π
π

sin
·
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�!������ �" Show that tann dθ θ
π

0

2�  = 
1
2

1
2

π πsec n��
�
�� ⋅

#��"� We have

tann dθ θ
π

0

2� = sin cosn n
dθ θ θ

π 
 �−�0
2

=

1
2

1
1
2

1

2
1
2

2

n n

n n

+���
��� ⋅ +���

���
− +���

���

� � � �

� �

–

=

n n+
⋅ − +�


�
�

1
2

1
1

2
2 1

� �

= 1
2 1

2
1

⋅
+

π

πsin n� �
As n n

n
1 − =� � π

πsin

=
1
2

1
2

1π πcosec n +���
���

� �

=
1
2 2 2

1
2 2

π π π π π
cosec +�

�
�
�� = �

�
�
��

n n
sec . $����� ������"

�!������ �" Show that tan θ θ
π � � d
0

2�  = 
1
2

3
4

1
4

2
1

2

40

�
�
�
��
�
�
�
�� =

+

∞� x dx

x
·

#��"� We have

tan θ θ
π

d
0

2� = sin cosθ θ θ
π � � � �1 2 1 2

0

2 −� d

=

1
2

1
2

1
1
2

1
2

1

2
1
2

1
2

1
2

2

+�


�
�

���
���

− +�


�
�

���
���

− +�


�
�

���
���

=

3
4

1
4

2 1

�

�
�
�

�
�

� �

=
1
2

3
4

1
4

�
�
�
��
�
�
�
��

=
1
2

3
4

1
4

β ,�
�

�
��  � β (m, n) = 

m n

m n

⋅
+� �
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=
1
2 1

3
4 1

0

y
y

dy
−

∞

+�
� �


 �  � β(m, n) = 
y dy

y

m

m n

−

+

∞

+�
1

0 1
 �

=
1
2

4

1

1 3

40

x x dx

x

−∞ ⋅

+� � �
. Putting y = x4, dy = 4x3 dx

= 2
1

2

40

x dx
x+

⋅
∞�  $����� ������"

�!������ %" Show that β(m, n) = β(m + 1, n) + β(m, n + 1). (U.P.T.U., 2008)
#��"� We have

R.H.S. =
m n

m n

m n

m n

+ ⋅
+ +

+
⋅ +
+ +

1

1

1

1

� �
� �

� �
� �

=
m m n

m n m n

m n n

m n m n

⋅
+ +

+
⋅

+ +� � � � � �

=
m n

m n

⋅
+( )  

m
m n

n
m n+

+
+

�
��

�
�	

=
m n

m n

⋅
+( )  = β (m, n).� �$����� ������"

�!������ &" Show that 
dx

xn( )10

1

−�  = 
π 1

1 1
2

n

n
n

�

�
�

+�


�
�

.

#��"�  Put xn = sin2 θ or x = sin2/n θ

∴ dx =
2

2
1

n
nsin

−�
�

�
�� θ  cos θ dθ

∴
dx

xn( )1 −� =
2
n
�

�
�  

sin cos

sin

/

2
1

20

2

1

n d
−�

�
�
��

−
� θ θ θ

θ

π


 �

= 2
2

1

0

2

n
nsin

/ −�
�

�
��� θ

π
 cos0 θ dθ

=
2
n

1
2

2
1 1

1
2

0 1

2
1
2

2
1 0 2

n

n

− +�


�
�

���
���

+���
���

− + +�


�
�

���
���

) ( )

=
1

1 1
2

1
2

2
1

n
n

n

⋅

�

�
� ⋅
�

�
�

+�


�
�

���
���

 = 

1

1 1
2

n

n
n

�

�
� ⋅

+�


�
�

π
· � $����� ������"
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4.13 EVALUATE THE INTEGRALS [U.P.T.U. (C.O.), 2004]

(i)  e bx x dxax m− −
∞

⋅� cos 1

0

(ii)  e bx x dxax m− −
∞

⋅ ⋅� sin 1

0
(U.P.T.U., 2003)

������� Both the above integrals are respectively the real and imaginary parts of

e e x dxax ibx m− −
∞

⋅� 1

0

or e x dxa ib x m− − −
∞

⋅� ( ) 1

0

Now, we have e x dxx n− −
∞

� λ 1

0

=
n
nλ

∴ e x dxa ib x m− − −
∞

� ( ) 1

0
=

m

a ib m( )−

= m
a ib

a b

m

m⋅ +
+

( )
( )2 2

Let us put a = r cos θ, b = r sin θ in R.H.S.

∴ e bx i bx x dxax m− −
∞

+� (cos sin ) 1

0

= m
r i

r

m m

m⋅
+(cos sin )θ θ
2 |r2 = x2+ y2

or e bx x ie bx x dxax m ax m− − − −
∞

⋅ + ⋅� cos sin1 1

0

=
m

r
m i mm (cos sin )θ θ+

Equating real and imaginary parts, we get

e bx xax m− −
∞

⋅� cos 1

0
dx =

m

r
m

m
cos θ

and e bx xax m− −
∞

⋅� sin 1

0
dx =

m

r
m

m
sin θ

where r = ( )a b2 2+  and θ = tan–1 
b
a

·



MULTIPLE INTEGRALS 295

��	
������ Prove that  xe bx dxax−
∞

⋅� cos
0

 = 
a b

a b

2 2

2 2 2
−

+( )
, where a > 0.

����� � We have

e bx x dxax m− −
∞

⋅� cos 1

0

=
m

r
mm cos θ

Put m – 1 = 1, i.e., m = 2

xe bx dxax−
∞

� cos
0

= 2
22r

cos θ  = 
1 1

12 2

2

2( )
tan
tana b+

⋅ −
+

θ
θ

=
1

1

1
2 2

2

2

2

2

a b

b
a
b
a

+
⋅

−
�
��

�
��

+
�
��

�
��

=
a b

a b

2 2

2 2 2
−

+( )
.   ���� ������

��	
������ Find the value of 
1 2 3
n n n
�
�
�
�
�
�
�
�
�
�
�
� ..... 

n
n
−�

�
�
�

1
, where n is a positive integer.

����� � Let P =
1
n
�
�
�
�

2
n
�
�
�
�  ... 

n
n

n
n

−�
�

�
�

−�
�

�
�

2 1
...(i)

or P =
1
n
�
�
�
�

2
n
�
�
�
� .... 1

2
1

1−��
�
� −��

�
�n n

Writing in the reverse order,

P = 1
1

1
2−��

�
� −��

�
�n n

.... 
2 1
n n
�
�
�
� ⋅
�
�
�
� ...(ii)

Multiplying (i) and (ii), we get

P2 =
1

1
1

n n
�
�
�
� −��

�
�

�
	


�
�

2
1

2
n n
�
�
�
� −��

�
�

�
	


�
�  ...

n
n

n
n

−�
�

�
� − −�
�

�
�

�
	


�
�

2
1

2 n
n

n
n

−�
�

�
� ⋅ − −�
�

�
�

�
	


�
�

1
1

1

Now, we know that

n n( )1 − =
π

πsin n

or
1

1
1

n n
�
�
�
� ⋅ −��

�
� =

π
π

sin
n

...(iii)

∴ P2 = π
π

π
π

sin sin
n n

⋅
2

... π

π

π

πsin sin
n

n
n

n
− −2 1

...(iv)
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From Trigonometry, we know that

sin
sin

nθ
θ  = 2n–1 sin θ π+��

�
�n

 sin θ π+��
�
�

2
n

 ... sin θ π+ −�
�

�
�

n
n

2
 sin θ π+ −�

�
�
�

n
n

1

Putting θ = 0

lim
θ→0  

sin
sin

nθ
θ

= lim
θ→0

n
n

n
⋅ ⋅�

�
�
�

sin
sin

θ
θ

θ
θ

= n × 1 × 1 = n

∴   n = 2n−1 sin 
π
n

 sin
2π
n

.... sin 
n

n
−2

π sin 
n

n
−1 π

∴ P2 = πn–1 
2 1n

n

−

∴ P =
( ) /2 1 2π n

n

−

Hence
1 2
n n
�
�
�
�
�
�
�
� ... 

n
n
−�

�
�
�

1
=

( )( / )2 1 2π n

n

−
⋅

��	
��� ��� Prove that 
1
2

 = π ·

����� � We have

( )n ( )1 − n =
π

πsin n

Putting n =
1
2

, we get

1
2
�
�
�
�

1
2
�
�
�
� =

π
π

sin
2

1
2

2
�
�
�
�

�
	


�
� = π

1
2
�
�
�
� = π .  ���� ������

��	
��� ���� � Show that x yl m
D

− −�� 1 1
 dx dy = 

( ) ( )

( )

l m

l m
al m

+ +
+

1

where D is the domain x ≥ 0, y ≥ 0 and x + y ≤ a.
����� � Putting x = aX and y = aY in the given integral then, we get

I = ,( ) ( )aX aY a dXdYl m
D

− −�� 1 1 2

Where D' is the domain X ≥ 0, Y ≥ 0 and X + Y ≤ 1

I = al+m 
0

1
1 1

0

1

� � − −
−

X Y dY dXl m
X
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= al+m X
Y
m

dXl
m X

−
−

� �
	


�
�

1

0

1

0

1

 = 
a

m
X X dX

l m
l m

+
− −� 1

0

1

1( )

=
a
m

l m
l m+

+β( , )1  = 
a

m
l m

l m

l m+
⋅

+
+ +

( ) ( )

( )

1

1

= a
l m

l m
l m+

+ +
( ) ( )

( )1
·  ���� ������

��	
��� ���� Evaluate  x x

x
dx

m n

m n

− −

+
+

+�
1 1

0

1

1( )
.

����� � The given integral

I = x

x
dx

m

m n

−

++�
1

0

1

1( )
+ 

x

x
dx

n

m n

−

++�
1

0

1

1( )

or I = I1 + I2 (say) ...(i)

Putting  x = 
1
z

 in I2, we have

I2 =

1 1

1
1

1

21
z z

dz

z

n

m n

�
�
�
� −���

�
��

+ ��
�
�

�
	


�
�

−

+
∞
�

=
z dz

z

m

m n

−

+

∞

+�
1

1
1( )

=
x dx

x

m

m n

−

+

∞

+�
1

1
1( )

(By definite integral)

∴ From equation (i)

I =
x dx

x

m

m n

−

++�
1

0

1

1( )
+ x dx

x

m

m n

−

+

∞

+�
1

1
1( )

=  
x dx

x

m

m n

−

+

∞

+�
1

0
1( )

 = β(m, n)

=
( ) ( )

( )

m n

m n

⋅
+ ·

��	
��� ���� Using Beta and Gamma functions, evaluate

x

x
dx

3

3

1 2

0

1

1 −
�
��

�
���

/

· (U.P.T.U., 2006)
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����� Let x3 = sin2 θ ⇒  3x2dx = 2 sin θ cos θ dθ

∴ sin
cos

sin cos

sin /

/ θ
θ

θ θ
θ

θ
π

×
⋅� 2

3 4 3
0

2
d =

2
3

2 4 3

0

2
sin /

/
−� θ θ

π
d

= 2
3

2 3 0

0

2
sin cos/

/
θ θ θ

π
d�  = 

2
3

 

5
3

1
2

2
2 3 0 2

2
/ + +

 = 
2
3

2
3

2
3

2
4
3

⋅ π

=  
2
9

2
3

1
3

1
3

⋅
π

 = 
2
3

2
3

1
3

π
.

��	
������� Prove that: β (l, m) β (l + m , n) β (l + m + n , p) = 
l m n p

l m n p+ + +
���� β (l, m) · β (l + m, n) · β (l + m + n, p)

= 
l m

l m+
 · 

l m n

l m n

+
+ +

 · 
l m n p

l m n p

+ +
+ + +

 = 
l m n p

l m n p+ + +
.   ������

��	
��� ����  Find x e dxx1 2

0

1
3/ ⋅ −

∞

� ·

����� � Let x1/3 = t   or  x = t3 ⇒  dx = 3t2 dt

∴ x e dxx1 2

0

1
3/ ⋅ −

∞

� = t e t dtt3 2 2

0

3/ ⋅ ⋅−
∞

�  = 3 t e dtt7 2

0

/ −
∞

�
= 3 t e dtt

9
2

1

0

− −
∞

⋅ ⋅�  = 3 
9
2

315
16

= π ·

��	
��� ����  Evaluate—

(a)  cos x dx2

0

∞

� (b) cos
π
2

2x dx
−∞

∞

�
����� � (a) We know that

e x bx dxax n− −
∞

⋅� 1

0

cos =
( )cos

( )

n n

a b n

θ
2 2 2+

, where θ = tan–1 
b
a
�
�
�
�

Put a = 0, x bx dxn−
∞

� 1

0

cos = ( )
cos

n

b

n
n

π
2

 
θ

π

= �
�
�
�

= ∞ =

−

−

tan

tan ( )

1

1

0

2

b

Put xn = z so that xn–1 dx = dz
n

x z nand = 1/
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Then cos /bz dzn1

0

∞

� =
n n

b
n

n

( )
cos

π
2

cos ( )/bx dxn1

0

∞

� =
( )

cos
n

b
n

n

+1
2
π

 (By definite integral) ...(i)

Putting b = 1, n = 
1
2

∴ cos x dx2

0

∞

� = 3
2 4 2

1
2

1
2 2

�
�
�
� = ⋅ =cos

π π π·

(b) I = cos cos
π πx

dx
x

dx
2 2

0
2

2
2

=
∞

−∞

∞

�� ...(ii) |By definite integral

Putting b = 
π
2

 and n = 
1
2

 in equation (i), we get

cos
π
2

2

0

x dx�
�

�
�

∞

� =

3
2

2

41 2

�
�
�
�

�
�
�
�

π
π

/ cos

∴   From (ii) cos
πx

dx
2

2−∞

∞

� = 2 

3
2

2

41 2

�
�
�
�

�
�
�
�

π
π

/ cos

= 2 ·
1
2

2 1
2

π
π

⋅ ⋅  = 1.

EXERCISE 4.3

�� Prove that x x dx4 3

0

1

1( )−�  = 
1

280
· �� Prove that x x dx( ) /8 3 1 3

0

2

−�  = 
16

9 3

π
·

�� Prove that 
x

x
dx

2

0

2

2( )−�  = 
64 2

15
· �� Show that 

e

t
dt

st−∞

�
0

 = 
π
s

, s > 0.

�� Show that log
1 1

0

1

x
dx

n�
�

�
�

−

�  = ( ) ,n n > 0 . �� Prove that ( ) /1 1

0

1

−� x dxn n  = 
1

1

2
2

2

n
n

n

⋅

�
�
�
�

�
	


�
�

�
�
�
�

·

�� Show that x x2 3

0

1

1( )−� dx = 60. �� Show that ( ) /4 2 3 2

0

2

−� x dx  = 3π.
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�� Show that 
dx

x x( )3 2
0

3

−
=� π. ��� Show that 

x dx

x

2

3
0

1

1( )−�  = 
π 1

3

3
5
6

�
�
�
�

�
�
�
�

·

��� Prove that  
x dx

x

2

6
0

1 +

∞

�  = 
π

3 3
· ��� Prove that  

x dx

x

2

3
0

1

1( )−�  = 
2
3

·

��� Prove that   
d

d
θ

θ
θ θ

ππ

(sin )
sin .

//

× ��
0

2

0

2

 = π.

��� Show that, if n > – 1,

x e dxn k x−
∞

� 2 2

0

 = 
1

2

1
21k

n
n +

+�
�

�
� .

Hence or otherwise evaluate  e dxk x−

−∞
� 2 2
0

.

��� Show that 

1
3

5
6

2
3

�
�
�
� ⋅ ��

�
�

�
�
�
�

 = ( ) /π 21 3 · ��� Show that 

1
3
1
6

2
�
�
�
�

�
	


�
�

�
�
�
�

 = 
( ) /

/

π ⋅2
3

1 3

1 2 ·

��� Prove that e x dxx−∞� =4
0

3 2 3
128

π� � · ��� Prove that x e dxx2
0

2

4
∞ −� =

π� �
·

��� Evaluate x bx dxm−∞� 1
0

cos  and x bx dxm−∞� 1
0

sin . �� �
m

b
m m

b
m

m mcos ; sin
π π

2 2

�
	


�
�

��� Prove that x e dx
n

a
m ax

n
−∞ −� =1

0

2

2
·

4.14  APPLICATION TO AREA (DOUBLE INTEGRALS)

4.14.1  Area in Cartesian Coordinates
!	"� Let the area ABCD is enclosed by y = f(x), y = 0 and x = a, x = b.

Let P(x, y) and Q (x + δx, y + δy) be two neighbouring points on the curve AD whose
equation is y = f(x).

Then the area of the element is δx δy.
Consequently the area of the strip PNMQ.

dx dy
y

f x

=
�

0

( )

, where y = f (x) is the equation of AD.
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∴  The required area

ABCD = dx dy
y

f x

x a

b

== �� 0

( )
   .

!#"� In a similar way we can prove that the area
bounded by the curve x = f(y), the y axis and the
abscissae at y = a and y = b is given by

dy dx
x

f y

y a

b

== �� 0

( )

O
X

Y

y = a
A B

P

Q

N

M
�x

�y

C

x = f(y)

D
y = b

$%&�� ����

!�" If we are to find the area bounded by the two curves y = f1(x) and y = f2(x) and the
ordinates x = a and x = b i.e., the area ABCD in the Figure 4.27 then the required area

dx dy
y f x

f x

x a

b

== ��
2

1

( )

( )

O
X

Y

M N

A

By = f  (x)2

�y x = b

CD

x = a

y = f (x)1

�x

$%&�� ����

��	
��� ��� Find the area lying between the parabola y = 4x – x2 and line y = x by the
method of double integration. (U.P.T.U., 2007)

O B N M C
X

A

Y

x = a

�x

�y
x = b

(x, y) P
Q

(x
 +

 x, 
y +

 y)

�

�

D

$%&�� ����
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����� � OA is the line y = x ...(i)
and OBAD is the parabola

y = 4x – x2 ...(ii)
Solving y = 0 and Eqn. (ii), we find that the

parabola Eqn. (ii) meets the x-axis at O (0, 0) and
D (4, 0).

Solving Eqns. (i) and (ii), we find x = 4x – x2

or x(x – 3) = 0
i.e., x = 0, 3.
Also x = 0 gives y = 0 and x = 3 gives y = 3.
∴  The line (i) meets the parabola (ii) in O (0, 0)

and A (3, 3) we are to find the area OBAO.
∴  Required area OBAO = area OCABO – area of ∆ OCA.

= dx dy OC CA
y

x x

x
− × ×�
�

�
�=

−

= �� 1
20

4

0

3 2

= ( )y dxx x
0
4

0

3 2 1
2

3 3− − × ×�
�

�
��

= ( ) ( ) ( )4
1
2

9 2
1
3

9
2

2 2 3
0
3

0

3
x x dx x x− − = − −�

= 2(3)2 – 
1
3

3
9
2

3( ) −  = 18 – 9 – 
9
2

 = 
9
2

.

��	
������ � a2y2 = a2x2 – x4 find the whole area within the curve.
����� First of all trace the curve as shown in the Figure 4.29.

Whole area = 4 × area OAC

= 4 dx dy
y

f x

x

a

== �� 00

( )

where y = f(x) i.e.,

y =
( )a x x

a

2 2 4−

is the equation of the curve

= 4 y dxf x

x

a

00

( )

=�
= 4

0
f x dx

a
( )�  = 

4 2 2 4
0a

a x x dx
a

( )−�
=

4 42 2
0

2

0a
x a x dx

a
a a a d

a
( ) sin cos cos

/
− = �� θ θ θ θ

π

Putting x = a sin θ

= 4a2 sin cos
/

θ θ θ
π

2

0

2
d�  = 

4 1 3 2

2 5 2

2a ( / )

( / )

=
4 1

1
2

2
3
2

1
2

2a ⋅

⋅ ⋅

π

π
 = 

4
3

2a
·

O X

Y

x�
(0, 0) C

D (4, 0)

� �x y A (3, 3)

y = xB

$%&�� ����

X� a
O

a

Y�

(a, 0)
X

AP(x,y)

C

Y

$%&�� ����
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��	
������Determine the area of region bounded
by the curves

xy = 2, 4y = x2, y = 4.

[U.P.T.U. (C.O.), 2003, 2008]
����� Required area of shaded region

= dx dy
x

y

y

y == �� 2

2

1

4

= 2
2

1

4
y

y
dy−�

��
�
���

= 2
2
3

3 2

1

4

y y/ log−�
�

�
�

= 2
16
3

2 2
2
3

−�
�

�
� −�

	

�
�

log

=
28
3

4 2− log .

��	
������ By double integration, find the whole area of the curve
a2x2 = y3(2a – y). (U.P.T.U., 2001)

����� � Required area = 2 (area OAB)

= 2 dy dx
x

f y

y

a

== �� 00

2 ( )
...(i)

where x = f(y) = 
y a y

a

3 2 2/ −
 is the equation of the given

curve.
From eqn. (i), required area

= 2 f y dy
a

y a y dy
aa

( ) /= −�� 2
23 2

0

2

0

2

= 
2

2 2 2 42 3 2 2

0

2

a
a a a a d( sin ) sin sin cos/

/
θ θ θ θ θ

π
− ⋅�

= 32a2 sin cos
/

4 2

0

2
θ θ θ

π
d� (Put y = 2a sin2 θ)

= 32a2· 

5
2

3
2

2 4

�
�
�
�
�
�
�
�

( )
 =  32a2· 

3
2

1
2

1
2

2 3 2 1

⋅ ⋅ ⋅

⋅ ⋅ ⋅

π π
 = πa2.

��	
��� ��� Show that the larger of the two areas into which the circle x2 + y2 = 64a2 is
divided by the parabola y2 = 12ax is

16
3

8 32a ( )π − .

�����y2 = 12ax is a parabola, whose vertex is (0, 0) latus rectum = 12a, x2 + y2 = 64a2 is a circle,
whose centre is (0, 0) and radius = 8a.

O
X

Y

(0, 1) (2, 1)

xy = 2

4y
 =

 x
2

(0, 4)
y = 4

(2, 0)

$%&�� ����

O X

B�y

A (0, 2a)

Y

$%&�� ����
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Solving x2 + y2 = 64a2 and y2 = 12ax, we get
x2 + 12ax – 64a2 = 0  or x = 4a.

∴   The x-coordinate of P the point of
intersection of the two curves is 4a. Also the circle
x2 + y2 = 64a2 meets x axis at x2 = 64a2 (Putting
y = 0) i.e., at x = ± 8a. Hence the coordinates of
A and A′  are (8a, 0) and (–8a, 0).

Also for the parabola y = ( )12ax  and for
the circle we have

y = ( )64 2 2a x−
Required area = shaded area in the Figure 4.32.

= area of the circle – area OP' AOP
= π(8a)2– 2 [area OAP]
= 64 πa2 – 2 [area OPN + area PAN]

= 64πa2 – 2 ( ) ( )12 64 2 2

4

8

0

4
ax dx a x dx

a

aa
+ −�

	

�
���

= 64πa2 – 2 2 3
1
2

64
1
2

64
8

2 2 2 1

4

8

0

4
( ) ( ) sina xdx x a x a

x
a a

aa
+ − + ⋅ �

�
�
�

���
���

�
	





�
�



−�
= 64πa2 – 4 3

2
3

2 32 1
1
2

4 48 32
1
2

3 2

0

4
2 1 2 2 1( ) sin ( ) sin/a x a a a a

a���
��� − − ⋅ ⋅ − �

�
�
�

���
���

− −

= 64πa2 – 64
3

3 32 16 3
32
3

2
2 2 2a

a a a− + +π π

=
128

3
16

3
3

2 2πa a
−

=
16
3

8 32a ( )π − .

4.14.2  Area of Curves in Polar Coordinate
The area bounded by the curve r = f(θ), where
f(θ) is single valued function of θ in the domain
(α, β) and redii vectors θ = α and θ = β is

r d dr
r

f
θ

θ

θ α

β

== �� 0

( )
 (α < β).

Let O be the pole, OX the initial line and
AB be the portion of the arc the curve r = f(θ)
included between the radii vectors OA and OB
i.e., θ = α and θ = β.

The area of element CDEF = area of sector
OCD–area of sector OFE

= 
1
2

1
2

2 2( )r r r+ −δ δθ δθ

= r δθ δr, neglecting higher powers of δr and δθ.
Hence the element of area in polar coordinates is r δθ δr.

Y�

X�
A� O N

(4a, 0)
A (8a, 0)

X

P

Y

(8a, 0)

P�

$%&�� ����

O

�

��

C

D
E

F
A
 = � �

P (r, )�

Q (r + r,

 + 

�

� ��)

B � � = 

X

$%&�� ����



MULTIPLE INTEGRALS 305

∴  The area of the figure OPQO

= r d dr
r

f
θ

θ

θ α

β

== �� 0

( )
, where r = f(θ) is the curve AB.

∴    The required area = r d dr
r

f
θ

θ

θ α

β

== �� 0

( )
   .

��	
������ Find the area of the region enclosed by x y a+ =  and x + y = a.

����� We have x y+ = a ...(i)

x + y = a ...(ii)

From (i) x  = a y− ⇒ x = a y−� �
2

From (ii) a y y− +� �
2

= a

a + y – 2 ay  + y = a

2y – 2 ay = 0 ⇒ y = ay

Squaring on both sides, we get
y2 = ay ⇒ y(y – a) = 0 ⇒ y = 0, a

Using the value of y in equation (ii), we get,
x = a, 0.

So, the intersection point of given curve are (a, 0)
and (0, a).

Required area of the shaded region.

= dx dy x dy
a y

a ya

x a y

a ya
=

−

−

= −

− ��� � �
� �

� �

� �
22

00
.

= a y a y dy ay y dy
aa

− − −���
��� = −�� � � � �

2

00
2 2

=
2

3 2
2

2
4
3 3

3 2 2

0

2 2
2a y y

a a
a

a
.

−
�
	





�
�



= − = .   �� �

��	
��� ��� Find the area of the region enclosed by

the curves y = 
3

22
x

x +
 and 4y = x2.

����� We have y =
3

22
x

x +
...(i)

4y = x2 ...(ii)

From (i) and (ii)
x2

4
=

3
22

x
x +

⇒ x4 + 2x2 – 12x = 0

$%&�� ����

$%&�� ����

O (0, 0)

A

y
x

x
=

+

3
2 2

( , )2
3

4

( )y
x

=
2

4

X

Y

B (0,a)

x + y = a

O (A,0)

A

x +  y = a
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x(x3 + 2x – 12) = 0
x(x – 2) (x2 + 2x + 6) = 0

⇒ x = 0, 2 (real values only)
Using the values of x in (i), we get

y = 0, 
3
4

So the intersection points of curves are (0, 0) and 2
3
4

,���
�
�� .

Hence, the required area of the shaded region.

= dy dx y dx
x

x
x

dx
x

x x

y x

x x

x
= =

+
−

�
��

�
��

+

=

+

= ���� 2

2

2

2

4

3 2

2

2

0

2

0

2

4

3 2

0

2 3
2 4

� �� �

= 3
2

2
12

3
2

6 2
8
12

2
3

0

2

log log logx
x

+ −
�
	



�
�
 = − −� � � �

=
3
2

6
2

2
3

log −

=
3
2

3
2
3

log − .

��	
������Calculate the area which is inside the cardioid r = 2 (1 + cos θ) and outside the
circle r = 2.

�����r = 2 is a circle centred at origin and of
radius 2. The shaded area in Figure 4.36 is the
region R which is outside the given circle and
inside the cardioid. So r varies from the circle
r = 2 the cardioid r = 2(1 + cos θ). While θ varies
from – π/2 to π/2. Since R is symmetric about
x–axis, the required area A of the region R is
given by

A = dA rdrd
rR

=
=

+

− ���� θ
θ

π

π

2

2 1

2

2 ( cos )

/

/

= 2 2
2

2

2

2 1

0

2

2

2 1

0

2
r dr d

r
dθ θ

θ
πθπ

=
+

+ ���
( cos )

/( cos )/

= 4 2 2
0

2
( cos cos )

/
θ θ θ

π
+� d

= 4 2
1
2

1
4

2 8
0

2

sin sin .
/

θ θ θ π
π

+ +�
	


�
� = +

��	
����� Find, by double integration, the area lying inside the cardioid r = a(1 + cos θ)
and outside the circle r = a.

���� Required area
= area ABCDA = 2(area ABDA)

= 2 r dr d
a

a
θ

θπ ( cos )/ 1

0

2 +��

Y

Circle

Cardioid

XO

R

$%&�� ����
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= 2
r

d
a

a2 1

0

2

2

�
��
�
��

+

�
( cos )

/
θ

π
θ

= a2 ( cos )
/

1 12

0

2
+ −� θ θ

π
d

= a2 cos cos
/

2

0

2
2θ θ θ

π
+� � �d

= a2 
1
2 2

2
4

8
2

⋅ +�
�

�
� = +π πa

( ).

��	
�������Find, by double integration the area
lying inside the circle r = a sin θ and outside the cardioid
r = a (1 – cos θ).

����� Eliminating r between the equations of two curves,
sin θ = 1 – cos θ or sin θ + cos θ = 1
Squaring 1 + sin 2θ = 1 or sin 2θ = 0

∴ 2θ = 0 or π ⇒  θ = 0 or 
π
2

For  the  required  area,  r  varies  from

a (1 – cos θ) to a sin θ and θ varies from 0 to 
π
2

.

∴ Required area = r dr d
a

a
θ

θ

θπ

( cos )

sin/

10

2

−��
=

r
d

a

a2

10

2

2

�
	

�
� −

�
( cos )

sin
/

θ

θ
π

θ

=
1
2

12 2 2

0

2
a dsin ( cos )

/
θ θ θ

π
− −�

=
a

d
2

2 2
0

2

2
1 2(sin cos cos )

/
θ θ θ θ

π
− − +�

=
a

d a
2

2 2
0

2

2
2 2 1

4
( cos cos ) .

/
− + = −��

�
�� θ θ θ ππ

��	
��� ���� Find by double integration the area
lying inside the cardioid r = 1 + cos θ and outside the
parabola

r(1 + cos θ) = 1.
����� The required area = area CAFBEDC

= 2 (area DAFBED)

= 2 r d dr
r

r
θ

θ

π

 for parabola

for cardioid�� =0

2/

= 2 
1
2

2

1 1

1

0

2
r d�

�
�
� +

+

�
/( cos )

cos/

θ

θπ
θ

= ( cos ) /( cos )
/

1 1 12 2

0

2
+ − +� θ θ θ

π
� � d

A

BO D

� � = /2

r = a

� � = 

C

� = 0

r = a (1 + cos )�

$%&�� ����

O � = 0
X

r = a sin �

r = a (1 – cos )�

�
—
2

� =

$%&�� ����

O �

D

C

A

� = 0

E  r
 

r
��

��B

� � = /2
F

$%&�� ����
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= ( cos )
( cos )

/
1

1
1

2
20

2

0

2
+ −

+�� θ θ
θ

θ
ππ

d d ...(i)

Now, ( cos )
/

1 2

0

2
+� θ θ

π
d = ( cos cos )

/
1 2 2

0

2
+ +� θ θ θ

π
d

= [( cos ( cos )]
/

1 2
1
2

1 2
0

2
+ + +� θ θ θ

π
d

=
3
2

2
1
2

2
0

2
+ +�

�
�
�� cos cos

/
θ θ θ

π
d

=
3
2

2
1
4

2
0

2θ θ θ
π

+ +�
	


�
�sin sin

=
3
2

1
2

2
1
2

1
4

0π π π�
�
�
� + �

�
�
� + −sin sin

=
3
4

2
1
4

3 8π π+ = +( ) ...(ii)

and 1 1 2

0
2 / cos+� θ θ
π

� � d =
1
4 2

4

0
2 sec

θ θ
π �

��
�
��� d As 1+ cos = 2 cos

1
2

2θ θ�
��
�
��

=
1
2

4

0
4 sec ,φ φ
π

d�  Putting 
1
2

 θ = φ

=
1
2

1 2 2

0
4 +� tan secφ φ φ
π

� � d , [� sec2 φ = 1 + tan2 φ ]

=
1
2

1 2

0

1
+� t dt� � , where t = tan φ

=
1
2

1
3

3

0

1

t t+���
�
��  = 

1
2

1
1
3

2
3

+���
�
�� = ...(iii)

∴  From (i) with the help of (ii) and (iii), we get the required area

=
1
4

3 8
2
3

π + −� �

=
3
4

2
2
3

3
4

4
3

π π+ − = + .

��	
������� Find the area of the curve r2 = a2 cos 2θ.
����� Since the curve is symmetric about origin so the required area of shaded region.

Y

O

X

��= �
4

��= �
�������4

r = a  cos2�

�

��

$%&�� ����
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= 2
0

2

4

4
r d dr

r

a
θ
θ

π

π

=− ��
cos

= 2
2

2
2

0

2
2

4

4

4

4 r
d a d

a�
	


�
�
 =

−− ��
cos

. cos
θ

π

π

π

π
θ θ θ

= 2 22

0

4
a dcos θ θ

π�  = 
2

2
2

2
0

2

0
4 2 2a

a asin sin sinθ ππ = −�
	


�
�

= .

��	
�������Find the area included between the curves r = a(secθ + cosθ) and its asymptote
r = a secθ.

����� The curve is symmetric about the line θ = 0, so the required area of shaded region.

= r d dr
a

a
θ

θ

θ θ

π

π

sec

sec cos+

− ��
� �

2

2

=
r

d
a

d
a

a2 2
2 2

2

2

2

2

2 2

�
	




�
�



= + −
+

−− ��
sec

sec cos

sec cos sec
θ

θ θ

π
π

π
π

θ θ θ θ θ
� �

� �� �

(a,o)

��	��

�������2

��	� �
2

r = asec
�

(2 a,o)

r =
 a (s

ec
cos

��
�
���

�

$%&�� ����

= a d2 2 2 2

0

2
2sec sec cos cos secθ θ θ θ θ θ

π
+ + −� � �

= a d a d2 2 2

0

2

0

2
2 2

1 2
2

+ = +
+�

��
�
���� cos

cos
θ θ

θ
θ

ππ
� �

=
a

d
a2 2

0

2

0

2

2
5 2

2
5

2
2

+ = +�
	


�
�� cos

sin
θ θ θ

θ ππ
� �

=
a a2 2

2
5
2

0
5

4
π π−�
	


�
�

= .
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��	
��� ��� Find the area included between the curve
x2y2 = a2 (y2 – x2)  and its asymptotes.

���� Required area = 4 × area OAB = 4 4
2 200

y dx
ax

a x
dx

aa
=

−
��
� �

Y�

O
X�

x = a

N
�x

M
A X

(a, 0)

P

Q

Y B

$%&�� ����

= 4
0

2
a

a a d
a

sin cos
cos

θ θ θ
θ

π ⋅� ,   Putting x = a sin θ

= 4 4 42 2
0

2 2

0

2
a d a asin – cos .θ θ θ ππ

= =�
��	
��� ���� Show that the entire area between the

curve
y2 (2a – x) = x3 and its asymptote is 3πa2.

���� Required area = 2 × area OAB

= 2 2
2

3 2

0

2

0

2
y dx

x

a x
dx

aa
=

−�� � �

= 2
2 4

2

2 3 2

0

2 a a

a
d

sin sin cos

cos

θ θ θ

θ
θ

π � �
⋅�

= 16 16
3
4

1
2 2

2 4

0

2
2a d asin θ θ ππ� = ⋅ ⋅

= 3πa2 .� ���� ������

X�
O N

�x
M

P
Q

Y�

A (2a, 0)
X

x = 2a

Y B

$%&�� ����
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EXERCISE 4.4

�� Find the area bounded by the parabola y2 = 4ax and its latus rectum. �� .  
8

3

2a�
	




�
�


�� Find by double integration the area of the ellipse

x
a

y

b

2

2

2

2+ ' 1. �� .  πab

�� Show by double integration that the area between the parabolas y2�' 4ax and x2 = 4ay

is 
16
3

2a .

�� Find the area of the region bounded by quadrant of x2�+ y2 =� a2 and x + y = a.

�� .  
1
4

π −�
	


�
�

2 2� �a
�� Find by the double integration the area of the region bounded by�y2�'� x3 and y = x.

�� .  
1

10
�
	


�
�

�� Find the area of the curve 3ay2 = x (x – a)2. �� .  
8

15 3

a2�
	




�
�


�� Find the area included between the curve and its asymptotes. �� .  πa2

�� Find the area between the curve y2 (2a – x) = x3 and its asymptote. �� .  3 2πa

�� Find the area of the portion bounded by the curve x(x2 + y2) = a (x2 – y2) and its asymptote.

�� .  
4

2 12a
π −�
��

�
��

�
	


�
�

��� Find the area included between the curves y2 = 4a (x + a) and y2 = 4b (b – x).�� �� .  
8

3
ab�

	




�
�


��� Find the whole area of the curve r = a cos 2θ. �� .  
1
2

πa2�
	


�
�

��� Find the area of a loop of the curve r = a sin 2θ. �� .  
1
8

πa2�
	


�
�

��� Find the area enclosed by the curve r = 3 + 2 cos θ. �� .  11π
��� Show by double integration that the area lying inside the cardioid r = a (1 + cos θ) and

outside the circle r = a is 
1
4

2a  (π + 8).

��� Find the area outside the circle r = 2a cos θ and inside the cardioid r = a (1 + cos θ).

�� .  
2

πa2�
	




�
�


��� Find the area included between the curve x = a (θ – sin θ), y = a (1 – cos θ) and its base.

�� .  23πa
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��� Find the area bounded by the curve xy = 4, y-axis and the lines y = 1 and y = 4.
[�� �� 8 log 2]

��� Use a double integral to find the area enclosed by one loop of the four-leaved rose
r = cos 2θ.

Ans.
π
8

�
	


�
�

4.15 TRIPLE INTEGRALS

Triple integral is a generalization of a double integral. Let a function f (x, y, z) defined at every
point of a three dimensional region V; Divide the region V into n elementary volumes δV1,
δV2, ..., δVn and let (xr, yr, zr) be any point inside the rth sub-division δVr.

Find the sum f x y z Vr r r r
r

n

, ,� �δ ⋅
=
∑

1

Then f x y z dV
V

, ,� ���� = n f x y z V
V

r r r r
r

n

r

→ ∞ ⋅
→ =

∑
δ

δ
0

1

Lim
, ,� �

To extend definition of repeated integrals for triple integrals, consider a function F (x, y, z)
and keep x and y constant and integrate with respect to z between limits in general depending
upon x and y. This would reduce F(x, y, z) to a function of x and y only. Thus let

φ (x, y) = F x y z dz
z x y

z x y
, ,

,

,
� �

� �
� �

1

2�
Then in φ (x, y) we can keep x constant and integrate with respect to y between limits in

general depending upon x this leads to a function of x alone say

ψ (x) = φ x y dy
y x

y x
,� �� �

� �

1

2�
Finally ψ(x) is integrated with respect to x assuming that the limits for x are from a to b.

Thus

F x y z dV
V

, ,� ���� = F x y z dx dy dz
z x y

z x y

y x

y x

a

b
, ,

,

, � �
� �
� �

� �
� �

1

2

1

2 ���
F x y z dV

V
, ,� ���� = F x y z dz dy dx

z x y

z x y

y x

y x

a

b
, ,

,

,
� �

� �
� �

� �
� �

1

2

1

2 ��� ���
���

�
	


�
�

  .

��	
��� �� Evaluate the integral 
dx dy dz

x y z

x yx

+ + +
⋅

− −− ���
1 30

1

0

1

0

1

� �

����� Let Ι =
dx dy dz

x y z

x yx

+ + +

− −− ���
1

30

1

0

1

0

1

� �

= −
+ + +

�

	





�

�



− −
−�� 1

2
1

1
2

0

1

0

1

0

1

x y z
dx dy

x y
x

� �

⇒ = − −
+ +

�

	





�

�



−��1
2

1
4

1

1
20

1

0

1

x y
dx dy

x

� �
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⇒ = − −
+ +

�

�
�
�

�

�
�
�

−��1
2

1
4

1

1 20

1

0

1

x y
dx dy

x

� 	

= − +
+ +

�
�
�

�
�
�

−

�1
2

1
4

1
1

0

1

0

1
y

x y
dx

x

= − − + −
+

�
��

�
���1

2
1
4

1
1
2

1
10

1
x

x
dx
 �

= − − −
+

�
�

�
���1

2
3
4

1
4

1
10

1
x

x
dx

= − − − +�
��

�
��

1
2

3
4

1
8

12

0

1

x x xlog 
 �

= − − −�
��

�
��

= −�
��

�
��

1
2

3
4

1
8

2
1
2

2
5
8

log log .

�������� 	
 Evaluate dz dx dy
z xz

0

4

0

2

0

4 2−��� � � .

���
� We have I = z dz dx
z xz

0

4

0

2

0

4 2−�� � �

= 4 2

0

2

0

4
z x dz dx

z
−�� � �

=
1
2

4
1
2

4
4

2 1

0

2

0

4
x z x z

x

z
dz

z

− + ⋅
�
�

�
��
�
�
�−� � � sin

=
1
2

2 4 4
1
2

4 11
0

4
⋅ − + ⋅�

��
�
��

−� z z z z dz
 � 
 �sin

= π π πzdz z= �
��

�
��

=� 1
2

82

0

4

0

4
.

��������
 Evaluate x y z dx dy dz
V

2 2 2+ +��� � �  where V is the volume of the cube bounded
by the coordinate planes and the planes x = y = z = a.

���
� Here a column parallel to z-axis is bounded by the planes z = 0 and z = a.
Here the region S above which the volume V stands is the region in the xy-plane bounded

by the lines x = 0, x = a, y = 0, y = a.

Hence, the given integral= x y z dx dy dz
aaa 2 2 2

000
+ +��� � �

= x z y z
z

dx dy
a

a
a 2 2

3

0
0

0 3
+ +

�
�

�
����

= x a y a a dx dy
aa 2 2 3

00

1
3

+ +�
�

�
����

= x ay y a a y dx
a a

2 3 3

0 0

1
3

1
3

+ +�
��

�
���

Z
z = a

O

S

z = 0

X

Y

���
� �
��
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= x a a a dx
a 2 2 4 4

0

1
3

1
3

+ +�
�

�
���

= 1
3

1
3

1
3

3 2 4 4

0

5x a a x a x a
a

+ +�
��

�
��

= .

���������
 Evaluate 2x y dx dy dz
V

+��� � 	 , where V is

the closed region bounded by the cylinder z = 4 – x2 and the
planes x = 0, y = 0, y = 2 and z = 0.

���
� Here a column parallel to z-axis is bounded by
the plane z = 0 and the surface z = 4 – x2 of the clinder. This
cylinder  z = 4 − x2 meets the z-axis x = 0, y = 0 at (0, 0, 4)
and the x-axis y = 0, z = 0 at (2, 0, 0) in the given region.

Therefore, it is evident that the limits of integration for
z are from 0 to 4 –x2, for y from 0 to 2 and for x from 0 to
2.

Hence, the given integral

= 2
0

4

0

2

0

2 2

x y dx dy dz
z

x

yx
+

=

−

== ��� � 	

= 2 0
4

0

2

0

2 2

x y z dx dyx

yx
+ −

== �� � 	

= 2 4 2

0

2

0

2
x y x dx dy

yx
+ −

== �� � 	� �

= 8 2 43 2

0

2

0

2
x x x y dx dy

yx
− + −

== �� � �

= 8 2
1
2

43 2 2

0

2

0

2
xy x y x y dx

x
− + −�

��
�
��=� � �

= 16 4 2 43 2
0

2
x x x dx− + −� � �

= 8 8
2
3

2 4 3

0

2

x x x x− + −�
��

�
��

= 32 16 16
16
3

80
3

− + −�
�

�
�� = .

EXERCISE 4.5

�
 Evaluate the integral e dx dy dzx y zx yx + ++��� 000

2 loglog
. ���.  

3
8

2
19
9

log −�
��

�
��

	
 Evaluate xyz dx dy dz
S��� , where

S��� [(x, y, z) : x2 + y2 + z2 ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0]. ���.  
1
48

�
��

�
��

Y

(0, 2, 0)

z = 0
dxdy

O X
(2, 0, 0)

z = 4–x
2

(0, 0, 4)

Z

���
� �
��
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 Evaluate x y dx dy dz
S

2 2+��� ,  where S is the solid bounded by the surfaces x2 + y2 = z2,

z = 0, z = 1. ���.  
6
π�

��
�
��

�
 Evaluate xyz dz dy dx
z

z x y

y

y x

x =

= − −

=

= −

= ��� 0

1

0

1

0

1 2 22 � � . ���.  
–5
48

�
��

�
��

�
 Evaluate xy dx dy dz
V

2��� ,  where V is the region bounded between the xy-plane and the

sphere x2 + y2 + z2 = 1. ���.  
24
π�

��
�
��

�
 Evaluate dx dy dz
V���  over the region V enclosed by the cylinder x2 + z2 = 9 and the planes

x = 0, y = 0, z = 0, y = 8. ���.  18π

�
 Evaluate e dx dy dzx y zx yxa + ++��� 000
 and state precisely what is the region of integration.

[���.  
1
8

.  Region of integration is the volume enclosed by 

the planes  =  ,   =  0,   =  ,   =  0 and  =   +  

e e e

x a y y x z z x y

a a a4 26 8 3− + −� �
]

�
 Evaluate e dx dy dzx y zx yx + ++��� 000

2 loglog
. ���.  

3
8

log 3
19
9

−�
��

�
��

�
 Evaluate r dr d d
a 2
00

4
0

2
sin θ θ θ

ππ ��� . ���.  
2
3 2

3πa
2 1−

�
�
�

�
�
�� �

��
 Evaluate r d dr dz
a r

a
a

θ
θπ

000

2
2 2−

��� sin
. ���.  

5
64

3a π�
�
�

�
�
�

4.16   APPLICATION TO VOLUME (TRIPLE INTEGRALS)

Volume of a solid contained in the domain V is given by the triple integral with f (x, y, z) = 1

Hence V = dx dy dz���
and Volume in cylindrical coordinates, V = r dr d dzθ���

Volume in spherical polar coordinates, V = r dr d d2 sinθ θ φ���
�������� �
 Find the volume bounded by the elliptic paraboloids

                      z = x2 + 9y2 and z = 18 – x2 – 9y2. (U.P.T.U., 2006)
���
� We have z = x2 + 9y2 ...(i)

z = 18 – x2 – 9y2 ...(ii)
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From eqns. (i) and (ii), we get x2 + 9y2 = 9 ⇒  
x y2

2

2

3 1
+  = 1 ...(iii)

The projection of this volume on to xy plane is the plane region D enclosed by ellipse (iii)
as shown in the Figure 4.46.

Here
z varies from z1(x, y) = x2 + 9y2 to z2(x, y) = 18 – x2 – 9y2

y varies from y1 (x) = −
−9
9

2x
 to  y2(x) = 

9
9

2− x

x varies from – 3 to 3.
Thus, the volume V bounded by the elliptic paraboloids

V = dz dy dx
z x y

z x y

y x

y x

1

2

1

23

,

,

–3 � 	
� 	


 �

 � ���

= 18 9 92 2 2 23

1

2 − − − +�� x y x y dy dx
y x

y x
� � � �
 �


 �
–3

= 2 9 92 23

1

2 − −�� x y dy dx
y x

y x
� �
 �


 �
–3

= 2 9 32 3

9
9

9
93

2

2

y x y y dx
x

x

− −
−

−

−

� � �
–3

=
8
9

9 2
3
2

3
−� x dx� �

–3

Putting x = 3 cos θ  so  dx = – 3 sin θ dθ

= 72 4

0
sin θ θ

π
 d�

= 144 4 0

0

2
sin cosθ θ θ

π
d�

= 144

5
2

1
2

2 3
⋅

= 144

3
2

1
2

2 2
⋅

⋅ ⋅

⋅

π

= 27π.

�������� 	
 Calculate the volume of the solid bounded by the surface x = 0, y = 0,
x + y +  z = 1 and z = 0. (U.P.T.U., 2004)

���
� Here x = 0, y = 0, z = 0 and x + y + z = 1
and z varies from 0 to 1– x – y

y varies from 0 to 1 – x
x varies from 0 to 1

Z

z = x  + 9y
2 2

Z
 =

 18 – x
 – 9y

2
2

O
D

X
(3, 0, 0)

x  + 9y  = 9
2 2

Y
(0,1,0)

���
� �
��
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V = dx dy dz dx dy dz
x x y

= � � ���� − − −

0

1

0

1

0

1

= dx dy z dx dy x yx yx x

0

1

0
1

0

1

0

1

0

1
1� � � �− −− −

= − −� 	

= dx y xy
y

x

− −
�
�

�
��

−

�
2

0

1

0

1

2

= dx x x x x1 1
1
2

1 2

0

1
− − − − −�
��

�
��� 
 � 
 �

= 1
1
2 2

1
2 2

2
2

0

1 2

0

1
− − + − + −

�
�

�
��

= − +
�
�

�
��� �x x x x

x
dx x

x
dx

=
x x x
2 2 6

1
2

1
2

1
6

1
6

2 3

0

1

− +
�
�
�
�

�
�
�
�

= − + = .

��������
 Find the volume of a solid bounded by the spherical surface x2 + y2 + z2 = 4a2

and the cylinder x2 + y2 – 2ay = 0.
���
� We have

x2 + y2 + z2 = 4a2 ...(i)
x2 + y2 – 2ay = 0 ...(ii)

Changing it in polar coordinates
x = r cos θ, y = r sin θ

From (i) z2 = 4a2 – r2

From (ii) r2 = 2ar sin θ = 0 ⇒  r = 2a sin θ
Hence, r varies from r = 0 to r = 2a sin θ

z varies from z = 0 to z = 4 2 2a r−

and θ varies from θ = 0 to θ = 
π
2

∴ V = dx dy dz d rdr dz
r

a

z

a r
= � � ���� = =

−
4

0
2

0

2

0

4 2 2

θ
π

θ
    

sin
Volume in 4 quadrant

= 4 4 4
0

2

0

4
2 2

0

2

0
2

0
2

2 2

d r dr z d r dr a r
a a r a

θ θ
θ θππ

sin sin� ���
−

= −

= 4
1
3

4
4
3

4 4 82 2
3
2

0
2

0

2

2 2 2
3
2 3

0
2d a r a a a d

a

θ θ θ
π θ π

− −
�

�
�
�

�

�
�
�

= − − +
�

�
�
�

�

�
�
�� �� � � �

sin

sin

= 4
3

8 8
8 4

3
13 3 3

3
3

0
2

0
2 – cos cosa a d

a
dθ θ θ θ

ππ

+ = × −�� � � � �

=
32

3
1

1
4

3
3
4

3

0
2

a
d– cos cosθ θ θ

π
−�

�
�
���

=
32

3
1
12

3
3
4

32
3 2

1
12

3
4

3

0

2
3a aθ θ θ π

π

− −�
��

�
��

= + −�
��

�
��

sin sin

= 32
3 2

2
3

3a π −�
��

�
��
.
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���������
 Find the volume of the cylindrical column standing on the area common to the
parabolas x = y2, y = x2 as base and cut off by the surface z = 12 + y – x2. (U.P.T.U., 2001)

���
 Volume = dx dy dz
y x

x

x

0

12 2

2

+ −���0
1

= dx y x dy
x

x
12 2

2
+ −�� � �

0

1

= dx y
y

x y
x

x

12
2

2
2

2

+ −
�
�

�
���0

1

= 12
2

12
2

5
2 2

4
4x

x
x x

x
x dx+ − − − +

�
�

�
���0

1

= 8
4

2
7

4
10 5

3
2

2 7
2 3

5 5

0

1

x
x

x x
x x+ − − − +

�


�

�

�
�

= 8
1
4

2
7

4
1

10
1
5

+ − − − +  = 
569
140

.

�������� �
 Find the volume enclosed between the cylinders x2 + y2 = ax and z2 = ax.
���
�  We have x2 + y2 = ax

z2 = ax

V = dx dy dz���
= dx dy dz

ax

ax

ax x

ax xa

−−

− ��� – 2

2

0

= dx dy z ax
ax

ax x

ax xa

 �−−

−�� – 2

2

0

= 2
2

2

0
dx dy ax

ax x

ax xa

– −

−��
= 2 2

2

0
ax dx y

ax x

ax xa

− −
−�

= 2 2 42

0 0
ax dx ax x a x a x dx

a a
−�


�
� = −� �

Put x = a sin2 θ so that dx = 2a sin θ cos θ dθ

= 4 22 2

0
2a a a a a dsin sin sin cosθ θ θ θ θ
π

− ⋅�   

= 8 3 3 2

0
2a dsin cosθ θ θ
π

�

= 8
2

3
2

2
7
2

4

3
2

5
2

3
2

3
2

16
15

3 3
3

a a
a=

⋅
= ⋅

x  = y
2

O
X

y  = x
2

Y

���
� �
��

���
� �
��

X

Z

O

Y

z
 =

 a
x

2

(a, 0)

x  + y  = ax
2 2
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���������
 Find the volume bounded above by the sphere x2 + y2 + z2 = a2 and below by
the cone x2 + y2 = z2.

���
�  We have x2 + y2 + z2 = a2 ...(i)
x2 + y2 = z2 ...(ii)

Let x = r cos θ, y = r sin θ
From eqns. (i) and (ii) z2 = a2 – r2

and z2 = r2

Here z varies from r to a r2 2−

r varies from 0 to 
a

2
r a r r

a2 2 2 =   –     =  
2

⇒

θ varies from 0 to 2π

∴ Volume V = dz r dr d
r

a r
a

⋅
−��� θ

π
� 	

2 2

0
2

0

2

= z r dr d a r r r dr dr
a r aa

( ) = − − ⋅− � ��� 2 2

0

2

0

2

0

2 2 2

0

2
θ θ

ππ � �

=
a r

r d
a

a
a

d

a

2 2
3
2

3

0

2

2
3
2

3
3

0

2

0

2

2
3
2

1
3

1
3 2 2 2

−

− ⋅�
�
�

−

�

�

�
�
�
�

�

�

�
�
�
�

= −
�
�
�
��

+ −
�

�

�
�
�

�

�

�
�
�

�� � �
θ θ

ππ

=
1
3

1
1
2

1
3

1
1
2

23
0
2 3a a−

�
�

�
�� = −

�
�

�
�� ⋅θ ππ
 �

= 2 2
3

3
−� �

πa
.

���������
 Find the volume bounded above by the sphere x2 + y2 + z2 = a2 and below by
the cone x2 + y2 = z2.

���
� The equation of the sphere is x2 + y2 + z2 = a2 ...(i)
and that of the cone is x2 + y2 = z2 ...(ii)

In spherical coordinates x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ
From eqn. (i) (r sin θ cos φ)2 + (r sin θ sin φ)2 + (r cos θ)2 = a2

⇒  r2 sin2 θ cos2 φ + r2 sin2 θ sin2 φ + r2 cos2 θ = a2

⇒ r2 sin2θ (cos2 φ + sin2 φ) + r2 cos2 θ = a2

⇒ r2 sin2 θ + r2 cos2 θ = a2

⇒ r2 (sin2 θ + cos2 θ) = a2

⇒ r2 = a2

⇒ r = a
From (ii) (r sin θ cos φ)2 + (r sin θ sin φ)2

= (r cos θ)2

⇒ r2 sin2 θ (cos2 φ + sin2φ) = r2 cos2 θ
⇒ r2 sin2 θ = r2 cos2 θ
⇒ tan2 θ = 1

Z

x  + y  + z  = a
2 2 2 2

Y

X

O

x  + y  = z
2 2 2

���
� �
��
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⇒ tan θ = 1 ⇒  θ = ± 
π
4

Thus r = a and θ = ± 
π
4

The volume in the first octant is one-fourth only. Limits in the first octant r varies 0 to a, θ

from 0 to 
π
4

 and φ from 0 to 
π
2

∴ V = 4 4
3

2
00

4
0
2

3

0
4

0
2

0

r dr d d d d
ra

a

sin sinθ θ φ φ θ θ
ππ ππ

=
�
�
�
�
�
�
�
���� ��

= 4
3

4
3

4
3

1

2
1

3 3

0
4

0
2

3

0
4

0
2

0
2 d d

a a
d

aφ θ θ φ θ φ
πππ ππ

sin cos⋅ = − = − +�
��

�
����� � 	

=
4
3 2

2 1
2

2
3

1
1
2

3
3a

a− = −��
�
��� �

π π .

���������� ���� ���!��"

���
� �
��

�������� �
 Find by triple integration, the volume of the paraboloid of revolution
x2 + y2 = 4z cut off by the plane z = 4. (U.P.T.U., 2005)

���
� By symmetry, the required volume is 4 times the volume in the positive octant.
The section of the paraboloid by the plane z = 4 is the circle x2 + y2 = 16, z = 4 and its

projection on the xy-plane is the circle x2 + y2 = 16, z = 0.

The volume in the positive octant is bounded by z = 
x y2 2

4
+

, z = 4, y = 0, y = 16 2− x  and

x = 0, x = 4.

Volume V = 4 4 2 2

2

2 2

2

4

4

0

16

0

4

4

4

0

16

0

4
dz dy dx z dy dx

x y

x

x y

x
=

+

−

+

− ����� � �� �

= 4 4
4

4 4
4

1
4 3

2 2

0

16

0

4 2 3

0

16

0

42

2

−
+�

�
�
��

= −
�
�

�
��

− ⋅
�

�
�
�

�

�
�
�

−
−

�� �x y
dy dx

x
y

y
dx

x
x

= 4 4
4

16
1

12
16

2
2 2

3
2

0

4
−

�
�

�
��

− − −
�

�
�
�

�

�
�
�� x

x x dx� �
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= 4
1
4

16 16
1
12

162 2 2
3
2

0

4
− − − −

�

�
�
�

�

�
�
�� x x x dx� � � �

= 4
1
6

16
2
3

162
3
2 2 3 2

0

4

0

4
− = −�� x dx x dx� � � �

=
2
3

16 43 2

0
2 3
 �
π

θ θ θ� ⋅ ⋅cos cos ,d  where x = 4 sin θ

=
512

3
4

0
2 cos θ θ
π

d�
=

512
3

3
4

1
2 2

⋅ ⋅ ⋅
π

= 32π.

���������
� Find the volume of the solid under the surface az = x2 + y2 and whose base R
is the circle x2 + y2 = a2. (U.P.T.U., 2008)

���
� We have az = x2 + y2, x2 + y2 = a2

Here x varies from 0 to a

y varies from 0 to a x2 2−

and z varies from 0 to 
x y

a

2 2+
.

By symmetry, the required volume is 4 times the volume in
positive octant.

V = 4
4 2 2

00000

2 2
2 2

2 2

dx dy dz
a

x y dx dy
a xa

z

x y
a

y

a x

x

a
= +

−

=

+

=

−

= ����� � �

= 4
3

4
3

2
3

0

2 2 2
2 2 3 2

00

2 2

a
x y

y
dx

a
x a x

a x
dx

a x
aa

+
�
�
�
�

�
�
�
�

= − +
−�

�

�
�
�

�

�

�
�
�

−

�� � �

Putting x = a sinθ i.e., dx = a cosθ dθ

=
4

3
4 2 2

4
4

0

2

0

2

a
a d

a
dsin cos cosθ θ θ θ θ

ππ
+

�
�
�

�
�
���

=
4 3 2 3 2

2 3

5 2 1 2

3 2 3
4

4
1
2

1
2

34 4 3

a
a a a. .

.

.
+

�

�
�
�

�

�
�
�

= ⋅ +�
��

�
��

π
π

3.  2.  2

= a
a3

32
4 2
π π�

��
�
��

= .

����������
�A triangular prism is formed by planes whose equations are ay = bx, y = 0 and
x = a. Find the volume of the prism between the plane z = 0 and surface z = c + xy.

[U.P.T.U. (C.O.), 2003]
���
� Here x varies from 0 to a

y varies from 0 to 
bx
a

az=x +y
2 2

x + y = a
2 2 2

���
� �
��
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z varies from 0 to c + xy
Hence, the volume is

V = dx dy dz c xy dx dy
bx aac xybx aa

= +����� +
� 	

00000

= cy
xy

dx
bcx
a

b x

a
dx

bx a
aa

+
�
�
�
�

�
�
�
�

= +
�
�

�
����

2

0

2 3

200 2 2

=
bcx

a
b x

a

bca
a

b a

a

ab
c ab

a2 2 4

2
0

2 2 4

22 8 2 8 8
4+

�

�
�
�

�

�
�
�

= + = +� 	.

EXERCISE 4.6

�
 Find x yz dx dy dz
V

2��� , where V is the volume bounded by the surface x2 + y2 = 9,

z = 0,  z = 2. ���.  
5

648�
��

�
��

	
 Compute the volume of the solid enclosed between the two surfaces elliptic paraboloids
z = 8 – x2 – y2 and z = x2 + 3y2.
[

, : ]

Hint:  Projection of the volume on to - plane is the ellipse

 +  2  =  4,  so limits are ;   +  3  to 8 –  –  ;   :  

xy

x y z x y x y y
x

x2 2 2 2 2 2
24

2
2± − ±

.

���.  28π


 Compute the volume of the solid bounded by the plane 2x + 3y + 4z = 12, xy-plane and
the cylinder x2 + y2 = 1.

Hint: , : , :Limits : 0 to 
1
4

z x y x to y x12 2 3 1 1 1 2− − − ± −�
��

�
��
⋅� 	 ���.  3π

�
 Find the volume of the solid common to two cylinders x2 + y2 = a2, x2 + z2 = a2.

#��!" z a x y a x
x a

: :2 2 2 2− −
�

�
�
�

�

�
�
�
⋅±

±

±,
:

��� .  
16

3

3a�
�
�
�

�
�
�
�

�
 Find the volume of the cylindrical column standing on the area common to the parabolas
y2 = x, x2 = y and cut off by the surface z = 12 + y – x2. (U.P.T.U., 2001)

���.  
566
140

�
��

�
��

�
 A triangular prism is formed by planes whose equations are ay = bx, y = 0 and x = a. Find
the volume of the prism between the planes z = 0 and surface z = c + xy.

[U.P.T.U. (C.O.), 2003]

� ���.  
8
ab

c ab4 +�
��

�
��
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�
 Compute the volume bounded by xy = z, z = 0 and (x – 1)2 + (y – 1)2 = 1. ���.  π

�
 Evaluate xyz dx dy dz
yzz

010

2 ��� . ���.  
7
2

�
��

�
��

�
 cos
z
x

dz dy dx
xy

x 0
2

0
2 ���

ππ

. ���.  
2
π −�
�

�
��

�
��

�
��

1

��
 Compute the volume of the solid bounded by x2 + y2 = z, z = 2x. ���.  2π

��
 Find the volume of the region bounded by the paraboloid az = x2 + y2 and the cylinder

x2 + y2 = R2. ���.  
πR

a

4�
�
�

�
�
�2

�	
 Find the volume of the tetrahedron by the coordinate planes and the plane x
a

y
b

z
c

+ + =1.

���.  
abc
6

�
��

�
��

4.17   DRITCHLET’S* THEOREM

(U.P.T.U., 2005)
If V is a region bounded by x ≥ 0, y ≥ 0 and x + y + z ≤ 1, then

x y z dx dy dz
l m m

l m n
l m n

V
− − − =

+ + +��� 1 1 1

1
� 	 
 � 
 �
� 	

The given triple integral may be written as

Ι = x y z dx dy dzl m nx yx − − −− −− ��� 1 1 1

0

1

0

1

0

1

Y

B

z = 0

O

x + y = 1
A

X
� � � �y = x y z

z = 1–x–y

C

Z

���
� �
�	

* Peter Gustav Lyeune (1805–1859), German Mathematician.
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= x y
z
n

dx dyl m
n x y

x − −
− −

− �
�
�
�
�
��� 1 1

0

1

0

1

0

1

=
1

11 1

0

1

0

1

n
x y x y dx dyl m nx − −−

− −�� � 	

Put y = (1 – x) t, so that dy = (1 – x) dt

Then I =
1

1 1 1 11

0

1

0

1

n
x x t x x t x dx dtl m n− − ⋅ − − − −�� 
 �� � 
 � 
 �� � 
 �

=
1

1 11 1 1 1 1 1

0

1

0

1

n
x x dx t t dtl m n m n− + − − − + −− −�� 
 � 
 �
 � 
 �

=
1

1 1
n

l m n m nβ β, ,+ + ⋅ +
 � 
 �

=
1 1

1

1

1n

l m n

l m n

m n

m n


 � 
 �

 �


 � 
 �

 �

⋅ + +

+ + +
⋅

+

+ +

=
1 1

1n

l m n

l m n


 � 
 � 
 �

 �
⋅ +
+ + +

=
1

1n
l m n n

l m n


 � 
 � 
 �

 �

⋅ ⋅
+ + +

� n n n+ =1
 � 
 �

=
l m n

l m n


 � 
 � 
 �

 �

⋅
+ + +1

Hence, x y z dx dy dz
l m n

l m n
l m n

V
− − − =

⋅
+ + +��� 1 1 1

1


 � 
 � 
 �

 �

where V is the region given by x ≥ 0, y ≥ 0, z ≥ 0 and x + y + z ≤ 1.
This integral is known as $��!����!%�� ��!�����
 This is an important integral useful in

evaluating multiple integrals.
&����'"� It is to be noted that S is a region bounded by x ≥ 0, y ≥ 0 and x + y ≤ 1 then

x y dx dy
l m

l m
l m

S

− −�� = =
+ +

1 1

1 .

(�!�� �"� The above integral can be generalised for more than three variables, i.e.,

... ... ...x x x x dx dx dx dxp p p
n

p
n

n
1

1
2

1
3

1 1
1 2 3

1 2 3− − − −⋅ ⋅���  = 
p p p p

p p p p
n

n

1 2 3

1 2 3 1

� 	 � 	 � 	 � 	
� 	

− − −

+ + + − − − − + +
where the region of integration is given by x

i
 = 1, 2, ...., n; such that x1 + x2 + .... + x

n
 ≤ 1.

(�!�� 	" If the region of integration be x ≥ 0, y ≥ 0, z ≥ 0 and x + y + z ≤ h, then

x y z dx dy dzl m n

V

− − −��� 1 1 1  = 
l m n

l m n
h

� 	 
 � 
 �
� 	+ + +1

.
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���������
 Find the value of x y z dx dy dzl m n− − −��� 1 1 1  where x, y, z are always positive with

x
a

y
b

z
c

p q r�
�
�
�� + ��

�
�� + ��

�
��  ≤ 1. (U.P.T.U., 2005)

���
� Putting
x
a

p�
�
�
�� = u, 

y
b

v
z
c

w
q r�

�
�
�� = �

�
�
�� =, , we have

x = au1/p
, y = bv1/q, z = cw1/r

,

∴ dx = a
p

u du dy
b
q

v dv dz
c
r

w dwp q r�
�
�
��

=
�
�
�
��

= ��
�
��

−
�
�

�
��

−
�
�

�
�� −�

�
�
��

1
1

1
1 1

1
, ,

∴ The given integral = au bu cwp

l

q

m

r

n1 1 1 1
1 1�


��

�

�
��
�


��

�

�
��

�
�

�
�����

− − − a
p

u
b
q

v
c
r

w du dv dwp q r
�
�
�
��

⋅ ⋅
− − −

1
1

1
1 1

1

=
a b c

pqr
u v w du dv dw

l m n l
p

m
q

n
r

−
�
�

�
�� − −�

�
�
�����

1 1 1
, where u + v + w ≤ 1

= a b c
pqr

l
p

m
q

n
r

l
p

m
q

n
r

l m n

�
�
�
��
�
�
�
��
�

�
�

+ + +
�
�

�
��

1

.

�������� 	
 Find the volume of the ellipsoid 
x
a

y

b
z
c

2

2

2

2

2

2+ +  = 1.

���
� The volume in the positive octant will be

V = dx dy dz���
For points within positive octant, 

x
a

y

b
z
c

2

2

2

2

2

2+ +  ≤ 1.

Put x

a

2

2
= u or x = a u , y = b v , z = c w ,

∴ dx =
a

u
2

1
2

−
 du, dy = 

b
v

2

1
2

−
 dv, dz = 

c
w

2

1
2

−
dw

V = abc
u v w du dv dw

8

1
2

1
1
2

1
1
2

1−�
�

�
�� −�
�

�
�� −�
�

�
����� , where u + v + w ≤ 1

=
abc
8

1
2

1
2

1
2

1
1
2

1
2

1
2

⋅

�

�
� ⋅ �

�
� ⋅ �

�
�

+ + +�


�
�

=
abc abc
8 3

2
1
2

6

3
π

π

π� �

⋅ ⋅
=
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∴ Total volume = 8 × 
π

π
abc

abc
6

4
3

= .

��������
 The plane 
x
a

y
b

z
c

+ +  = 1 meets the axis in A, B and C. Apply Dritchlet’s integral

to find the volume of the tetrahedran OABC. Also find its mass if the density at any point is kxyz.
(U.P.T.U., 2004)

���
� Let 
x
a

 = u, 
y
b

 = v, 
z
c

 = w, then u ≥ 0, v ≥ 0, w ≥ 0 and u + v + w ≤ 1

Also, dx = a du, dy = b dv, dz = c dw.

Volume OABC = dx dy dz
D���

= abc du dv dw
D

,���  where u + v + w < 1

= abc u v w du dr dw
D

1 1 1 1 1 1− − −���
= abc

abc abc1 1 1

1 1 1 1 3 6

 � 
 � 
 �

 �+ + +

= =
!

Mass = kxyz dx dy dz k au bv cw abc du dv dw
DD

=
′������ 
 �
 �
 �

= ka b c u v w du dv dw
D

2 2 2 2 1 2 1 2 1− − −
′���

= ka b c ka b c
ka b c2 2 2 2 2 2

2 2 22 2 2

2 2 2 1
1 1 1

6 720+ + +
= =


 �
! ! !

!
.

���������
 Find the mass of an octant of the ellipsoid 
x
a

y

b
z
c

2

2

2

2

2

2+ +  = 1, the density at any

point being ρ = kxyz. (U.P.T.U., 2002)

���
� Putting 
x
a

2

2  = u, 
y

b

2

2  = v, 
z
c

2

2  = w and u + v + w = 1

So that
2

2

xdx
a

= du, 
2

2

ydy

b
 = dv, 

2
2

zdz
c

 = dw, then

mass ρdv��� = kxyz dx dy dz k xdx ydy zdz� 	 
 � � 	 
 �= ⋅������
Mass = k

a du b dv c dw2 2 2

2 2 2

�
�

�
��
�
�

�
��
�
�

�
�����

=
ka b c

du dv dw
2 2 2

8 ��� , where u + v + w ≤ 1

=
ka b c

u v w du dv dw
ka b c2 2 2

1 1 1 1 1 1
2 2 2

8 8
1 1 1

3 1
− − − =

+���

=
ka b c ka b c2 2 2 2 2 2

8 6 48×
= .
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�������� �
 Find the volume of the solid surrounded by the surface

x
a

y
b

z
c

�
�
�
�� + ��

�
�� + ��

�
��

2
3

2
3

2
3

= 1. (U.P.T.U., 2007)

���
� Let u =
x
a
�
�
�
��

2
3

 ⇒  x = au
3
2  ⇒  dx = 

3
2

1
2a

u du

v =
y
b
�
�
�
��

2
3

 ⇒  y = bv
3
2  ⇒  dy = 3

2

1
2b

v dv

w =
z
c
�
�
�
��

2
3

 ⇒  z = cw
3
2  ⇒  dz = 

3
2

1
2c

w  dw

∴ V = 8 8
27

8

1
2

1
2

1
2dx dy dz

abc
u v w du dv dw= ⋅������

= 27
3
2

1
3
2

1
3
2

1
abc u v w du dv dw

− − −��� , ,

= 27

3
2

3
2

3
2

3
2

3
2

3
2

1
abc ⋅

⋅

+ + +

= 27

1
2

1
2

1
2

1
2

1
2

1
2

11
2

abc ⋅
⋅ ⋅ ⋅ ⋅

= 27
8

9
2

7
2

5
2

3
2

1
2

3
2

abc ⋅
⋅ ⋅ ⋅ ⋅ ⋅

π

π

=
4

35
πabc

.

���������
�Find the value of 
1

1 3
x y z

dx dy dz
+ + +��� � 	

 the region bounded by coordinate

planes and the plane x + y + z = 1.
���
� Here x varies from 0 to 1

y varies from 0 to 1 – x

z varies from 0 to 1 – x – y

Thus

1

1 30

1

0

1

0

1

x y z
dx dy dz

x yx

+ + +

− −− ��� � 	
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= −
+ + +

�

�
�
�

�

�
�
�

− −
−�� 1

2 1
2

0

1

0

1

0

1

x y z
dx dy

x y
x

� 	

= −
+ + − − +

−
+ +

�

�
�
�

�

�
�
�

−�� 1
2

1

1 1

1

1
2 20

1

0

1

x y x y x y
dx dy

x

� 	 � 	

= − −
+ +

�

�
�
�

�

�
�
�

−��12 1
4

1

1 20

1

0

1

x y
dx dy

x

� 	

= − +
+ +

�
�

�
��

= − − + −
+

�
�

�
��

−

��12 4
1

1
1
2

1
4

1
2

1
1

0

1

0

1

0

1 y
x y

dx
x

x
dx

x

� 	

= −
− −

+ − +
�

�
�
�

�

�
�
�

= − +�
��

�
��

1
2

1
8 2

1
1
2

1
2

2
1
8

2

0

1
x x

x

 � 
 �log log

=
1
2

2
5

16
log − .

���������
�Find the area and the mass contained m the first quadrant enclosed by the curve

x
a

y
b

�
�
�
�� + ��

�
�� =

α β

1, where α > 0, β > 0 given that density at any point ρ (xy) is k xy .

[U.P.T.U., 2008]
���
� The area of the plane region is

A = dx dy
S
��

Let x
a
�
�
�
��

α
= u or x = au1/α so dx = 

a
u du

α
α
1

1−
⋅

y
b
�
�
�
��

β
= v or y = bv1/β so dy = b

v dv
β

β
1

1−
⋅

∴ A = ab
u v dudv

s
αβ

α β
1

1
1

1− −

�� .

A = ab
αβ

α β

α β

⋅
+ +

1 1
1 1

1
As x y dx dy

l m

l m
l m

s

− − =
+ +�� 1 1

1

Now the total mass M contained in the plane region A is :

M = ρ x y dx dy k xy dx dy
S

,� 	� ��� =

���
� �
�x

y

A

O

z

(0,0,1)

(0,1,0)

(1,0,0)

B
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= k a u b v
ab

u v du dv
S

1
2

1
2

1
1

1
1

α β α β
αβ

⋅ ⋅ ⋅ ⋅
− −

′
��

= k
ab

u v du dv
S


 �3 2 3

2
1

3

2
1

αβ
α β− −

′

⋅��

= k
ab
 �3 2

3
2

3
2

3
2

3
2

1
αβ

α β

α β

⋅
+ +

.

���������
� Find the mass of the region in the xy-plane bounded by x = 0, y = 0, x + y = 1

with density k xy .

���
� Mass M contained in the plane region is

M = k xy dx dy k x
y

dx
k

x x dx

x
x =

�

�
�
�

�

�
�
� = −

−
− ���� 1 2

0

1

1 2 3 2
0

1

0

1

0

1

0

1
3
2

3 2
2
3

1. 
 �

=
2
3

1
3
2

1 5
2

1

0

1k
x x dx

− −−� . 
 �

=
2

3

3

2

5

2

2

3

3 2 5 2

4

2

3

1 2 3 2 1 2

3 2 1 24

k k k k
β

π π π
,

. .
.

�
�

�
��

= ⋅ = ⋅
⋅ ⋅
⋅ ⋅

=

EXERCISE 4.7

�
 Evaluate dx dy dz��� , where 
x
a

y

b
z
c

2

2

2

2

2

2+ +  ≤ 1. ���.  
abc
6

π�
��

�
��

	
 Find the volume enclosed by the surface

x
a

y
b

z
c

n n n�
�
�
�� + ��

�
�� + ��

�
��

2 2 2

� 1. ���.  
1
6

a b c2 2 2�
��

�
��


 Find the volume of the solid bounded by coordinate planes and the surface

x
a

y

b
z
c

�
�
�
�� + ��

�
�� + ��

�
��

1
2

1
2

1
2

� 1. ���.  
90
abc�

��
�
��

�
 Find the volume of the solid bounded by coordinate planes and the surface

x
a

y
b

z
c

n n n�
�
�
�� + ��

�
�� + ��

�
��

2 2 2

��� 1, n being a positive integer. ���.  
12 2
abc

n

n

n

⋅

�
�

�
��

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1
2

3
2

3
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�
 Evaluate x y z dx dy dz
V

α β− − ϒ−��� ⋅1 1 1 , where V is the region in the first octant bounded by
the sphere x2 + y2 + z2 = 1 and the coordinate planes. [U.P.T.U. (C.O.), 2003]

���.  2 2 2

2

α β γ

α β
8

2 2
+ + ϒ

�

�

�
�
�
�

�

�

�
�
�
�

�
 Find the area enclosed by the curve x

a

m y

b

n�
�
�
��

�
�
�
��+ =

2 2
1  m, n being positive integers.

Ans.
ab

mn

m m

m n4

1 2 1 2

1 2 1 2 1
⋅

+ +

�

�
�
�

�

�
�
�

�
 Find the area enclosed by the curve x

a

y

b
�
�
�
��
�
�
�
��+ =

4 10
1 . Ans.

ab

40

1

4

1

10
27

20

⋅

�

�

�
�
�
�

�

�

�
�
�
�

OBJECTIVE TYPE QUESTIONS

�
� )��'� !��� ������!� ���*��� �+� !��� �������� ��,��� -���*� "

�
 The volume of the solid under the surface az = x2 + y2 and whose R is the circle
x2 + y2 = a2 is given as [UPTU. 2008]

(i)
π
2a

(ii)
πa3

2

(iii)
4
3

3πa (iv) None of these

	
 The value of triple integral x dx dy dz
x

y 0

11

0

1

2

−���  is

(i)
4

35
(ii) −

5
38

(iii)
35
4

(iv)
−17
35


 The volume bounded by the parabolic cylinder z = 4 – x2 and the planes x = 0, y = 0,
y = 6 and z = 0 is

(i) 32.5 (ii) 56
(iii) 33 (iv) 32

�
 The area which is inside the cardioid r = 2 (1 + cosθ) and the outside the circle r = 2
is :

(i) π + 8 (ii) π – 8
(iii) 3π – 7 (iv) None of these
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.
� ����� ��� !��� -���'�"

�
 The volume of the solid bounded by the surfaces; z = 0, x2 + y2 = 1, x + y + z = 3 is ..........
	
 In spherical coordinate system dx dy dz = ..........


 In cylindrical coordinate system dx dy dz = ..........
�
 The volume of region bounded by the parabolic cylinder x = y2 and the planes x = z,

z = 0 and x = 1 is ..........

�
 sin y dy dx
x

00 ��
π

 = ..........

�
 y e dyn y− −∞� 1

0
. λ  = ..........

�
 sin . cosm n dθ θ θ
π

0

2�  = ..........

�
 r d dr
a

3

00
θ

θπ��  = ..........

/
� 0� ���!�� 1�2�� �� � ������ +��� !��� +����*���� �!�!����!�"

�
 (i) Volume in cylindrical coordinates is rdrd dzθ��� .

(ii) Volume in spherical coordinates is r dr d d3 sin θ θ φ��� .

(iii) The total volume of a solid bounded by the spherical surface x2 + y2 + z2 = 4a2 and
the cylinder x2 + y2 – 2ay = 0 is multiplied by 4.

(iv) In spherical coordinates F(x, y, z) = F(r sinθ cosφ, r sinθ sinφ, z).
	
 (i) Parallelopiped, ellipsoid and tetrahedron are regular three dimensional domain.

(ii) In the area of the cardioid r = a (1 + cos θ), r varies from 0 to a(1 + cos θ) and θ
varies from – π to π.

(iii) x y dx dy
l m

l m
l m− − =

+ +�� 1 1.
1

(iv) Triple integral is not generalization of double integral.

$
� 3�!��� !��� +����*���"

�
 (i) β (p, q) (a) 
1
2
�
�
�
��

(ii)
p q

p q+
(b) 

y

y
dy

p

p q

−

+

∞

+
⋅�

1

0 1� 	

(iii ) π (c) β (p, q)

(iv)
π

πsin p
(d) p p1 −
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 (i) F x y dxdy
s

,� 	�� (a) x x dxm n− −−� 1 1

0

1
1
 �

(ii) β(m, n) (b) n n

(iii) n +1 (c) nπ/sin nπ

(iv) 1 1+ −n n (d) F u v J du dv
s

,
 ���

ANSWERS TO OBJECTIVE TYPE QUESTIONS

�
� )��'� !��� ������!� ���*��"

�
 (ii) 	
 (i) 
 (iv)
�
 (i)

.
� ����� ��� !��� -���'�"

�
 3π 	
 r2 sin θ dr dθ dφ] 
 r dr dθ dz

�

4
5

�
 π �

n
nλ

�


m n

m n

+ +

+ +

1
2

1
2

2
2

2

�

a4 5

20
π

/
� 1�2�� �� � �����"

�
 (i) T (ii) F (iii) T (iv) F
	
 (i) T (ii) T (iii) T (iv) F

$
� 3�!��� !��� +����*���"

�
 (i) → (b), (ii) → (c), (iii) → (a), (iv) → (d)
	
 (i) → (d), (ii) → (a), (iii) → (b), (iv) → (c).

���



UNIT �

Vector Calculus

VECTOR DIFFERENTIAL CALCULUS
The vector differential calculus extends the basic concepts of (ordinary) differential calculus to
vector functions, by introducing derivative of a vector function and the new concepts of gradient,
divergence and curl.

5.1 VECTOR FUNCTION

If the vector r  varies corresponding to the variation of a scalar variable t that is its length and
direction be known and determine as soon as a value of t is given, then r  is called a vector
function of t and written as

r = f (t)

and read it as r  equals a vector function of t.

Any vector f (t) can be expressed in the component form

f (t) = f1(t) �i  + f2 (t) �j  + f3 (t) �k
Where f1(t), f2 (t), f3 (t) are three scalar functions of t.

For example, r = 5t2 �i  + t �j  – t3 �k
where f1(t) = 5t2, f2(t) = t, f3 (t) = – t3.

5.2 VECTOR DIFFERENTIATION

Let r  = f (t) be a single valued continuous vector point function of a scalar variable t. Let O be

the origin of vectors. Let OP  represents the vector r  corresponding to a certain value t to the
scalar variable t. Then

r = f (t) ...(i)

333
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Let OQ  represents the vector r  + δ r  corresponding to the value t + δt of the scalar variable
t, where δt is infinitesimally small.

Then,

r  + δ r = f (t + δt) ...(i)
Subracting (i) from (ii)

δ r = f (t + δt) – f (t) ...(iii)
Dividing both sides by δt, we get

δ
δ
r
t

=
f t t f t

t
( ) ( )+ −δ

δ
Taking the limit of both side as δt → 0.

We obtain lim
t→0  

δ
δ
r
t

= lim
δt→0

f t t f t
t

( ) ( )+ −δ
δ

dr
dt

= lim
δt→0  

f t t f t
t

( ) ( )+ −δ
δ

 = 
d
dt

f t( )    .

5.3 SOME RESULTS ON DIFFERENTIATION

(a)
d
dt

r s( )−
�

=
dr
dt

ds
dt

− ⋅
�

(b)
d sr

dt
( )
�

=
ds
dt

r s
dr
dt

+

(c)
d a b

dt
( )⋅

=
�
a

db
dt

da
dt

b⋅ + ⋅

(d)
d
dt

a b( )× =
da
dt

b a
db
dt

× + ×

(e)
d
dt

a b c× ×( )� � =
da
dt

b c a
db
dt

c a b
dc
dt

× × + × ×
�
��

�
�� + × ×

�
��

�
�� ⋅( )

�

�������� v = �r  = 
dr
dt

⋅

	�����
����� a =
dv
dt

= 
d r
dt

2

2 ⋅

����������A particle moves along the curve x = t3 + 1, y = t2, z = 2t + 5, where t is the time.
Find the component of its velocity and acceleration at t = 1 in the direction i + j + 3k.

����� Velocity
dr
dt

=
d
dt

xi y j zk( � � �)+ +

=
d
dt

t i t j t k( )� � ( ) �3 21 2 5+ + + +

= 3 2 22t i t j k� � �+ +

O

r
�

P

r +
 d

r

�

�

dr
�

—
dt

Q

����� ���
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= 3 2 2� � �i j k+ + , at t = 1.

Again unit vector in the direction of � � �i j k+ + 3  is

=
� � �i j k+ +

+ +

3

1 1 32 2 2	 

 = 

� � �i j k+ + 3

11

Therefore, the component of velocity at t = 1 in the direction of � � �i j k+ + 3  is

3 2 2 3

11

� � � � � �i j k i j k+ + ⋅ + +	 
 	 

=

3 2 6
11

+ +
 = 11

Acceleration
d r
dt

2

2 =
d
dt

dr
dt

�
��

�
��  = 6 2ti j� �+  = 6 2� �i j+ , at t = 1

Therefore, the component of acceleration at t = 1 in the direction � � �i j k+ + 3  is

6 2 3

11

� � � � �i j i j k+ ⋅ + +	 
 	 

=

6 2

11

+
 = 

8

11
·

����������A particle moves along the curve x = 4 cos t, y = 4 sin t, z = 6t. Find the velocity
and acceleration at time t = 0 and t = π/2. Find also the magnitudes of the velocity and accelera-
tion at any time t.

����� Let r  =  4 cos t �i  + 4 sin t �j  + 6t �k

at t = 0, �
v = 4 6� �j k+

at t =
π
2

,  �v = − +4 6� �i k

at t = 0, |v| = 16 36+  = 52  = 2 13

at t =  
π
2

, |v| = 16 36+  = 52  = 2 13 .

Again, acceleration, a =
d r
dt

2

2  = – 4 cos t �i  – 4 sin t �j

at t = 0, a = – 4 �i

∴   at t = 0, |a| = ( )−4 2 = 4

at t =
π
2

, a = – 4 �j

at t =
π
2

, |a| = ( )−4 2  = 4.

���������� If r  = a ent + b e–nt, where a, b are constant vectors, then prove that

d r

dt
n r

2

2
2− = 0

���� r = a ent + b e−nt ...(i)
dr
dt

= ae n be nnt nt⋅ + ⋅ −− ( )
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d r
dt

2

2 = ae n be nnt nt⋅ + ⋅ −−2 2( )

d r
dt

2

2 = n ae bent nt2 + −  = n2r [From (i)]

⇒
d r
dt

2

2 – n r2 = 0. ������ �
�����

������� ��� If � � �
a b c, ,  are constant vectors then show that r at bt c= + +2  is the path of a

point moving with constant acceleration.

���� r = at bt c2 + +

dr
dt

= 2at b+

d r
dt

2

2 = 2a  which is a constant vector.

Hence, acceleration of the moving point is a constant.   �������
�����

EXERCISE 5.1

�� A particle moves along a curve whose parametric equations are x = e–t, y = 2 cos 3t,
z = sin 3t.
Find the velocity and acceleration at t = 0.

[������ r xi yj zk= + +� � � ]

	��.  Vel.  =  10  acc.  =  5 13,

�� A particle moves along the curve

x = 3t2, y = t2 – 2t, z = t2.

Find the velocity and acceleration at t = 1. 	��.   =  2 10   =  2 11
�
v a,

�� Find the angle between the directions of the velocity and acceleration vectors at time t of

a particle with position vector r t i tj t k= + − + −( )� � ( ) �2 21 2 1 . 	��.  arc cos t
t

2

2 12 +

�

�



�

�
�
�

�� A particle moves along the curve x = 2t2, y = t2 – 4t, z = 3t – 5 where t is the time. Find

the components of its velocity and acceleration at time t = 1 in the direction � � �i j k− +3 2 .

	��.  
8 14

7
14
7

; −
�
�


�
�
��

�� If r  = (sec t) �i  + (tan t) �j  be the position vector of P. Find the velocity and acceleration

of P at t = 
π
6

. 	��.  
2
3

4
3

2
3 3

5 4� �, ( � �)i j i j+ +�
�

�
��
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5.4 SCALAR POINT FUNCTION

If for each point P of a region R, there corresponds a scalar denoted by f(P), then f is called a
‘‘scalar point function’’ for the region R.

����������The temperature f(P) at any point P of a certain body occupying a certain region
R is a scalar point function.

���������� The distance of any point P(x, y, z) in space from a fixed point (x0, y0, z0) is a
scalar function.

f(P) = ( ) ( ) ( )x x y y z z− + − + − ⋅0
2

0
2

0
2

�����
�  ���� (U.P.T.U., 2001)
Scalar field is a region in space such that for every point P in this region, the scalar function

f associates a scalar f(P).

5.5 VECTOR POINT FUNCTION

If for each point P of a region R, there corresponds a vector f (P) then f  is called “vector point
function” for the region R.

�������� If the velocity of a particle at a point P, at any time t be f (P), then f  is a vector
point function for the region occupied by the particle at time t.

If the coordinates of P be (x, y, z ) then

f (P) = f1 (x, y, z) i + f2 (x, y, z) j + f3 (x, y, z) k.

�����
�  ���� (U.P.T.U., 2001)
Vector field is a region in space such that with every point P in the region, the vector

function f associates a vector f (P).
!��� ���
���
� The linear vector differential (Hamiltorian) operator ‘‘del’’ defined and

denoted as ∇ = i
x

j
y

k
z

^ ^ ^∂
∂

+ ∂
∂

+ ∂
∂

This operator also read nabla. It is not a vector but combines both differential and vectorial
properties analogous to those of ordinary vectors.

5.6 GRADIENT OR SLOPE OF SCALAR POINT FUNCTION

If f(x, y, z) be a scalar point function and continuously differentiable then the vector

∇ f = � � �i
f
x

j
f
y

k
f
z

∂
∂

+
∂
∂

+
∂
∂

is called the gradient of f and is written as grad f. (U.P.T.U., 2006)

Thus grad f = i
f
x

j
f
y

k
f
z

f
∂
∂

+
∂
∂

+
∂
∂

= ∇

It should be noted that ∇ f is a vector whose three components are 
∂
∂

∂
∂

∂
∂

⋅
f
x

f
y

f
z

, ,  Thus, if f

is a scalar point function, then ∇ f  is a vector point function.
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P Q

s

Cb
^

Normal N at P

N
^

Z

n̂
P

f = Constant

X Y

S

����� ���

5.7 GEOMETRICAL MEANING OF GRADIENT, NORMAL

Consider any point P in a region throught which a scalar field

f(x, y, z) = c defined. Suppose that ∇ ≠f 0  at P and that there is

a f = const. surface S through P and a tangent plane T; for
instance, if f is a temperature field, then S is an isothermal sur-
face (level surface). If �n , at P, is choosen as any vector in the

tangent plane T, then surely 
df
dS

 must be zero.

Since 
df
dS

 = ∇ f . �n  = 0

for every �n  at P in the tangent plane, and both ∇ f  and �n  are

non-zero, it follows that ∇ f  is normal to the tangent plane T
and hence to the surface S at P.

If letting �n  be in the tangent plane, we learn that ∇ f  is normal

to S, then to seek additional information about ∇ f  it seems
logical to let �n  be along the normal line at P,.

Then 
df
ds

 = 
df
dN

, �N  = �n  then

df
dN

= ∇ ⋅f N�  = ∇ ⋅ = ∇ ⋅f f1 0cos

So that the magnitude of ∇ f  is the directional derivative of f along the normal line to S, in
the direction of increasing f.

Hence, ‘‘The gradient ∇ f� �  of scalar field f(x, y, z) at P is vector normal to the surface

f = const. and has a magnitude is equal to the directional derivative 
df
dN

 in that direction.

5.8 DIRECTIONAL DERIVATIVE

Let f = f(x, y, z) then the partial derivatives 
∂
∂

∂
∂

∂
∂

f
x

f
y

f
z

, ,  are the derivatives (rates of change) of f

in the direction of the coordinate axes OX, OY, OZ respectively. This concept can be extended to

define a derivative of f in a "given" direction PQ .

Let P be a point in space and �b  be a unit vector from
P in the given direction. Let s be the are length measured
from P to another point Q along the ray C in the direction

of �b. Now consider
f(s) = f(x, y, z) = f{x(s), y(s), z(s)}

Then
df
ds

=
∂
∂

+
∂
∂

+
∂
∂

f
x

dx
ds

f
y

dy
ds

f
z

dz
ds

...(i)

����� ���

(U.P.T.U., 2001)
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Here 
df
ds

 is called directional derivative of f at P in the direction �b which gives the rate of

change of f in the direction of b.

Since,
dx
ds

i
dy
ds

j
dz
ds

k� � �+ + = �b = unit vector ...(ii)

Eqn. (i) can be rewritten as

df
ds

= � � � � � �i
f
x

j
f
y

k
f
z

dx
ds

i
dy
ds

j
dz
ds

k
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

⋅ + +�
��

�
��

df
ds

= � � � � �i
x

y
y

k
z

f b f b
∂ + ∂ + ∂�

��
�
��

�
�


�
�
� ⋅ = ∇ ⋅

δ δ δ ...(iii)

Thus the directional derivative of f at P is the component (dot product) of ∇ f in the direction

of (with) unit vector �b.

Hence the directional derivative in the direction of any unit vector a  is

df
ds

= ∇ f ·
a

a

�
��

�
��

"�
������
��������
df
dn

f n= ∇ ⋅ � , where �n  is the unit normal to the surface f = constant.

5.9 PROPERTIES OF GRADIENT

#
���
��� $� ( )a f⋅ ∇  = a f⋅ ∇( )

#
�� � L.H.S. = ( )a f⋅ ∇

= a i
x

j
y

k
z

f⋅ ∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

�
�
�

�
�
�

� � �

= ( �) ( �) ( �)a i
x

a j
y

a k
z

f⋅
∂
∂

+ ⋅
∂
∂

+ ⋅
∂
∂

�
�
�

�
�
�

= ( �) ( �) ( �)a i
f
x

a j
f
y

a k
f
z

⋅
∂
∂

+ ⋅
∂
∂

+ ⋅
∂
∂ ...(i)

R.H.S. = a f⋅ ∇� �

= a i
f
x

j
f
y

k
f
z

⋅
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

= ( ) ( ) ( )a i
f
x

a j
f
y

a k
f
z

⋅
∂
∂

+ ⋅
∂
∂

+ ⋅
∂
∂ ...(ii)

From (i) and (ii),
�
a f⋅ ∇� � =

�
a f⋅ ∇� � .
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#
���
��� $$�� ��������	 
�	 �	 �
�����

The necessary and sufficient condition that scalar point function φ is a constant is that
∇φ  = 0.

#
�� �� Let φ(x, y, z) = c

Then,
∂φ
∂x

=
∂φ
∂y

 = 
∂φ
∂z

 = 0

∴ ∇φ = i
∂φ
∂x

+ j
∂φ
∂y

 + k
∂φ
∂z

= i.0 + j.0 + k.0
= 0.

Hence, the condition is necessary.
%����
������ Let ∇φ = 0.

Then, i
∂φ
∂x

+ j
∂φ
∂y

 + k
∂φ
∂z

= 0.i + 0.j + 0.k.

Equating the coefficients of i, j, k.

On both sides, we get
∂φ
∂x

= 0.
∂φ
∂y

 = 0, 
∂φ
∂z

 = 0

⇒ φ  is independent of x, y, z
⇒  φ is constant.
Hence, the condition is sufficient.

#
���
��� $$$�� ��������	 
�	 ���	 ���	 
�	 ����������	 
�	 ��
	 ������
�

If f and g are any two scalar point functions, then
∇ (f ± g) = ∇ f ± ∇ g

or grad (f ± g) = grad f ± grad g

#
�� � ∇  (f ± g) = i
x

j
y

k
z

f g
∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

±( )

= i
x

f g j
y

f g k
z

f g
∂
∂

± + ∂
∂

± + ∂
∂

±( ) ( ) ( )

= i
f
x

g
x

j
f
y

g
y

k
f
z

g
z

∂
∂

±
∂
∂

�
��

�
�� +

∂
∂

±
∂
∂

�
��

�
��

+
∂
∂

±
∂
∂

�
��

�
��

= i
f
x

j
g
y

k
f
z

i
g
x

j
g
y

k
g
z

∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

±
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

∇ (f ± g) = grad f ± grad g.

#
���
���$��� ��������	
�	���	��
����	
�	��
	������
�

If f and g are two scalar point functions, then
∇ (fg) = f∇ g + g∇ f

or grad (fg) = f (grad g) + g (grad f).

#
�� � ∇ (fg) = i
x

j
y

k
z

fg
∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

( )
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= i
x

fg j
y

fg k
z

fg
∂
∂

+ ∂
∂

+ ∂
∂

( ) ( ) ( )

= i f
g
x

g
f
x

j f
g
y

g
f
y

k f
g
z

g
f
z

∂
∂

+
∂
∂

�
��

�
�� +

∂
∂

+
∂
∂

�
��

�
��

+
∂
∂

+
∂
∂

�
��

�
��

= f i
g
x

j
g
y

k
g
z

g i
f
x

j
f
y

k
f
z

∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

+
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

∇ (fg) = f∇ g + g∇ f.

#
���
������ ��������	
�	 ���	��
�����	
�	��
	������
�

If f and g are two scalar point functions, then

∇  
f
g

�
��

�
�� =

g f f g

g
g

∇ − ∇
≠2 0,

or grad 
f
g

�
��

�
�� =

g f f g

g

( ) ( )
, .

grad grad−
≠2 0

#
�� � ∇
f
g

�
��

�
�� = i

x
j

y
k

z
f
g

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��
�
��

�
��

= i 
∂
∂

�
��

�
��

+ ∂
∂

�
��

�
��

+ ∂
∂

�
��

�
��x

f
g

j
y

f
g

k
z

f
g

= i
g

f
x

f
g
x

g
j

g
f
y

f
g
y

g
k

g
f
z

f
g
z

g

∂
∂

−
∂
∂ +

∂
∂

−
∂
∂

+

∂
∂

−
∂
∂

2 2 2

=

g i
f
z

j
f
y

k
f
z

f i
g
x

j
g
y

k
g
z

g

∂
∂

+
∂
∂

+
∂
∂

�
�

�
��

−
∂
∂

+
∂
∂

+
∂
∂

�
�

�
��

2

∇  
f
g

�
��

�
�� =

g f f g

g

∇ − ∇
2 .

���������� If r  = xi yj zk� � �+ +  then show that (U.P.T.U., 2007)

(i) ∇ ⋅( )a r = a , where a  is a constant vector

(ii) grad r =
r
r

(iii) grad 
1
r

= – 
r

r 3

(iv) grad rn = nrn – 2 r , where r = r .

����� (i) Let �
a = a i a j a k r xi yj zk1 2 3

� � �, � � �+ + = + + ,

then a r⋅ = ( � � �) ( � � �)a i a j a k xi yj zk1 2 3+ + ⋅ + + = a1x + a2y + a3z.
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∴ ∇ ⋅( )a r = � � �i
x

j
y

k
z

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��  (a1x + a2y + a3z)

=  a i a j a k1 2 3+ +  = 
�
a . � ������ �
�����

(ii) grad r = ∆r = Σ� ( ) /i
x

x y z
∂
∂

+ +2 2 2 1 2

= Σ�
( ) /i

x

x y z2 2 2 1 2+ +
 = Σ�i x

r
r=

Hence, grad r =
xi yj zk

r

� � �+ +
 = 

r
r

r= � .

(iii) grad 
1
r

�
�

�
� = ∇

1
r

�
�

�
�  = 

∂
∂

�
�

�
�r r

r
1

 = 
−1

2r
r
r

= −
r

r3 .  #
�����

(iv) Let r  = xi yj zk� � �+ + .

Now, grad rn = ∇ rn = Σ� ( ) /i
x

x y z n∂
∂

+ +2 2 2 2

= n (x2 + y2 + z2)n/2–1  xi yj zk� � �+ +	 


= n(x2 + y2 + z2)(n–1)/2 
xi yj zk

x y z

� � �

/

+ +

+ +

� �

� �2 2 2 1 2

= nr
r
r

n−1

= nr rn−2 .

���������� If f = 3x2y – y3z2, find grad f at the point (1, –2, –1). (U.P.T.U., 2006)

���� grad f = 
�
∇ f = i

x
j

y
k

z
x y y z

∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

−( )3 2 3 2

= i
x

x y y z j
y

x y y z k
z

x y y z
∂
∂

− + ∂
∂

− + ∂
∂

−3 3 32 3 2 2 3 2 2 3 2� � ( ) ( )

= i(6xy) + j(3x2 – 3y2z2) + k(–2y3z)

grad φ at (1, –2, –1) = i(6)(1)(–2) + j [(3)(1) – 3(4)(1)] + k(–2)(–8)(–1)

= –12i – 9j – 16k.

���������� Find the directional derivative of 
1
r

 in the direction r  where r  = xi + yj + zk.

(U.P.T.U., 2002, 2005)

����� Here  f(x, y, z) = 
1
r

 = 
1

2 2 2x y z+ +
 = (x2 + y2 + z2)–1/2

Now ∇ f = i
x

j
y

k
z

x y z
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

+ +
−2 2 2 1 2� � /
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= ∂
∂

+ + + ∂
∂

+ +
− −

x
x y z i

y
x y z2 2 2 1 2 2 2 2 1 2	 


/ /( ) j
z

x y z k+
∂
∂

+ + −( ) /2 2 2 1 2

= − + +���
���

+ − + +���
���

− −1
2

2
1
2

22 2 2 3 2 2 2 2 3 2( ) ( )/ /x y z x i x y z y  j x y z z k+ − + +���
���

−1
2

22 2 2 3 2( ) /

= 
− + +

+ +

xi yj zk

x y z

� �
� �2 2 2 3 2/

and �a  = unit vector in the direction of xi + yj + zk

=
xi yj zk

x y z

+ +

+ +2 2 2
As �a

r
r

=

∴  Directional derivative = ∇ f · �a = −
+ +

+ +
⋅

+ +

+ +

xi yj zk

x y z

xi yj zk

x y z( ) / /2 2 2 3 2 2 2 2 1 2� �

= −
+ +
+ +

= −
+ +
+ +

�
��

�
��

⋅
( )

( )

xi yj zk

x y z

xi yj zk

x y z

2

2 2 2 2 2 2 2

2

���������� Find the directional derivative of φ = x2yz + 4xz2 at (1, – 2, –1) in the direction
2i – j – 2k. In what direction the directional derivative will be maximum and what is its magni-
tude? Also find a unit normal to the surface x2yz + 4xz2 = 6 at the point (1, – 2, – 1).

���� φ = x2yz + 4xz2

∴
∂φ
∂x

= 2xyz + 4z2

∂φ
∂y = x2z,

∂φ
∂z

= x2y + 8xz

grad φ = i
x

j
y

k
z

∂φ
∂

+ ∂φ
∂

+ ∂φ
∂

= (2xyz + 4z2) i + (x2z) j + (x2y + 8xz)k
= 8i – j – 10k at the point (1, – 2, – 1)

Let �a  be the unit vector in the given direction.

Then �a =
2 2

4 1 4

i j k− −
+ +

 = 
2 2

3
i j k− −

∴  Directional derivative
d
ds
φ

= ∇φ ⋅ �a

= (8i – j – 10k) · 
2 2

3
i j k− −�

��
�
��

=
16 1 20

3
+ +

 = 
37
3

·
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Again, we know that the directional derivative is maximum in the direction of normal
which is the direction of grad φ. Hence, the directional derivative is maximum along grad
φ = 8i – j – 10k.

Further, maximum value of the directional derivative
= |grad φ|
= |8i – j – 10k|

= 64 1 100+ +  = 165 .

Again, a unit vector normal to the surface

=
grad
grad

φ
φ| |

=
8 10

165

i j k− −
·

���������� What is the greatest rate of increase of u = xyz2 at the point (1, 0, 3)?
���� u = xyz2

∴ grad u = i
u
x

j
u
y

k
u
z

∂
∂

+ ∂
∂

+ ∂
∂

= yz2 i + xz2 & + 2xyz k
= 9j at (1, 0, 3) point.

Hence, the greatest rate of increase of u at (1, 0, 3)
= |grad u| at (1, 0, 3) point.
= |9j| = 9.

������� '�� Find the directional derivative of
φ = (x2 + y2 + z2)–1/2

at the points (3, 1, 2) in the direction of the vector yz i + zx j + xy k.
���� φ = (x2 + y2 + z2)–1/2

∴ grad φ = i
x

x y z j
y

x y z
∂
∂

+ + + ∂
∂

+ +− −( ) ( )/ /2 2 2 1 2 2 2 2 1 2

+ k
z

x y z
∂
∂

+ + −( ) /2 2 2 1 2

= i x y z x− + +�
�

�
��

−1
2

22 2 2 3 2( ) ( )/
+ j x y z y− + +�

�
�
��

−1
2

22 2 2 3 2( ) ( )/

+ k x y z z− + +�
�

�
��

−1
2

22 2 2 3 2( ) ( )/

= −
+ +

+ +
xi yj zk

x y z( ) /2 2 2 3 2

= −
+ +

+ +
3 2

9 1 4 3 2

i j k

( ) /  at (3, 1, 2)

= −
+ +3 2

14 14

i j k
 at (3, 1, 2)
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Let �a  be the unit vector in the given direction, then

�a =
yzi zxj xyk

y z z x x y

+ +

+ +2 2 2 2 2 2

=
2 6 3

7
i j k+ +

 at (3, 1, 2)

Now,
d
ds
φ

= �a . grad φ

=
2 6 3

7
3 2

14 14

i j k i j k+ +�
��

�
�� ⋅ −

+ +�
��

�
��

= −
+ +( )( ) ( )( ) ( )( )

.

2 3 6 1 3 2

7 14 14

= −
18

7 14 14.
 = −

9

49 14
·

������� (�� Find the directional derivative of the function φ = x2 – y2 + 2z2 at the point
P(1, 2, 3) in the direction of the line PQ, where Q is the point (5, 0, 4).

����� Here
Position vector of P = i + 2j + 3k
Position vector of Q = 5i + 0j + 4k

∴ PQ = Position vector of Q – Position vector of P

= (5i + 0j + 4k) – (i + 2j + 3k)
= 4i – 2j + k.

Let �a  be the unit vector along PQ, then

�a =
4 2

16 4 1

i j k− +
+ +

 = 
4 2

21

i j k− +

Also, grad φ = i
x

j
y

k
z

∂φ
∂

+ ∂φ
∂

+ ∂φ
∂

= 2x i – 2y j + 4z k
= 2i – 4j + 12k at (1, 2, 3)

Hence,
d
ds
φ

= �a . grad φ

=
4 2

21
2 4 12

i j k
i j k

− +�
��

�
�� ⋅ − +( )

=
( )( ) ( )( ) ( )( )4 2 2 4 1 12

21

+ − − +

=
28

21
⋅

������� )�� For the function

φ =
y

x y2 2+
,
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find the magnitude of the directional derivative making an angle 30° with the positive X-axis at
the point (0, 1).

����� Here φ =
y

x y2 2+

∴
∂φ
∂x

= – 
2

2 2 2
xy

x y( )+

∂φ
∂y =

x y

x y

2 2

2 2 2

−
+( )

 and 
∂φ
∂z

 = 0

∴ grad φ = i
x

j
y

k
z

∂φ
∂

+ ∂φ
∂

+ ∂φ
∂

= i
x

j
y

∂φ
∂

+ ∂φ
∂

�
∂φ
∂

=�
�

�
��z

0

=
−
+

+
−
+

2
2 2 2

2 2

2 2 2

xy

x y
i

x y

x y
j

( ) ( )
= – j at (0, 1).

Let �a  be the unit vector along the line making an angle 30° with the positive X-axis at the
point (0, 1), then

�a = cos 30° i + sin 30° j.
Hence, the directional derivative is given by

d
ds
φ

= �a . grad φ

= (cos 30° i + sin 30° j) · (–j)

= – sin 30° = – 
1
2

·

������� *�� Find the values of the constants a, b, c so that the directional derivative of
φ = axy2 + byz + cz2x3 at (1, 2, –1) has a maximum magnitude 64 in the direction parallel to Z-axis.

���� φ = axy2 + byz + cz2x3

∴ grad φ =
∂φ
∂

+ ∂φ
∂

+ ∂φ
∂x

i
y

j
z

k

= (ay2 + 3cz2x2) i + (2axy + bz) j + (by + 2czx3) k
= (4a + 3c) i + (4a – b) j + (2b – 2c) k. at (1, 2, –1).

Now, we know that the directional derivative is maximum along the normal to the surface,
i.e., along grad φ. But we are given that the directional derivative is maximum in the direction
parallel to Z-axis, i.e., parallel to the vector k.

Hence, the coefficients of i and j in grad φ should vanish and the coefficient of k should be
positive. Thus

4a + 3c = 0 ...(i)
4a – b = 0 ...(ii)

and 2b – 2c > 0
b > c ...(iii)

Then grad φ = 2(b – c) k.
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Also, maximum value of the directional derivative =|grad φ|
⇒ 64 = |2 (b – c) k| = 2 (b – c) [� b > c]
⇒ b – c = 32. ...(iv)
Solving equations (i), (ii) and (iv), we obtain

a = 6, b = 24, c = – 8.

��������+�� If the directional derivative of φ = ax2y + by2z + cz2x, at the point (1, 1, 1) has

maximum magnitude 15 in the direction parallel to the line 
x −1

2
 = 

y −
−

3
2

 = 
z
1

, find the values

of a, b and c. (U.P.T.U., 2001)
����� Given φ = ax2y + by2z +  cz2x

∴ ∇φ = i
x

∂φ
∂

�
��

�
��  + j

y
∂φ
∂

�
��

�
��  + k

z
∂φ
∂

�
��

�
��

= i(2axy + cz2) + j (ax2 + 2byz) + k (by2 + 2czx)

∇φ  at the point (1, 1, 1) = i (2a + c) + j (a + 2b) + k (b + 2c).

We know that the maximum value of the directional derivative is in the direction of ∇ f
i.e., |∇φ | = 15 ⇒  (2a + c)2 + (2b + a)2 + (2c + b)2 = (15)2

But, the directional derivative is given to be maximum parallel to the line.

x y−
=

−
−

1
2

3
2

=
z
1

⇒
2

2
a c+

=
2

2
b a+
−

 = 
2

1
c b+

⇒ 2a + c = – 2b – a ⇒  3a + 2b + c = 0 (i)
and 2b + a = – 2(2c + b)

⇒ 2b + a = – 4c – 2b ⇒  a + 4b + 4c = 0 (ii)
Solving (i) and (ii), we get

a
4

=
b

−11
 = 

c
10

 = k (say)

⇒ a = 4k, b = – 11k, and c = 10k.
Now, (2a + c)2 + (2b + a)2 + (2c + b)2 = (15)2

⇒ (8k + 10k)2 + (– 22k + 4k)2 + (20k – 11k)2 = (15)2

⇒ k = ± 
5
9

⇒ a = ± 
20
9

, b =  ± 
55
9

 and c = ± 
50
9

·

������� ���� Prove that ∇ � f u du� �  = f(u) ∇ u.

����� Let f u du� ��  = F(u), a function of u so that 
∂
∂
F
u

= f(u)

Then ∇ � f u du� � = i
x

j
y

k
z

F
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��
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= i
F
x

∂
∂  + j

F
y

∂
∂  + k

F
z

∂
∂

= i
F
u

u
x

∂
∂

∂
∂  + j

F
u

u
y

∂
∂

∂
∂

 + k
F
u

u
z

∂
∂

∂
∂

=
∂
∂
F
u

 i
u
x

j
u
y

k
u
z

∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

= f (u) ∇ u.� � ������ �
�����

����������� Find the angle between the surfaces x2 + y2 + z2 = 9 and z = x2 + y2 – 3 at the
point (2, – 1, 2) (U.P.T.U., 2002)

����� Let φ1 = x2 + y2 + z2 – 9
φ2 = x2 + y2 – z – 3

∴ ∇φ 1 = i
x

j
y

k
z

∂
∂

+
∂
∂

+
∂
∂

�
��

�
��  (x2 + y2 + z2 – 9) = 2xi + 2yj + 2zk

∇φ 1 at the point (2, – 1, 2) = 4i – 2j + 4k (i)

�
∇φ 2 = i

x
j

y
k

z
∂
∂

+
∂
∂

+
∂
∂

�
��

�
�� (x2 + y2 – z – 3) = 2xi + 2yj – k

∇φ 2 at the point (2, – 1, 2) = 4i – 2j – k (ii)
Let θ be the angle between normals (i) and (ii)

(4i – 2j + 4k) · (4i – 2j – k) = 16 4 16+ +  16 4 1+ +  cos θ

16 + 4 – 4 = 6 21  cos θ ⇒  16 = 6 21  cos θ

⇒ cos θ =
8

3 21  ⇒  θ = cos–1 
8

3 21 ·

����������� If u = x + y + z, v = x2 + y2 + z2, w = yz + zx + xy, prove that grad u, grad v
and grad w are coplanar vectors. (U.P.T.U., 2002)

���� grad u = � � �i
x

j
y

k
z

∂
∂

+
∂
∂

+
∂
∂

�
��

�
��  (x + y + z) = � � �i j k+ +

grad v = � � �i
x

j
y

k
z

∂
∂

+
∂
∂

+
∂
∂

�
��

�
��  (x2 + y2 + z2) = 2x �i  + 2y �j  + 2z �k

grad w = � � �i
x

j
y

k
z

∂
∂

+
∂
∂

+
∂
∂

�
��

�
�� (yz + zx + xy)

= � ( ) � ( ) � ( )i z y j z x k y x+ + + + +
Now,

grad u (grad v × grad w) =

1 1 1
2 2 2x y z

z y z x y x+ + +
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= 2 

1 1 1
x y z

z y z x y x+ + +

= 2 
1 1 1

x z y y z x z y x

z y z x y x

+ + + + + +
+ + +

|Applying R2 → R2 + R3

= 2 (x + y + z) 
1 1 1
1 1 1

y z z x x y+ + +
 = 0

Hence, grad u, grad v and grad w are coplanar vectors.

������� ���� Find the directional derivative of φ = 5x2y – 5y2z + 
5
2

z2x at the point

P(1, 1, 1) in the direction of the line 
x y z−

=
−
−

=
1

2
3

2 1
· (U.P.T.U., 2003)

����  ∇φ = 10
5
2

5 102 2xy z i x yz+�
�

�
��

+ −( )  j + ( )− +5 52y zx k

∇ φ  at P(1, 1, 1) =
25
2

5i j−

Direction Ratio of the line
x −1

2
=

y z−
−

=
3

2 1
 are 2, – 2, 1

Direction cosines of the line are 
2

2 2 12 2 2( ) ( ) ( )+ − +
, 

−

+ − + + − +

2

2 2 1

1

2 2 12 2 2 2� � � �
,

i.e., 
2
3

2
3

1
3

, ,
−

Directional derivative in the direction of the line

=
25
2

5
2
3

2
3

1
3

i j i j k−�
�

�
� ⋅ − +�
�

�
�

=
25
3

10
3

+

=
35
3

·

������� ���� Prove that ∇ · 
f r r

r
( )�

�
�

�
�
�  = 

1
2

2

r

d
dr

r f( ).

���� ∇ ⋅
�
�
�

�
�
�

f r r
r
( )

= ∇ ⋅
+ +�

� 
� 

�
� 
� f r

xi yj zk

r
( )

� � �� �

=
∂
∂

���
���

+ ∂
∂

���
���

+ ∂
∂

���
���x

f r x
r y

f r y
r z

f r z
r

( ) ( ) ( )

Now,
∂
∂

���
���x

f r x
r

( )
= x

d
dr

f r
r

r
x

f r
r

( ) ( )���
���

∂
∂

+
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= x
r

df
dr

f r

r
x
r

f r
r

1
2−���
���

+
( ) ( )

 as  
∂
∂

=r
x

x
r

=
x

r

df r
dr

x

r
f r

f r
r

2

2

2

3

( )
( )

( )
− +

Similarly,
∂
∂

���
���y

f r y
r

( )
=

y

r

df r
dr

y

r
f r

f r
r

2

2

2

3
( )

( )
( )

− +

and
∂
∂

���
���z

f r z
r

( )
=

z

r

df r
dr

z

r
f r

f r
r

2

2

2

3

( )
( )

( )
− +

Now using these results, we get

∇ · 
f r r

r
( )�

�
�
�� =

df r
dr r

f r
( )

( )+ 2

=
1
2

2

r
d
dr

r f( ) ⋅  ������ �
�����

��������'�� Find f(r) such that ∇  f = 
r

r 5  and f(1) = 0.

����� It is given that

∂
∂

+
∂
∂

+
∂
∂

f
x

i
f
y

j
f
z

k = ∇  f = 
r

r5  = 
xi yj zk

r

+ +
5

So,
∂
∂

f
x

=
x
r

f
y5 ,

∂
∂  = 

y

r 5  and 
∂
∂

f
z

 = 
z

r 5

We know that df =
∂
∂

+
∂
∂

+
∂
∂

f
x

dx
f
y

dy
f
z

dz  = 
x
r

dx
y

r
dy

z
r

dz5 5 5+ +

df =
xdx ydy zdz

r

+ +
5  = 

rdr
r5  = r–4dr

Integrating f(r) =
r

c
−

−
+

3

3

Since 0 = f(1) = − 1
3

+ c

So, c =
1
3

Thus, f(r) =
1
3

 – 
1
3

1
3r

·

EXERCISE 5.2

�� Find grad f where f = 2xz4 – x2y at (2, –2, –1). 	���  10 4 16i j k− −

�� Find ∇  f when f = (x2 + y2 + z2) e x y z− + +2 2 2
· 	���  2 − −r e rr� � �
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�� Find the unit normal to the surface x2y + 2xz = 4 at the point (2, –2, 3).

	���  
1

± − −�
�

�
��3

2 2i j k� �

�� Find the directional derivative of f = x2yz + 4xz2 at (1, –2, –1) in the direction

2i – j – 2k. 	���  
37
3

�
�

�
��

�� Find the angle between the surfaces x2 + y2 + z2 = 9 and z = x2 + y2 – 3 at the point

(2, –1, 2) . 	���  = cosθ − �
��

�
��

�

�



�

�
�
�

1 8 21
63

'� Find the directional derivative of f = xy + yz + zx in the direction of vector i + 2j + 2k at

the point (1, 2, 0). 	���  
10
3

�
�

�
��

(� If ∇ f = 2xyz3i + x2z3j + 3x2yz2k, find f (x, y, z) if f (1, – 2, 2) = 4. 	���  f x yz= +2 3 20

)� Find f given ∇ f = 2xi + 4yj + 8zk. 	���  f x y z= + +2 2 22 4

*� Find the directional derivative of φ = (x2 + y2 + z2)–1/2 at the point P(3, 1, 2) in the direction

of the vector, yzi + xzj + xyk. 	���  −
�
�

�
��

9
49 14

�+� Prove that ∇ 2f(r) = f ′′ (r) + 2
r

f r′ ( ) ·

��� Show that ∇ 2 
x

r3
�
��

�
��  = 0, where r is the magnitude of position vector r xi yj zk= + + .

[U.P.T.U. (C.O.), 2002]
��� Find the direction in which the directional derivative of f(x, y) = (x2 – y2)/xy at

(1, 1) is zero. 	���  
1

2
+�

�
�
��

i

��� Find the directional derivative of 
1
r

 in the direction of r , where r  = xi + yj + zk.

	���  
1
2−�

�
�
��r  (U.P.T.U., 2003)

��� Show that ∇ r–3 = – 3r–5 r .

��� If φ = log | r |, show that ∇φ  = 
r

r2 · [U.P.T.U., 2008]

5.10   DIVERGENCE OF A VECTOR POINT FUNCTION

If f  (x, y, z) is any given continuously differentiable vector point function then the divergence of

f  scalar function defined as (U.P.T.U., 2006)
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∇ ⋅ f = i
x

j
y

k
z

f i
f
x

j
f
y

k
f
z

div f
∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

⋅ = ⋅
∂
∂

+ ⋅
∂
∂

+ ⋅
∂
∂

=     .

5.11   PHYSICAL INTERPRETATION OF DIVERGENCE

Let v  = vxi + vy j + vz k be the velocity of the fluid at P(x, y, z).
Here we consider the case of fluid flow along a rectangular parallelopiped of dimensions

δx, δy, δz

Mass in = v·x δyδz (along x-axis)
Mass out = vx(x + δx) δyδz

= v
v
x

x y zx
x+

∂
∂

�
��

�
��δ δ δ

|By Taylor's theorem
Net amount of mass along x-axis

= vx δyδz – v
v
x

x y zx
x+

∂
∂

�
��

�
��δ δ δ

= – 
∂
∂
v
x

x y zx δ δ δ

   |Minus sign shows decrease.
Similar net amount of mass along y-axis

= –
∂

∂

v

y
x y z

y δ δ δ

and net amount of mass along z-axis = − ∂
∂
v
z

x y zz δ δ δ

∴  Total amount of fluid across parallelopiped per unit time = −
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

v
x

v

y
v
z

x y zx y z δ δ δ

Negative sign shows decrease of amount

⇒ Decrease of amount of fluid per unit time = 
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

v
x

v

y
v
z

x y zx y z δ δ δ

Hence the rate of loss of fluid per unit volume

=
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

v
x

v

y
v
z

x y z

= ∇ ⋅ v  = div v.

Therefore, div v  represents the rate of loss of fluid per unit volume.

Y

O X

P

CVx
R

�z

Q �x B

A

v  (x + x)x �

D
S

�y

Z

����� ���
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������������ For compressible fluid there is no gain no loss in the volume element

∴  div v  = 0

then v  is called Solenoidal vector function.

5.12   CURL OF A VECTOR

If f  is any given continuously differentiable vector point function then the curl of f  (vector
function) is defined as

Curl f  = ∇ × f = i
f
x

j
f
y

k
f
z

×
∂
∂

+ ×
∂
∂

+ ×
∂
∂

(U.P.T.U., 2006)

Let f = fx i + fy j + fz k, then

∇ × f =

i j k

x y z

f f fx y z

∂ ∂ ∂ ∂ ∂ ∂/ / / ·

5.13   PHYSICAL MEANING OF CURL

Here we consider the relation v  = w r× , w  is the angular velocity r  is position vector of a point
on the rotating body (U.P.T.U., 2006)

curl v = ∇ × v

= ∇ × ×( )w r

= ∇ × + + × + +[( ) ( )]w i w j w k xi yj zk1 2 3

�

�
w w i w j w k
r xi yj zk

= + +
= + +

�
�

�
��

1 2 3

= ∇ × 

i j k

w w w

x y z
1 2 3

= ∇ × − − − + −[( ) ( ) ( ) ]w z w y i w z w x j w y w x k2 3 1 3 1 2

= i
x

j
y

k
z

w z w y i w z w x
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

× − − −[( ) ( )2 3 1 3
j w y w x k+ −( ) ]1 2

=

i j k

x y z
w z w y w x w z w y w x

∂
∂

∂
∂

∂
∂

− − −2 3 3 1 1 2

= (w1 + w1) i – (–w2 – w2) j + (w3 + w3) k

= 2 (w1i + w2j + w3k) = 2w

Curl v  = 2w  which shows that curl of a vector field is connected with rotational properties
of the vector field and justifies the name rotation used for curl.
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$

���������������
� If curl f  = 0, then the vector f  is said to be irrotational. Vice-versa, if

f  is irrotational then, curl f  = 0.

5.14   VECTOR IDENTITIES

$�������� �� grad uv = u grad v + v grad u

#
�� � grad (uv) = ∇  (uv)

= � � � ( )i
x

j
y

k
z

uv
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

= � ( ) � ( ) � ( )i
x

uv j
y

uv k
z

uv
∂
∂

+ ∂
∂

+ ∂
∂

= i u
v
x

v
u
x

j u
v
y

v
u
y

k u
v
z

v
u
z

∂
∂

+
∂
∂

�
��

�
�� +

∂
∂

+
∂
∂

�
��

�
��

+
∂
∂

+
∂
∂

�
��

�
��

= u i
v
x

j
v
y

k
v
z

v i
u
x

j
u
y

k
u
z

∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

+
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

or grad uv = u grad v + v grad u   .

$�������� �� grad ( a · b ) = a  × curl b  + b  × curl � � � � �
a a b b a+ ⋅ ∇ + ⋅ ∇� � ( )

#
�� � grad ( a · b ) = Σ Σi
x

a b i
a
x

b a
b
x

∂
∂

⋅ =
∂
∂

⋅ + ⋅
∂
∂

�
��

�
��

� �
�

� �
�

� �

= Σ Σi b
a
x

i a
b
x

�
�

�
�

⋅
∂
∂

�
��

�
�� + ⋅

∂
∂

�
��

�
�� . ...(i)

Now,
�

�

a i
b
x

× ×
∂
∂

�
��

�
�� = �

�
�

�

a
b
x

i a i
b

dx
⋅
∂
∂

�
��

�
�� − ⋅

∂
( )

⇒ �
�

a
b
x

i⋅
∂
∂

�
��

�
�� =

�
�

�
�

a i
b
x

a i
b
x

× ×
∂
∂

�
��

�
�� + ⋅

∂
∂

� �

⇒ Σ �
�

a
b
x

i⋅
∂
∂

�
��

�
�� = ∑ × ×

∂
∂

�
��

�
�� + ∑ ⋅

∂
∂

�
�

�
�

a i
b
x

a i
b
x

� �

⇒ Σ �
�

a
b
x

i⋅
∂
∂

�
��

�
�� =

�
�

� �

a i
b
x

a i
x

b× ∑ ×
∂
∂

�
��

�
�� + ∑ ⋅

∂
∂

�
��

�
��

⇒ Σ �
�

a
b
x

i⋅
∂
∂

�
��

�
�� =

� � � �
a b a b× + ⋅ ∇curl � � · ...(ii)

Interchanging �
a  and 

�
a , we get

Σ
�

�

b
a
x

i⋅ ∂
∂

�
��

�
�� =

� � � �
b a b a× + ⋅ ∇curl � � ...(iii)

From equations (i), (ii) and (iii), we get

grad (
�
a  · 

�

b ) =
�
a  × curl 

�

b  + 
�

b  × curl 
�
a  + (

�
a  · ∇ ) 

�

b  + (
�

b  · ∇ ) 
�
a    .
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$�������� �� div (u a ) = u div a  + a  · grad u (U.P.T.U., 2004)

#
�� � div (u a ) = ∇ ·(u a )

= i
x

j
y

k
z

ua
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

⋅( )
�

= i
x

ua j
y

ua k
z

ua⋅ ∂
∂

+ ⋅ ∂
∂

+ ⋅ ∂
∂

( ) ( ) ( )
� � �

= i
u
x

a u
a
x

j
u
y

a u
a
y

k
u
z

a u
a
z

⋅ ∂
∂

+ ∂
∂

���
���

+ ⋅ ∂
∂

+ ∂
∂

�
�
�

�
�
�

+ ⋅ ∂
∂

+ ∂
∂

���
���

�
�

�
�

�
�

= u i
a
x

j
a
y

k
a
z

a i
u
x

j
u
y

k
u
z

⋅ ∂
∂

+ ⋅ ∂
∂

+ ⋅ ∂
∂

�
�
�

�
�
�

+ ⋅ ∂
∂

+ ∂
∂

+ ∂
∂

�
�
�

�
�
�

� � �
�

or div (u a ) = u div a  + a  · grad u   .

$�������� �� div ( a  × b ) = b · curl b  – a · curl b [U.P.T.U. (C.O.), 2003]

#
�� � div ( a  × b ) = ∇  · ( a  × b )

= Σi
x

a b⋅ ∂
∂

×( )
� �

= Σi
a
x

b a
b
x

⋅
∂
∂

× + ×
∂
∂

�
��

�
��

�
� �

�

= Σ Σi
a
x

b i a
b
x

⋅
∂
∂

×�
��

�
�� + ⋅ ×

∂
∂

�
��

�
��

�
� �

�

= Σ Σi
a
x

b i
b
x

a×
∂
∂

�
��

�
�� ⋅ − ×

∂
∂

�
��

�
�� ⋅

�
�

�
�

= (curl 
�
a ) ·

�

b  – (curl b) ·
�
a

or div ( a  × b ) =
�

b  · curl 
�
a  – 

�
a  · curl 

�

b    .

$�������� �� curl (u
�
a ) = u curl 

�
a  + (grad u) × 

�
a [U.P.T.U. (C.O.), 2003]

#
�� � curl (u
�
a ) = ∇  × (u

�
a )

= Σi
x

ua× ∂
∂

( )
�

= Σi
u
x

a u
a
x

× ∂
∂

+ ∂
∂

�
��

�
��

�
�

= Σ Σi
u
x

a u i
a
x

∂
∂

�
��

�
�� × + × ∂

∂
�
��

�
��

�
�

= (grad u) × 
�
a  + u curl 

�
a

or curl (u
�
a ) = u curl 

�
a  + (grad u) × 

�
a    .
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$�������� '� curl(
�
a  × 

�

b ) =
�
a  div 

�

b  – 
�

b  div 
�
a  + (

�

b ·∇ )
�
a  – (

�
a · ∇ )

�

b
#
�� � curl (

�
a  × 

�

b ) = ∇  × (
�
a  × 

�

b )

= Σi
x

a b× ∂
∂

×( )
� �

= Σi
a
x

b a
b
x

×
∂
∂

× + ×
∂
∂

�
��

�
��

�
� �

�

= Σ Σi
a
x

b i a
b
x

×
∂
∂

×�
��

�
�� + × ×

∂
∂

�
��

�
��

�
� �

�

= Σ Σ Σ Σ( . ) ( . )i b
a
x

i
a
x

b i
b
x

a i a
b
x

∂
∂

− ⋅ ∂
∂

�
��

�
�� + ⋅ ∂

∂
�
��

�
�� − ∂

∂

= Σ Σ Σ Σ( . )i b
x

a i
a
x

b i
b
x

a a i
x

b
�

�
�

�
� � � �∂

∂
− ⋅

∂
∂

�
��

�
�� + ⋅

∂
∂

�
��

�
�� − ⋅

∂
∂

�
��

�
��

= (
�

b · ∇ ) 
�
a – (div 

�
a ) 

�

b  + (div 
�

b ) 
�
a  –  (

�
a .∇ ) 

�

b

= (
�

b · ∇ )
�
a  – (

�
a  · ∇ ) 

�

b  + 
�
a  div 

�

b  – 
�

b  div 
�
a .

or curl (
�
a  × 

�

b ) =
�
a  div 

�

b  – 
�

b  div 
�
a  + (

�

b  · ∇ ) 
�
a  – (

�
a  · ∇ )

�

b    .

$�������� (� div grad f = ∇ · (∇ f) = 
∂
∂

+
∂
∂

+
∂
∂

= ∇
2

2

2

2

2

2
2f

x

f

y

f

z
f

#
�� � div grad f = ∇  · (∇ f)

= i
x

j
y

k
z

i
f
x

j
f
y

k
f
z

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

⋅
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

=
∂
∂

∂
∂

�
��

�
�� + ∂

∂
∂
∂

�
��

�
��

+ ∂
∂

∂
∂

�
��

�
��x

f
x y

f
y z

f
z

=
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

f

x

f

y

f

z

or div grad f = ∇ 2 f    .

$�������� )� curl grad f = 0
#
�� � curl grad f = ∇  × (∇ f)

= Σi
x

i
f
x

j
f
y

k
f
z

∂
∂

×
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

= Σi i
f

x
j

f
x y

k
f

x z
×

∂
∂

+
∂
∂ ∂

+
∂
∂ ∂

�
��

�
��

2

2

2 2

= Σ k
f

x y
j

f
x z

∂
∂ ∂

−
∂
∂ ∂

�
��

�
��

2 2

= k
f

x y
j

f
x z

i
f

y z
k

f
y x

j
f

z x
i

f
z y

∂
∂ ∂

−
∂
∂ ∂

�
��

�
��

+
∂
∂ ∂

−
∂
∂ ∂

�
��

�
��

+
∂
∂ ∂

−
∂
∂ ∂

�
��

�
��

2 2 2 2 2 2

or curl grad f = 0  .
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$�������� *� div curl 
�
f = 0

#
�� � div curl 
�
f = ∇ · (∇  × 

�
f )

= Σi
x

i
f
x

j
f
y

k
f
z

⋅
∂
∂

×
∂
∂

+ ×
∂
∂

+ ×
∂
∂

�
� 
� 

�
� 
� 

� � �

= Σi i
f

x
j

f
x y

k
f

x z
⋅ ×

∂
∂

+ ×
∂
∂ ∂

+ ×
∂
∂ ∂

�
� 
� 

�
� 
� 

2

2

2 2
� � �

= Σ ( ) ( ) ( )i i
f

x
i j

f
x y

i k
f

x z
× ⋅

∂
∂

+ × ⋅
∂
∂ ∂

+ × ⋅
∂
∂ ∂

�
� 
� 

�
� 
� 

2

2

2 2
� � �

= Σ k
f

x y
j

f
x z

⋅
∂
∂ ∂

− ⋅
∂
∂ ∂

�
� 
� 

�
� 
� 

2 2
� �

= k
f

x y
j

f
x z

i
f

y z
k

f
y x

j
f

z x
i

f
z y

⋅
∂
∂ ∂

− ⋅
∂
∂ ∂

�
� 
� 

�
� 
� 

+ ⋅
∂
∂ ∂

− ⋅
∂
∂ ∂

�
� 
� 

�
� 
� 

+ ⋅
∂
∂ ∂

− ⋅
∂
∂ ∂

�
� 
� 

�
� 
� 

2 2 2 2 2 2
� � � � � �

div curl 
�
f = 0  .

$�������� �+� grad div 
�
f = curl curl

�
� � �

f
f

x

f

y

f

z
+

∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

#
�� � Curl curl
�
f = ∇  × (∇  × 

�
f )

= Σi
x

i
f
x

j
f
y

k
f
z

∂
∂

× ×
∂
∂

+ ×
∂
∂

+ ×
∂
∂

�
� 
� 

�
� 
� 

� � �

= Σi i
f

x
j

f
x y

k
f

x z
× ×

∂
∂

+ ×
∂
∂ ∂

+ ×
∂
∂ ∂

�
� 
� 

�
� 
� 

2

2

2 2
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= Σ i
f

x
i i i

f

x
i

f
x y

j i j
f

x y
⋅
∂
∂

�
��

�
�� − ⋅ ⋅

∂
∂

�
� 
� 

�
� 
� 
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∂
∂ ∂

�
��

�
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− ⋅
∂
∂ ∂

�
� 
� 

�
� 
� 

�

�



2

2

2
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2 2
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( ) ( )

+ ⋅
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∂ ∂

�
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�
�� − ⋅

∂
∂ ∂

�
�
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�
�
�

�
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�
�

i
f

x z
k i k

f
x z

2 2
� �

( )

= Σ Σi
f

x
i i

f
x y

j i
f

x z
k

f

x
⋅
∂
∂

�
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�
�� + ⋅

∂
∂ ∂

�
��

�
��

+ ⋅
∂
∂ ∂

�
��

�
��

�

�



�

�
�
�

−
∂
∂

2

2

2 2 2

2

� � � �

⇒  Curl curl 
�
f  + 

∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

� � �

f

x

f

y

f

z
 = Σ i

f

x
i i

f
x y

j i
f

x z
k⋅

∂
∂

�
��

�
�� + ⋅

∂
∂ ∂

�
��

�
��

+ ⋅
∂
∂ ∂

�
��

�
��

�

�



�

�
�
�

2

2

2 2
� � �

· ...(i)

Again, grad div 
�
f = Σi

x
i

f
x

j
f
y

k
f
z

∂
∂

⋅
∂
∂

+ ⋅
∂
∂

+ ⋅
∂
∂

�
� 
� 

�
� 
� 

� � �

= Σi i
f

x
j

f
x y

k
f

x z
⋅
∂
∂

+ ⋅
∂
∂ ∂

+ ⋅
∂
∂ ∂

�
� 
� 

�
� 
� 

2

2

2 2
� � �
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= Σ � � � � � �i
f

x
i j

f
x y

i k
f

x z
i⋅

∂
∂

�
��

�
�� + ⋅

∂
∂ ∂

�
��

�
��

+ ⋅
∂
∂ ∂

�
��

�
��

�

�



�

�
�
�

2

2

2 2
� � �

= Σ � � � � � �i
f

x
i i

f
z x

j i
f

y z
k⋅

∂
∂

�
��

�
�� + ⋅

∂
∂ ∂

�
��

�
�� + ⋅

∂
∂ ∂

�
��

�
��

�

�



�

�
�
�

2

2

2 2
� � �

...(ii)

From eqns. (i) and (ii), we prove

grad div 
�
f = curl curl 

�
f  + ∇ 2

�
f

���������� If 
�
f  = xy2 i + 2x2yz j – 3yz2 k then find div 

�
f  and curl 

�
f  at the point (1, – 1, 1).

����� We have
�
f = xy2 i +2x2yz j – 3yz2 k

div
�
f =

∂
∂

+ ∂
∂

+ ∂
∂x

xy
y

x yz
z

yz( ) ( ) (–3 )2 2 22

= y2 + 2x2z – 6yz
= (– 1)2 + 2 (1)2 (1) – 6 (– 1)(1)  at (1, – 1, 1)
= 1 + 2 + 6 = 9.

Again, curl 
�
f = curl [xy2 i + 2x2yz j – 3yz2 k]

=

i j k

x y z
xy x yz yz

∂
∂

∂
∂

∂
∂

−2 2 22 3

= i
y

yz
z

x yz j
z

xy
x

yz
∂
∂

− −
∂
∂

�
�
�

�
�
�

+
∂
∂

−
∂
∂

−���
���

( ) ( ) ( ) ( )3 2 32 2 2 2

+ k
x

x yz
y

xy
∂
∂

−
∂
∂

�
�
�

�
�
�

( ) ( )2 2 2

= i [–3z2 – 2x2y] + j [0 – 0] + k [4xyz – 2xy]
= (–3z2 – 2x2y)i + (4xyz – 2xy) k
= {–3 (1)2 – 2(1)2(–1)} i + {4(1)(–1)(1) – 2(1)(–1)} k at (1, –1, 1)
= – i – 2k.

������� ��� Prove that
(i) div 

�
r  = 3. (ii) curl 

�
r  = 0.

����� � (i) div 
�
r = ∇  · 

�
r

= i
x

j
y

k
z

xi yj zk
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

⋅ + +( )

=
∂
∂

+ ∂
∂

+ ∂
∂x

x
y

y
z

z( ) ( ) ( )

= 1 + 1 + 1  = 3.
(ii) curl 

�
r = ∇  × 

�
r

= i
x

j
y

k
z

xi yj zk
∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

× + +( )

=

i j k

x y z
x y z

∂
∂

∂
∂

∂
∂
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= i
y

z
z

y j
z

x
x

z k
x

y
y

x
∂
∂

−
∂
∂

�
�

�
��

+
∂
∂

−
∂
∂

�
�

�
��

+
∂
∂

−
∂
∂

�
�

�
��

( ) ( ) ( ) ( ) ( ) ( )

= i (0) + j (0) + k (0)
= 0 + 0 + 0 = 0.

���������� Find the divergence and curl of the vector
(x2 – y2) i + 2xy j + (y2 – xy) k.

����� Let
�
f = (x2 – y2) i + 2xy j + (y2 – xy) k.

Then div 
�
f =

∂
∂

− + ∂
∂

+ ∂
∂

−
x

x y
y

xy
z

y xy( ) ( ) ( )2 2 22

= 2x + 2x + 0 = 4x

and curl 
�
f =

i j k

x y z
x y xy y xy

∂
∂

∂
∂

∂
∂

− −2 2 22

= i
y

y xy
z

xy j
z

x y
x

y xy
∂
∂

− −
∂
∂

�
�

�
��

+
∂
∂

− −
∂
∂

−�
�

�
��

( ) ( ) ( ) ( )2 2 2 22

+ k
x

xy
y

x y
∂
∂

−
∂
∂

−�
�

�
��

( ) ( )2 2 2

= i [2y – x) – 0] + j [0 – (–y)] + k [(2y) – (– 2y)]
= (2y – x) i + y j + 4y k. 	���

���������� If 
�
f  (x, y, z) = xz3 �i  – 2x2yz �j  + 2yz4 �k  find divergence and curl of 

�
f  (x, y, z)

(U.P.T.U., 2006)

���� div 
�
f = i

x
j

y
k

z
xz i x yz j yz k

∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

⋅ − +3 2 42 2� �

=
∂
∂

− ∂
∂

+ ∂
∂x

xz
y

x yz
z

yz( ) ( ) ( )3 2 42 2

= z3 – 2x2z + 8yz3

curl 
�
f =

i j k

x y z
xz x yz yz

∂
∂

∂
∂

∂
∂

−3 2 42 2

= i
y

yz
z

x yz j
x

yz
z
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∂
∂

+
∂
∂

�
�
�

�
�
�

−
∂
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−
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���
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( ) ( ) ( ) ( )2 2 24 2 4 3

+ k
x

x yz
y

xz
∂
∂

− − ∂
∂

�
�
�

�
�
�

( ) ( )2 2 3

= i (2z4 + 2x2y) – j (0 – 3z2x) + k (– 4xyz – 0)

= 2 (x2y + z4) i + 3z2xj – 4xyz·k.
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��������	
 Find the directional derivative of ∇ . 
�
u  at the point (4, 4, 2) in the direction of

the corresponding outer normal of the sphere x2 + y2 + z2 = 36 where 
�
u  = x4 i + y4 j + z4 k.

���
 ∇ . 
�
u = ∇ . (x4i + y4j + z4k) = 4(x3 + y3 + z3) = f (say)

∴ (∇ f)(4, 4, 2) = 12 (x2i + y2j + z2k)(4, 4, 2) = 48(4i + 4j + k)

Normal to the sphere g ≡ x2 + y2 + z2 = 36 is

(∇ g)(4, 4, 2) = 2 (xi + yj + zk)(4, 4, 2) = 4(2i + 2j + k)

�a = unit normal = 
∇
∇

=
+ +
+ +

g
g

i j k4 2 2

64 64 16

� �

=
2 2

3
i j k+ +

The required directional derivative is

∇ f. �a = 48 (4i + 4j + k). 
2 2

3
i j k+ +

= 16(8 + 8 + 1) = 272.

��������
 A fluid motion is given by v  = (y + z)i + (z + x)j + (x + y)k show that the motion
is irrotational and hence find the scalar potential. (U.P.T.U., 2003)

���
 Curl v = ∆ × v

= i
x

y
y

k
z

y z i z x j x y k
∂
∂

+
∂
∂

+
∂
∂

�
��

�
�� × + + + + +� � 	 
 � �

=

i j k

x y z
y z z x x y

∂
∂

∂
∂

∂
∂

+ + +

 = i (1 – 1) – j (1 – 1) + k (1 – 1) = 0

Hence v  is irrotational.

Now dφ =
∂φ
∂

+ ∂φ
∂

+ ∂φ
∂x

dx
y

dy
z

dz

= i
x

j
y

k
z

idx jdy kdz
∂φ
∂

+ ∂φ
∂

+ ∂φ
∂

�
��

�
��

⋅ + +� �

= i
x

j
y

k
z

dr dr v dr
∂
∂

+
∂
∂

+
∂
∂

�
��

�
�� ⋅ = ∇φ⋅ = ⋅φ v = ∇φ

= [(y + z) i + (z + x) j + (x + y) k]. (idx + jdy + kdz)
= (y + z) dx + (z + x) dy + (x + y) dz
= ydx + zdx + zdy + xdy + xdz + ydz

On integrating φ = ydx xdy zdy ydz zdx xdz+ + + + +� � �� � � � � �

= d xy d yz d zx� � � � 	 
� � �+ +

φ = xy + yz + zx + c
Thus, velocity potential = xy + yz + zx + c.
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�������� �
 Prove that 
� �
a r× ∇ ×� �  = ∇ ⋅ − ⋅ ∇

� � � �
a r a r� � � �  where 

�
a  is a constant vector and

�
r  = xi + yj + zk. (U.P.T.U., 2007)

���
� Let �
a = a1i + a2j + a3k
�
r = r1i + r2j + r3k

∴ ∇  × r =

i j k

x y z
r r r

∂
∂

∂
∂

∂
∂

1 2 3

 = i
r
y

r
z

r
x

r
z

j
r
x

r
y

k
∂
∂

−
∂
∂

�
��

�
��

∂
∂

−
∂
∂

�
��

�
�� +

∂
∂

−
∂
∂

�
��

�
��

3 2 3 1 2 1–

Now a r× ∇ ×�  =
i j k

a a a
r
y

r
x

r
z

r
x

r
x

r
y

1 2 3

3 2 1 3 2 1∂
∂

− ∂
∂

∂
∂

− ∂
∂

∂
∂

− ∂
∂

= a
r
x

a
r
y

a
r
z

a
r
x

i2
2

2
1

3
1

3
3∂

∂
− ∂

∂
�
��

�
��

∂
∂

− ∂
∂

�
��

�
��

�
��
��

�
��
��

–

– a
r
x

a
r
y

a
r
y

a
r
z

j1
2

1
1

3
3

3
2∂

∂
− ∂

∂
�
��

�
��

− ∂
∂

− ∂
∂

�
��

�
��

�
��
��

�
��
��

+ − ∂
∂

+ ∂
∂

�
��

�
�� − ∂

∂
− ∂

∂
�
��

�
��

�
��
��

�
��
��

a
r
x

a
r
z

a
r
y

a
r
z

k1
3

1
1

2
3

2
2

= i
x

j
y

k
z

a r a r a r a
x

a
y

a
z

∂
∂

+
∂
∂

+
∂
∂

�
��

�
�� + +

∂
∂

+
∂
∂

+
∂
∂

�
�
�

�
�
�1 1 2 2 3 3 1 2 3� �–  r i r j r k1 2 3+ +� �

= ∇ + + ⋅ + +a j a j a k r j r j r k1 2 3 1 2 3� � � �� �

– a i a j a k i
x

j
y

k
z

r i r j r k1 2 3 1 2 3+ + ⋅ ∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

�
��
��

�
��
��

+ +� � � �

= ∇ ⋅ − ⋅ ∇a r a r�  �  · ������ ������


���������
� Find the directional derivative of �.(�f) at the point (1, –2, 1) in the direction of
the normal to the surface xy2z = 3x + z2 where f = 2x3y2z4. (U.P.T.U., 2008)

���
 ∇ f = i
x

j
y

k
z

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

 (2x3y2z4) = (6x2y2z4)i + (4x3yz4)j + 8x3y2z3)k

∇ .(∇ f) = i
x

j
y

k
z

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

. {(6x2 y2z4)i + (4x3 yz4)j + (8x3 y2z3)k}

or ∇ .(∇ f) = 12x y2z4 + 4x3 z4 + 24x3 y2z2 = F(x, y, z) (say)

Now ∇ F = i
x

j
y

k
z

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

 (12x y2z4 + 4x3 z4 + 24x3 y2z2)

= (12y2 z4 + 12x2 z4 + 72x2 y2z2)i + (24xyz4 + 48x3 yz2) j

+ (48x y2z3 + 16x3z3 + 48x3y2z)k
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∴ (∇ F)(1, –2, 1) = 348i – 144j + 400k
Let g(x, y, z) = xy2z – 3x – z2 = 0

∇ g = i
x

j
y

k
z

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

 (xy2z – 3x – z2)

= (y2z – 3) i + (2xyz) j + (xy2 – 2z) k
(∇ g)(1, –2, 1) = i – 4j + 2k

�a = unit normal = 
∇
∇

=
− +

+ +
=

− +g
g

i j k i j k4 2

1 16 4

4 2

21

Hence, the required directional derivative is

∇ F . �a = (348i – 144j + 400k) . 
i j k− +4 2

21

� �

=
348 576 800

21

1724

21

+ +
= .

���������
� Determine the values of a and b so that the surface ax2 – byz = (a + 2)x will be
orthogonal to the surface 4x2y + z3 = 4 at the point (1, –1, 2).

���
� Let f ≡ ax2 – byz – (a + 2)x = 0 ...(i)
g ≡ 4x2y + z3 – 4 = 0 ...(ii)

grad f = ∇ f = i
x

j
y

k
z

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

 {ax2 – byz – (a + 2)x}

= (2ax – a – 2)i + (–bz)j + (–by)k
(∇ f)(1, –1, 2) = (a – 2)i – 2bj + bk ...(iii)

grad g = ∇ g = i
x

j
y

k
z

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

 (4x2y + z3 – 4)

= (8xy)i + (4x2)j + (3z2)k
(∇ g)(1, –1, 2) = – 8i + 4j + 12k ...(iv)

Since the surfaces are orthogonal so

∇ ∇f g�  � . = 0

⇒  [(a – 2)i – 2bj + bk] . [– 8i + 4j + 12k] = 0
– 8(a – 2) – 8b + 12b = 0 ⇒ – 2a + b + 4 = 0 ...(v)

But the point (1, –1, 2) lies on the surface (i), so
a + 2b – (a + 2) = 0 ⇒ 2b − 2 =  0 ⇒ b = 1

Putting the value of  b in (v), we get

− 2a + 1 + 4 = 0 ⇒ a = 
5
2

Hence, a = 
5
2

, b = 1.
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����������
� Prove that A  = (x2 – yz)i + (y2 – zx)j + (z2 – xy)k is irrotational and find the

scalar potential f such that A  = ∇ f.

���
� ∇  × A  = 

i j k

x y z

x yz y zx z xy

∂
∂

∂
∂

∂
∂

− − −2 2 2

 = (–x + x)i – (–y + y)j + (–z + z) = 0

Hence, A  is irrotational.

Now A = ∇ f = i
f
x

j
f
y

k
f
z

∂
∂

+
∂
∂

+
∂
∂

 = (x2 – yz)i + (y2 – zx)j + (z2 – xy)k

Comparing on both sides, we get

∂
∂

f
x

= (x2 – yz), 
∂
∂

f
y

 = (y2 – zx) and 
∂
∂
f
z

 = (z2 – xy)

∴ df =
∂
∂

+
∂
∂

+
∂
∂

f
x

dx
f
y

dy
f
z

dz  = (x2 – yz)dx + (y2 – zx)dy + (z2 – xy)dz

= (x2 dx + y2 dy + z2 dz) – (yzdx + zxdy + xydz)

or df =
1
3

 d(x3 + y3 + z3) – d(xyz)

On integrating, we get

f =
1
3

 (x3 + y3 + z3) – xyz + c.

EXERCISE 5.3

�
 Find div A , when A  = x2zi – 2y3z2j + xy2zk. ���.   – 6  +  2 2 2 2xz y z xy

�
 If V  = 
xi yj zk

x y z

+ +

+ +2 2 2
, find the value of div V . (U.P.T.U., 2000)

���.   division + +2 2 22 x y z� �
��

�
��

�
 Find the directional derivative of the divergence of f (x, y, z) = xyi + xy2j + z2k at the point

(2, 1, 2) in the direction of the outer normal to the sphere, x2 + y2 + z2 = 9. ���.  
3

13�
��

�
��

�
 Show that the vector field f  = 
� �
r r/

3  is irrotational as well as solenoidal. Find the scalar

potential. (U.P.T.U., 2001, 2005) Ans.  –
1

+ +2 2 2x y z

�

�
�
�

�

�
�
�
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 If r is the distance of a point (x, y, z) from the origin, prove that curl k grad
r

×�
��

�
��

1
 + grad

k grad
r

.
1�

��
�
��  = 0, where k is the unit vector in the direction OZ. (U.P.T.U., 2000)


 Prove that A  = (6xy + z3)i + (3x2 – z)j + (3xz2 – y) k is irrotational. Find a scalar function

f (x, y, z) such that A  = ∇ f. Ans.  =  3  +   –   +  2
2f x y xz zy c3

�
 Find the curl of yzi + 3zxj + zk at (2, 3, 4). Ans.  – 6 + 3 +8i j k

�
 If f = x2yz, g = xy – 3z2, calculate ∇ .(∇ f × ∇ g). Ans.  eroz
�
 Determine the constants a and b such that curl of (2xy + 3yz)i + (x2 + axz – 4z2)j + (3xy

+ 2byz) k = 0. Ans.  = 3, b = 4a −
��
 Find the value of constant b such that

A  = (bxy – z3) i + (b – 2)x2j + (1 – b) xz2k has its curl identically equal to zero.

Ans.   = 4b

��
 Prove that 
�
a . ∇  

1
r

�
��

�
��  = 

a r

r

⋅
3 ·

��
 Prove that ∇  a u⋅�   = a u a⋅ ∇ +�   × curl u a  is a constant vector.

��
 Prove that ∇ 2 
x

r3
�
��

�
��  = 0.

��
 Prove that ∇ 2f(r) = f ″(r) + 
2
r

f ′ (r).

�	
 If u = x2 + y2 + z2 and v  = xi yj zk� � �+ + , show that div uv�   = 5u

�
 Prove the curl 
a r

r

×�
��

�
��3  = − +

⋅a
r

r a r

r3 5

3 � 
.

��
 Find the curl of v  = exyz � � �i j k+ +�   at the point (1, 2, 3). Ans.  e i j k6 21 3− +� �
��
 Prove that ∇  × ∇ f = 0 for any f (x, y, z).

��
 Find curl of A  = x yi xzj yzk2 2 2– +  at the point (1, 0, 2). Ans.  4�j

��
 Determine curl of xyz2i + yzx2j + zxy2 �k  at the point (1, 2, 3).

Ans.  2 –xy z x i yz x y j zx y z k i k	 
 � � � �� � �; � �+ − + − +2 2 10 3

��
 Find f(r) such that f(r) r  is solenoidal. ���.
c

r3

�
��

�
��

��
 Find a, b, c when f  = (x + 2y + az)i + (bx – 3y – z)j + (4x + cy + 2z)k is irrotational.

[���
� a = 4, b = 2, c = –1]
��
 Prove that (y2 – z2 + 3yz – 2x)i + (3xz + 2xy)i + (3xy – 2xz + 2z)k are both solenoidal and

irrotational. [U.P.T.U., 2008]
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5.15   VECTOR INTEGRATION

Vector integral calculus extends the concepts of (ordinary) integral calculus to vector functions. It
has applications in fluid flow design of under water transmission cables, heat flow in stars, study
of satellites. Line integrals are useful in the calculation of work done by variable forces along
paths in space and the rates at which fluids flow along curves (circulation) and across boundaries
(flux).

5.16   LINE INTEGRAL

Let F r�  be a continuous vector point function. Then F dr
C

⋅� , is known as the line integral of

F r�   along the curve C.

Let F  = F i F j F k1 2 3
� � �+ +  where F1, F2, F3 are the components of F  along the coordinate axes

and are the functions of x, y, z each.

Now, r = xi yj zk� � �+ +

∴ dr = dxi dyj dzk� � �+ +

∴ F dr
C

⋅� = F i F j F k dxi dyj dzk
C 1 2 3

� � � � � �+ + ⋅ + +� �  � 

= F dx F dy F dz
C 1 2 3+ +� � � .

Again, let the parameteric equations of the curve C be
x = x (t)
y = y (t)
z = z (t)

then we can write F dr
C

⋅� = F t
dx
dt

F t
dy
dt

F t
dz
dt

dt
t

t
1 2 3

1

2 	 
 	 
 	 
+ +�
��

�
���

were t1 and t2 are the suitable limits so as to cover the arc of the curve C.

���� work done =
�
F dr

C
⋅�

!"��#���"��  The line integral 
�
F dr

C
⋅�  of a continuous vector point functional F  along a

closed curve C is called the circulation of F  round the closed curve C.
This fact can also be represented by the symbol �.

$������"������������%"��� �A single valued vector point Function F  (Vector Field F ) is called
irrotational in the region R, if its circulation round every closed curve C in that region is zero
that is

F dr
C

⋅� = 0

or F dr⋅� = 0.
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5.17   SURFACE INTEGRAL

Any integral which is to be evaluated over a surface is called a surface integral.

Let F r
�� �  be a continuous vector point function. Let r  = F (u, v) be a smooth surface such

that F (u, v) possesses continuous first order partial derivatives. Then the normal surface integral

of F r�   over S is denoted by

F r da
S� ⋅�  = F r ndS

S� ⋅�  �

where da
�

 is the vector area of an element dS and �n  is a unit vector normal to the surface dS.
Let F1, F2, F3 which are the functions of x, y, z be the components of F along the coordinate

axes, then

Surface Integral = F ndS
S

⋅� �

= F da
S

⋅�
= F i F j F k dydzi dzdxj dxdyk

S 1 2 3
� � � � � �+ + ⋅ + +�� �  � 

= F dy dz F dz dx F dx dy
S 1 2 3+ +�� � �.

5.17.1  Important Form of Surface Integral

Let dS = dS cos � cos � cos �α β γi j k+ +�  ...(i)

where α, β and γ are direction angles of dS. It shows that dS cos α, dS cos β, dS cos γ are
orthogonal projections of the elementary area dS on yz. plane, zx-plane and xy-plane respectively.
As the mode of sub-division of the surface S is arbitrary we have chosen a sub-division formed
by planes parallel to coordinate planes that is yz-plane, zx-plans and xy plane.

Clearly, projection on the coordinate planes will be rectangles with sides dy and dz on yz
plane, dz and dx on xz plane and dx and dy on xy plane.

Hence �i dS⋅ = dS cos � cos � cos �� �α β γi j kj i+ + ⋅� �
� �i n dS⋅ = dS cos α = dy dz

Hence dS =
dy dz

i n�. �
.

Similarly, multiplying both sides of (i) scalarly by �j  and �k  respectively, we have

dS =
dz dx

j n� �⋅
...(ii)

and dS =
dx dy

k n� �⋅

Hence � �F ndS� ⋅ = F n
dy dz

i nS1
�� ⋅

⋅
�

� �
...(iii)

= F n
dz dx

j nS2
�� ⋅

⋅
�

� �
...(iv)

= F n
dx dy

k nS3
�� ⋅

⋅
�

� �
...(v)

where S1, S2, S3 are projections of S on yz, zx and xy plane respectively.
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5.18   VOLUME INTEGRAL

Let F r�  is a continuous vector point function. Let volume V be enclosed by a surface S given by

r = f u v,	 
 ...(i)

sub-dividing the region V into n elements say of cubes having
volumes

∆V1, ∆V2, .... ∆Vn

Hence ∆Vk = ∆xk ∆yk ∆zk

k = 1, 2, 3, ... n
where (xk, yk, zk) is a point say P on the cube. Considering the
sum

F x y z Vk k k k
k

n

, ,� �∆
=
∑

1

taken over all possible cubes in the region. The limits of sum when n → ∞ in such a manner that
the dimensions ∆Vk tends to zero, if it exists is denoted by the symbol

F r dV or FdV or F dx dy dz
V VV

�  ⋅� ����
is called volume integral or space integral.

If F = F i F j F k1 2 3
� � �+ + , then

F r dV
V� �  = � � �i F dx dy dz j F dx dy dz k F dx dy dz

V V V1 2 3+ +��� ��� ���
where F1, F2, F3 which are function of x, y, z are the components of F  along X, Y, Z axes
respectively.

$������������ �%� ���&

If in a conservative field F

�C F dr⋅ = 0

along any closed curve C.
Which is the condition of the independence of path.

�������� �
 Evaluate F dr
C� ⋅  where F  = x y i yj2 2� �+  and the curve C, is y2 = 4x in the

xy-plane from (0, 0) to (4, 4).
���
� We know that

r = xi yj� �+

∴ dr = dxi dyj� �+

∴ F dr⋅ = x y i yj dxi dyj2 2� � � �+ ⋅ +�  � 
= x2y2dx + ydy

∴ F dr
C� ⋅ = x y dx ydy

C

2 2 +� � 

P

'"(
� 	
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= x y dx y dy
C C

2 2 + ⋅� �
But for the curve C, x and y both vary from 0 to 4.

∴
� �
F dr

C
⋅� = x x dx y dy2

0

4

0

4
4	 
 + �� [� y2 = 4x]

= 4 3
0

4

0

4
x dx y dy+ ��

= 4
4 2

4

0

4 2

0

4
x y�

��
�
��

+
�
��

�
��

= 256 + 8 = 264.

�������� �
 Evaluate x dy y dx–� ��  around the circle x2 + y2 = 1.

���
� Let C denote the circle x2 + y2 = 1, i.e., x = cos t, y = sin t. In order to integrate around
C, t varies from 0 to 2π.

∴ x dy y dy
C

−� � � = x
dy
dt

y
dx
dt

dt−�
��

�
���0

2π

= cos sin2 2

0

2
t t dt+� � 

π

=   dt
0

2π�
= (t)0

2π

= 2π.

���������
 Evaluate 
� �
F dr

C
⋅� , where 

�

F  = (x2 + y2) i – 2xy j, the curve C is the rectangle in

the xy-plane bounded by y = 0, x = a, y = b, x = 0.

���

� �
F dr

C
⋅� = x y i xyj dxi dyj

C

2 2 2+ ⋅ +� � � � �  –

= x y dx xy dy
C

2 2 2+ −� � � �       ...(i)Now, C is the rectangle OACB.
 On OA, y = 0 ⇒  dy = 0

 On AC, x = a ⇒  dx = 0

  On CB, y = b ⇒  dy = 0

 On BO, x = 0 ⇒  dx = 0
∴  From (i),

� �
F dr

C
⋅� = x dx ay dy x b dx dy

OA AC BOCB

2 2 20 0+ + + + +� � ���  � � � –2

= x dx a y dy x b dx dy
ba

ba 2 2 2 00

00
2 0− + + +���� � 

=
x

a
y x

b x
a b

a

3

0

2

0

3
2

0

3
2

2 3
0

�
��

�
��

−
�
��

�
��

+ +
�
��

�
��

+

O
(0, 0)

y = 0 A
(a, 0)

X

x = 0 x = a

B
(0, b)

C (a, b)
y = b

Y

'"(
� 	
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=
a

ab
a

ab
3

2
3

2

3 3
− − −

= – 2ab2.

���������
 Evaluate 
� �
F dr

C
⋅� , where 

�

F  = yz i + zx j + xy k and C is the portion of the curve

�
r  = (a cos t) i + (b sin t) j + (ct) k from t = 0 to 

π
2

.

���
� We have
�
r = (a cos t) i + (b sin t) j + (ct) k.

Hence, the parametric equations of the given curve are
x = a cos t
y = b sin t
z = ct

Also,
dr
dt

�

= (– a sin t) i + (b cos t) j + ck

Now,
� �
F dr

C
⋅� =

�
�

F
dr
dt

dt
C

⋅�
= yzi zxj xyk a ti b t j ck dt

C
+ + ⋅ − + +� � � � �sin cos

= bct t i act t j ab t t k a ti b t j ck dt
C

sin cos sin cos sin cos+ + ⋅ − + +� � � � �

= − + +� abc t t abc t t abc t t dt
C

sin cos sin cos2 2� 

= abc t t t t t dt
C

cos sin sin cos2 2− +� � 

= abc t t
t

dt
C

cos
sin

2
2

2
+�

��
�
���

= abc t t
t

dtcos
sin

2
2

20
2 +�
��

�
���

π

= abc t
t t tsin cos cos2

2
2

4
2

4 0

2+ −�
��

�
��

π

=
abc

t t
2

2 0
0
2sin .� �
π

=

��������	
�Evaluate F dr
c

.�  where F  = xyi + (x2 + y2)j and C

is the x-axis from x = 2 to x = 4 and the line x = 4 from y = 0 to
y = 12.

���
� Here the curve C consist the line AB and BC.

Since r = xi + yj (as z = 0)

dr = dxi + dyj

so F dr
C

.� = xyi x y j dxi dyj
ABC

+ + +� 2 2� � � �  .
'"(
� 	
�

A B
X

(2, 0) (4, 0)

Y C
(4,12)

O
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= xy dx x y dy xy dx x y dy
BCAB

+ + + + +�� 2 2 2 2� � � � � �

= 0 0 16 162 2
0

12

0

12

2

4
. dx y dy y dy

yx
+ + + = +��� == �  � 

= 16
3

3

0

12

y
y

+
�
�
�
�

�
�
�
�

 = [192 + 576] = 768.

��������
� If F  = (–2x + y)i + (3x + 2y)j, compute the circulation of F  about a circle C in
the xy plane with centre at the origin and radius 1, if C is transversed in the positive direction.

���
� Here the equation of circle is x2 + y2 = 1
Let x = cos θ, y = sin θ |As r = 1

F = (–2cos θ + sin θ)i + (3 cos θ + 2sin θ)j

r = xi + yj = (cos θ)i + (sin θ)i

So dr = {(– sin θ)i + (cos θ)j}dθ

Thus, the circulation along circle C = F dr
C

.�

= − + + + − +
=� 2 3 2

0

2
cos sin cos sin . sin cosθ θ θ θ θ θ θ

θ

π
� � � �� � � � � �� �i j i j d

= 2 3 62 2

0

2
sin cos sin cos sin cosθ θ θ θ θ θ θ

π
− + +� � d

= 8 4 1 4 2 2 2 12

0

2

0

2
sin cos cos sin cosθ θ θ θ θ θ θ

ππ
+ − = + +�� �  � �d d

= − + + = − − + − +2 2 2 2 4 0 4 0 20
2

0
2

0
2cos sin cos cos sin sinθ θ θ π π ππ π π

= 2π.

�������� �
� Compute the work done in moving a particle in the force field F  = 3x2 i +
(2xz – y)j + zk along.

 (i) A straight line from P(0, 0, 0) to Q(2, 1, 3).
(ii) Curve C : defined by x2 = 4y, 3x3 = 8z from x = 0 to x = 2.
���
� (i) We know that the equation of straight line passing through (x1, y1, z1) and (x2, y2, z2)

is

x x
x x

−
−

1

2 1
=

y y
y y

z z
z z

−
−

=
−
−

1

2 1

1

2 1

⇒
x −

−
0

2 0
=

y z−
−

=
−
−

0
1 0

0
3 0

⇒ x
2

 = 
y z
1 3

=

or
x
2

=
y z
1 3

=  = t (say), so x = 2t, y = t, z = 3t

O

C

x + y =1
2 2

'"(
� 	
�
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∴ r = xi + yj + zk = 2ti + tj + 3tk

⇒ dr = (2i + j + 3k)dt

and F = (12t2)i + (12t2 – t)j + (3t)k

The work done = F dr t i t t j t k i j k dt
P

Q
. .= + − + + +�� 12 12 3 2 32 2

0

1
�  �  	 
  

As ies
from to

t var
0 1

= 24 12 9 36 82 2 2

0

1

0

1
t t t t dt t t dt+ − + = +�� �  � 

=
36

3
8
2

3 2

0

1
t t

+
�
�
�

�
�
�  = 12 + 4 = 16.

(ii) F  = 3 2
3
8 4

3
8

3
3

4 4
3
8

2
3 2 3

2
4 2 3

x i x
x x

j
x

k x i
x x

j
x

k+ −
�
��

�
��

+ = + −
�
��

�
��

+.

r = xi + yj + zk = xi
x

j
x

k+ +
2 3

4
3
8

dr = i
x

j
x

k dx+ +
�
��

�
��2

9
8

2

Work done = F dr x i
x x

j
x

k i
x

j
x

k dx
x

. .
=� �= + −

�
��

�
��

+
�
�
�
�

�
�
�
�

+ +
�
�
�

�
�
�

0

2
2

4 2 3 2

0

2
3

3
4 4

3
8 2

9
8

= 3
3
8 8

27
64

2
5 3 5

0

2
x

x x x
dx+ − +

�
��

�
���

= x
x x x3

6 4 6

0

2

16 32
27
64 6

+ − +
×

�
�
�

�
�
�

= 8
64
16

16
32

27 64
64 6

8 4
1
2

9
2

+ − +
×
×

= + − +

= 16.

�������� �
 If V is the region in the first octant bounded by y2 + z2 = 9 and the plane

x = 2 and F  = 2x2yi – y2j + 4xz2k. Then evaluate ∇ ⋅��� F dV
V
�  .

���
 ∇ ⋅ F = 4 2 8xy y xz− +
The volume V of the solid region is covered by covering the plane region OAB while x varies

from 0 to 2. Thus,

∇ ⋅��� F dV
V
� 

= 4 2 8
0

9

0

3

0

2 2

xy y xz dz dy dx
z

y

yx
− +

=

−

== ��� � �
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= 4 2 4 2

0

9

0

3

0

2 2

xyz yz xz dy dx
y

− +
−��

= 4 2 9 4 92 2

0

3

0

2
xy y y x y dy dx− − + −�

��
�
���� � � � 

= 4 2
1
3

9 4 9
3

2

3
2

3

0

3

0

2
x y x y

y
dx− − −�

��
�
�� + −

�
��

�
��

�

�
�
�
�

�

�
�
�
�

� 	 
 ! "

= 9 4 2 72
0

2
x x dx− +� 	 


= 18 18 362 2

0

2
x x x− +

= 180.

���������
 Evaluate yzi zxj xyk dS
S

� � �+ + ⋅�� �  , where S is the surface of the sphere x2 + y2 +

z2 = a2 in the first octant. (U.P.T.U., 2005)

���
 yzi zxj xyk dS
S

� � �+ + ⋅�� � 
�

= yzi zxj xyk dy dz i dz dx j dx dy k
S

� � � � � �+ + ⋅ + ⋅ +�� �  � 

= yz dy dz zx dz dx xy dx dy
S

+ +�� � �

= yz dy dz zx dz dx xy dx dy
a xa a yaa za

+ +
− −− �� ���� 00 0000

2 2 2 22 2

= z
y

dz x
z

dx y
x

dy

a z a x
a

a y
aa

2

0

2

0
0

2

0
00 2 2 2

2 2 2 2 2 2

�
�
�

�
�
� +

�
�
�

�
�
� +

�
�
�

�
�
�

− − −

���

=
1
2

1
2

1
2

2 2 2 2

0

2 2

00
z a z dz x a x dx y a y dy

a aa
− + − + −� �� �  �  � 

=
1
2 2 4

1
2 2 4

1
2 2 4

2 2 4

0

2 2 4

0

2 2 4

0

a z z a x x a y y
a a a

−
�
��

�
��

+ −
�
��

�
��

+ −
�
��

�
��

=
1
2 4

1
2 4

1
2 4

4 4 4a a a+ +  = 
3
8

4a
.

�������� ��
� Evaluate F n ds
S

. ��� , where F  = zi + xj – 3y2 zk and S is the surface of the

cylinder x2 + y2 = 16 included in the first octant between z = 0 and z = 5.
���
� Since surface S : x2 + y2 = 16
Let f ≡ x2 + y2 – 16

∇ f = i
x

j
y

k
z

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

 (x2 + y2 – 16)

= 2xi + 2yi

'"(
� 	
�



VECTOR CALCULUS 373

X Y

A B
O

C D

E

Z

x +y =16
2 2

����� ����

unit normal �n =
∇
∇

=
+

+

f
f

xi yj

x y

2 2

4 42 2

�n =
2

2 16 42 2

xi yj

x y

xi yj xi yi+

+
=

+
=

+b g
/

Now F n. � = (zi + xj – 3y2 zk). 
xi yj+F

HG
I
KJ =

4
1
4

 (zx + xy)

Here the surface S is perpendicular to xy-plane so we will
take the projection of S on zx-plane. Let R be that projection.

∴ ds =
dx dz
n j

dx dz
y

dx dz
y� .

= =

4

4

F n ds
S

. �zz = zi xj y zk
xi yj

y
dx dz

R

+ −
+zz 3
4

42e j b g
. .

=
zx xy

y
dx dz

R

+F
HG

I
KJzz

Since z varies from 0 to 5 and y = 16 2− x  on S. x is also varies from 0 to 4.

∴
zx xy

y
dx dz

R

+F
HG

I
KJzz =

xz

x
x dx dz

xz 16 20

4

0

5

−
+

F

H
GG

I

K
JJ== zz

= − − +
L
N
M

O
Q
P = +zz z x

x
dz z dz16

2
4 82

2

0

4

0

5

0

5
b g

= (2z2 + 8z)0
5 = 50 + 40 = 90.

	
����� ���� Evaluate φdV
V
zzz , where φ = 45x2 y and V is the closed region bounded by

the planes 4x + 2y + z = 8, x = 0, y = 0, z = 0.
����� Putting y = 0, z = 0, we get 4x = 8 or x = 2
Here x varies from 0 to 2
       y varies from 0 to 4 – 2x

and z varies from 0 to 8 – 4x – 2y

Thus φdV
V
zzz = 45 2x y dx dy dz

V
zzz

= 45 2

0

8 4 2

0

4 2

0

2
x y dx dy dz

z

x y

y

x

x =

− −

=

−

= zzz
= 45 2

0
8 4 2

0

4 2

0

2
x y z dx dyx yx − −−zz

= 45 8 4 22

0

4 2

0

2
x y x y dx dy

x
− −

−zz b g
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= 45 4 2
2
3

2 2 2 3

0

4 2

0

2
x y xy y dx

x

− −�
��

�
��

−

�
= 45 4 4 2 2 4 2

2
3

4 22 2 2 3

0

2
x x x x x dx− − − − −�

��
�
��� � � � � � �

=
45
3

4 22 3

0

2
x x dx−� � �

= 15 64 8 96 482 3 2

0

2
x x x x dx− − +� � 

= 15
64

3
8

6
96

4
48

5

3 6 4 5

0

2
x x x x

− − +
�
�
�

�
�
�

= 15
512

3
256

3
384

1536
5

− − +�
��

�
��

= 128.

EXERCISE 5.4

�
 Find the work done by a Force F  = zi + xj + yk from t = 0 to 2π, where r  = cos t i + sin
tj + tk.

�"��  Work done =  
� �
F dr

C

⋅
�

�
�
�

�

�
�
�� . Ans.  3π

�
 Show that F dr
C

⋅�  = –1, where F  = (cos y) i – xj – (sin y) k and C is the curve y = 1 2−x
in xy-plane from (1, 0) to (0, 1).

�
 Find the work done when a force F  = (x2 – y2 + x) i – (2xy + y) j moves a particle from

origin to (1, 1) along a parabola y2 = x. Ans.  
2
3

�
��

�
��

�
 xy dS
C

3�  where C is the segment of the line y = 2x in the xy plane from A(– 1, – 2, 0) to

B(1, 2, 0). Ans.  
5

16�
��

�
��

	
 F  = 2 22 2xzi x y j z x k+ − + −�  �   is conservative or not.

Ans.  so non - conservative∇ × ≠F 0,


 If F  = 2 3 2 42x z i xyj xk− − −� � � � , then evaluate ∇��� �

FdV
V

, where V is bounded by the plane

x = 0, y = 0, z = 0 and 2x + 2y + z = 4. Ans.  
8
3

�
��

�
��
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�
 Show that F ndS
S�� ⋅ �  = 

3
2

)� where F  = 4xzi – y2j + yzk and S is the surface of the cube

bounded by the planes;

x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. Ans.  
3
2

�
��

�
��

�
 If 
�

F  = 2 3 2yi j x k� � �− +  and S is the surface of the parobolic cylinder y2 = 8x in the first

octant bounded by the planes y = 4, and z = 6 then evaluate F ndS
S

⋅�� � . Ans.  132

�
 If A  = x y i x y j− + +� � � �� � evaluate � A dr⋅ around the curve C consisting of y = x2 and

y2 = x. Ans.  
2
3

�
��

�
��

��
 Find the total work done in moving a particle in a force field A  = 3 5 10xyi zj xk� � �− + along

the curve x = t2 + t, y =2t2, z = t3 from t = 1 to t = 2. Ans.  303
��
 Find the surface integral over the parallelopiped x = 0, y = 0, z = 0, x = 1, y = 2, z = 3

when 
�

A  = 2xyi + yz2j + xzk. Ans.  33

��
 Evaluate ∇ ×��� AdV
V

, where A  = (x + 2y) i – 3zj + x �k  and V is the closed region in the

first octant bounded by the plane 2x + 2y + z = 4. Ans.  
8
3

3 2i j k− +�
��

�
��� �

��
 Evaluate fdV
V���  where f = 45x2y and V denotes the closed region bounded by the

planes 4x + 2y + z = 8, x = 0, y = 0, z = 0. Ans.  128

��
 If A  = 2 3 2 42x z i xyj xk− − −� � � and V is the closed region bounded by the planes x = 0,

y = 0, z = 0 and 2x + 2y + z = 4, evaluate ∇ ×��� A dV
V
�  . Ans.  

8
3

j k−�
��

�
��� �

�	
 If A  = x yz i x yj k3 32 2− − +� � evaluate ∇ ⋅��� A dV
V
�   over the volume of a cube of side b.

Ans.  
1
3

b3�
��

�
��

�
 Show that the integral

xy y dx x y xy dy2 3 2 2

1 2

3 4
3+ + +� �  � 	 


	 

,

,
 is independent of the path joining the points (1, 2) and

(3, 4). Hence, evaluate the integral. Ans.  254

��
 If F = ∇ φ  show that the work done in moving a particle in the force field F from (x1, y1,
z1) to B (x2, y2, z2) is independent of the path joining the two points.

��
 If F  = (y – 2x)i + (3x + 2y)j, find the circulation of F  about a circle C in the xy-plane with
centre at the origin and radius 2, if C is transversed in the positive direction. [���
� 8π]

��
 If F (2) = 2i – j + 2k, F (3) = 4i – 2j + 3k then evaluate F
dF

dt
dt

2

3
� . . [���
� 10]
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* George Green (1793–1841), English Mathematician.

�� � Prove that F  = (4xy – 3x2z2)i + 2x2 j – 2x3 zk is a conservative field.

�� � Evaluate F n ds
S

. �zz  where F  = xyi – x2 j + (x + z)k, S is the portion of plane 2x + 2y + z

= 6 included in the first octant. Ans.
27

4
L
NM

O
QP

�� � Find the volume enclosed between the two surfaces S1 : z = 8 – x2 – y2 and S2 : z
= x2 + 3y2. [ ]Ans. 8 2π

5.19   GREEN’S* THEOREM

If C be a regular closed curve in the xy-plane bounding a region S and P(x, y) and Q (x, y) be
continuously differentiable functions inside and on C then (U.P.T.U., 2007)

Pdx Qdy
C

+zz b g =
∂
∂

−
∂
∂

F
HG

I
KJzz Q

x
P
y

dx dy
S

�����	
Let the equation of the curves AEB and AFB
are y = f1(x) and y = f2 (x) respectively.

Consider
∂
∂zz P
y

dx dy
S

=
∂
∂== zz P
y

dy dx
y f x

f x

x a

b

1

2

a f
a f

= P x y dx
y f x

y f x

a

b
,b g a f

a f
=

=z
1

2

= P x f P x f dx
a

b
, ,2 1b g b g−z

= − − zz P x f dx P x f dx
a

b

b

a
, ,2 1b g b g

= − −z zP x y dx P x y dx
BFA AEB

, ,b g b g

= − z P x y dx
BFAEB

,b g

⇒
∂
∂zz P
y

dx dy
S

= −z P x y dx
C

,b g ...(i)

Similarly, let the equations of the curve EAF and EBF be x = f1 (y) and x = f2 (y) respectively,

then
∂
∂zz Q
x

dx dy
S

=
∂
∂

= −zzz ==

Q
x

dx dy Q f y Q f y dy
c

d

x f y

f y

y c

d
2 1

1

2 , ,b g b gb g
b g

= Q f y dy Q f y dy
d

c

c

d

2 1, ,b g b g+ zz
⇒

∂
∂zz Q
x

dx dy
S

= Q x y dy
C

,b gz ...(ii)

Y

d F

y = f (x)2

A

B
CS

Ec

y = f (x)1

O a b
X

���
 ����
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Adding eqns. (i) and (ii), we get

Pdx Qdy
C

+� � � =
∂
∂

−
∂
∂

�
��

�
���� Q

x
P
y

dx dy
S

+������ %���� �%� ,����-�� �&����� 

F dr
C

⋅� = ∇ × ⋅�� F kdS
S
� 

Let F = Pi + Qj, then we have

Curl F =

i j k

x y z
P Q

∂
∂

∂
∂

∂
∂
0

 = 
∂
∂

− ∂
∂

�
��

�
��

Q
x

P
y

k

⇒ ∇ × ⋅F k�  =
∂
∂

−
∂
∂

�
��

�
��

Q
x

P
y

Thus, F dr
C

⋅� = ∇ × ⋅�� F k dS
S
� 

!�������. � Area of the plane region S bounded by closed curve C.
Let Q = x, P = – y, then

xdy ydx
C

−� � � = 1 1+�� 	 
dxdy
S

= 2 2dx dy A
S

=�
Thus, area A =

1
2

( )xdy ydx
C

−�

���������
 Verify the Green’s theorem by evaluating x xy dx y xy dy
C

3 3 3 2− + −� �  �   where

C is the square having the vertices at the points (0, 0), (2, 0) (2, 2) and (0, 2). (U.P.T.U., 2007)

���
� We have
x xy dx y xy dy

C

3 3 3 2− + −� �  � 

By Green’s theorem, we have

Pdx Qdy
C

+� � � =
∂
∂

− ∂
∂

�
��

�
���� Q

x
P
y

dx dy
S

...(A)

Here P = (x3 – xy3), Q = (y3 – 2xy)

∴
∂
∂
P
y

= – 3xy2, 
∂
∂

=
Q
x

y– 2
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So
∂
∂

−
∂
∂

�
��

�
���� Q

x
P
y

dx dy
S = –2y xy dx dy

yx
+

== �� 3 2
0

2

0

2
� 

= –2 dx ydy xdx y dy
yxyx

+
==== ���� 3 2

0

2

0

2

0

2

0

2

= –2 x
y x y

0
2

2

0

2 2

0

2 3

0

2

2
3

2 3
8 16

�
�
�
�

�
�
�
�

+
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

= − +

⇒
∂
∂

− ∂
∂

�
��

�
���� Q

x
P
y

dx dy
S

= 8 ...(i)

Now, the line integral

Pdx Qdy
C

+� � � = x xy dx y xy dy
C

3 3 3 2− + −� �  � 

= x xy dx y xy dy x xy dx y xy dy
ABOA

3 3 3 3 3 32 2− + − + − + −�� �  �  �  � 

+ x xy dx y xy dy x xy dx y xy dy
COBC

3 3 3 3 3 32 2− + − + − + −�� �  �  �  � 

But along OA, y = 0 ⇒  dy = 0 and x = 0 to 2
along AB, x = 2 ⇒  dx = 0 and y = 0 to 2
along BC, y = 2 ⇒  dy = 0 and x = 2 to 0
along CO, x = 0 ⇒  dx = 0 and y = 2 to 0

∴ Pdx Qdy
C

+� � � = x dx y y dy x x dx y dy3 3 3 3
2

0

2

0

0

2

0

2
4 8+ − + − +���� �  � 

=
x y

y
x

x
y4

0

2 4
2

0

2 4
2

2

0 4

2

0

4 4
2

4
4

4

�
�
�

�
�
� + −

�
�
��

�
�
��

+ −
�
�
�

�
�
� +

�
�
��

�
�
��

= 4 – 4 + 12 – 4

⇒ Pdx Qdy
C

+� � � = 8 ...(ii)

Thus from eqns. (i) and (ii) relation (A) satisfies. Hence, the Green’s theorem is verified.
������ ������


���������
 Verify Green’s theorem in plane for x xy dx x y dy
C

2 22 3− + +� �  �  , where C is the

boundary of the region defined by y2 = 8x and x = 2.
���
� By Green’s theorem

Pdx Qdy
C

+� � � =
∂
∂

−
∂
∂

�
��

�
���� Q

x
P
y

dx dy
S

X

Y

C
(0, 2)

B
(2, 2)

O
(0, 0) A

(2, 0)

'"(
� 	
��
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i.e., Line Integral (LI) = Double Integral (DI)

Here, P = x2 – 2xy, Q = x2y + 3

∂
∂
P
y = − ∂

∂
=2 2x

Q
x

xy,

So the R.H.S. of the Green’s theorem is the double integral given by

DI =
∂
∂

−
∂
∂

�
��

�
���� Q

x
P
y

dx dy
S

= 2 2xy x dx dy
S

− −�� 	 
! "

The region S is covered with y varying from –2 2 x  of the lower branch of the parabola

to its upper branch 2 2 x  while x varies from 0 to 2. Thus

DI = 2 2
8

8

0

2
xy x dy dx

y x

x

x
+

=−= �� � �

= xy xy dx
x

x2
8

8
0

2
2+

−�
= 8 2

128
5

3
2

0

2
x dx� =

The L.H.S. of the Green’s theorem result is the line integral

LI = x xy dx x y dy
C

2 22 3− + + ⋅� �  � 

Here C consists of the curves OA, ADB. BO. so

LI = =
+ +�� OA ADB BO

C

= + + = + +� � �OA ADB BO
LI LI LI1 2 3

����(� �� y = –2 2 x , so dy = –
2
x

dx

LI1 = x xy dx x y dy
OA

2 22 3− + +� �  � 

= x x x dx2

0

2
2 2−� –2� 

+ − + −
�
��

�
��

x x
x

dx2 2 2 3
2� 

= 5 4 2 3 22 3 2
1
2

0

2
x x x dx+ ⋅ −

�
��

�
��

−�

x = 2

B (2, 4)

y  = 8x2

Y

O (0, 0)
D (2, 0)

A (2, –4)

X

'"(
� 	
��
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=
5

3
4 2

2
5

3 2 2
3 5

2

0

2
x

x x+ − ⋅
�

�
�
�

�

�
�
�

=
40
3

64
5

12+ −

����(� ����  x = 2, dx = 0

LI2 = x xy dx x y dy
ADB

2 22 3− + +� �  � 

= 4 3 2 4
4

y d y+ =� � �
– 4

����(� ���  y = 2 2 x , with x : 2 to 0.

dy =
2
x

dx

LI3 = x xy dx x y dy
BO

2 22 3− + +� �  � 

= 5 4 2 3 22
3
2

1
22

0

x x x− +
�� ��−� dx

= − + −
40
3

64
5

12

LI = LI1 + LI2 + LI3 = 
40
3

64
5

12 24+ −�
��

�
�� + 	 
 + − + −�

��
�
�� =

40
3

64
5

12
128

5
⇒  Hence the Green’s theorem is verified.

���������
 Apply Green’s theorem to evaluate 2 2 2 2 2x y dx x y dy
C

− + +� �  �   where C is the

boundary of the area enclosed by the x-axis and the upper half of the circle x2 + y2 = a2.
(U.P.T.U., 2005)

���
� By Green’s theorem

Pdx Qdy
C

+� � � =
∂
∂

− ∂
∂

�
��

�
���� Q

x
P
y

dx dy
S

=
∂
∂

+ − ∂
∂

−
�
�
�

�
�
�=

−

=− �� x
x y

y
x y dx dy

y

a x

x a

a 2 2 2 2

0
2

2 2

�  � 

= 2 2 2
2

2

2

0
0

2 2
2 2

x y dx dy xy
y dx

a x

a

aa x

a

a
+ = +

�
��

�
��

−

−

−

− ��� � � .

= 2 0 22 2 2 2 2 2

0
x a x a x dx a x dx

a

a a
− + − = + −

−� ��  � 
[First integral vanishes as function is odd]

= 2
3

2
3

4
3

2
3

0

3
3

3a x
x

a
a

a
a

−
�
�
�

�
�
� = −

�
�
�

�
�
� = .

– a O a

S

y =   a  – x
2 2

'"(
� 	
��
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Let y = 3  sin θ in first and y = sin φ in second integral.

L.H.S. = 4 81 4
4

0
2

4

0
2× −� �sin cos

cos
sin cos

cos
θ θ

θ
θ φ φ

φ
φ

π π

d d

= 4 81

5
2

1
2

2 3
4

5
2

1
2

2 3
60× − = π

⇒ L.H.S. = R.H.S.
Hence Green’s theorem is verified.
�������� 	
 Find the area of the loop of the folium of Descartes

x3 + y3 = 3axy, a > 0.
���
� Let y = tx. ...(i)
∴ x3 + t3x3 = 3ax.tx

giving x =
3

1 3
at
t+

...(ii)

Hence, required area =
1
2

x dy y dx
C

−� � �

=
1
2

2
2x

x dy y dx

xC
⋅

−�
=

1
2

2x d
y
xC

�
��

�
���

= 1
2

2x dt
C� , as y = tx

= 1
2

9

1

2 2

3 2
a t

t
dt

C +
�

� 
 using (ii)

= 3
3

1

2
2

3 20

1
a

t

t
dt

+
�
� 

,  by summetry

= 3
1

1
3
2

2
3

0

1
2a

t
a−

+
�
��

�
��

= .

��������
�Using Green’s theorem, find the area of the region in the first quadrant bounded

by the curves y = x, y = 
1
x

, y = 
x
4

. (U.P.T.U., 2008)

���
� By Green’s theorem the area of the region is given by

A =
1
2

xdy ydx
C

−� � �

=
1
2

321

xdy ydx xdy ydx xdy ydx
CCC

− + − + −
�

�
�
�
�

�

�
�
�
�

��� � � � � � � ...(i)

y =
 x

t = 1

t = 0Ox + y + a = 0

'"(
� 	
�
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Y

(0,0)
O

X

y =
 x

y = 

      
4
x

C1

C2

A (2, )
        2

1

y = 
      x

1B (1,1)

C3

'"(
� 	
��

Now along the curve C1 : y = 
x
4

 or dy = 
dx
4

 and x varies from 0 to 2.

xdy ydx
C

−� � �
1

=
x

dx
x

dx
4 4

0
0

2
−�

��
�
�� =� ...(ii)

along, the curve C2 : y = 
1
x

, dy = − 1
2x

 dx and x varies from 2 to 1.

xdy ydx
C

−� � �
2

= x
x

dx
x

dx
x

dx.
1 1 2

2 2

1

2

1

−
�
��

�
�� −���

���
= −��

or xdy ydx
C

−� � �
2

= − 2
2

1
log x  = – 2[log 1 – log 2] = 2 log 3 ...(iii)

along, the curve C3 : y = x, dy = dx and x varies from 1 to 0.

xdy ydx
C

−� � �
3

= xdx xdx− =� � �
1

0
0 ...(iv)

Using (ii), (iii) and (iv) in (i), we get the required area

A =
1
2

[0 + 2 log 2 + 0] = log 2.

���������
� Verify Green’s theorem in the xy-plane for 2 2 2 2xy x dx x y dy
C

− + +� �  �  , where

C is the boundary of the region enclosed by y = x2 and y2 = x.
���
� Here P(x, y) = 2xy – x2

Q(x, y) = x2 + y2

∂
∂
Q
x

= 2x,
∂
∂
P
y

 = 2x

By Green’s theorem, we have

Pdx Qdy
C

+� � � =
∂
∂

− ∂
∂

�
��

�
���� Q

x
P
y

dx dy
S

...(i)

X
O

Y

C1

C2

A
(1, 1)

y = x
2

x = y
2

'"(
� 	
��
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∴ R.H.S. = 2 2 0x x dx dy
S

− =�� � �

and L.H.S. = 2 2 2 2xy x dx x y dy
C

− + +� �  � 

= 2 22 2 2 2 2 2

21

xy x dx x y dy xy x dx x y dy
CC

− + + + − + +�� �  �  �  �  ...(ii)

Along C1 : y = x2 i.e., dy = 2xdx and x varies from 0 to 1

2 2 2 2

1

xy x dx x y dy
C

− + +� �  �  = 2 2 23 2 3 5

0

1
x x x x dx− + +� � 

= 4 2
3 3

13 2 5 4
3 6

0

1

0

1
x x x dx x

x x
− + = − +

�
�
�

�
�
� =� � 

Along C2 : y2 = x, 2y dy = dx or dy = 
dx

x2 1 2
 and x varies from 1 to 0.

2 2 2 2

2

xy x dx x y dy
C

− + +� �  �  = 2
2

1 2 2 2
1 21

0
x x x dx x x

dx

x
⋅ − + +�

��
�
��� �  � .

= 2
1
2

1
2

3 2 2 3 2 1 2

1

0
x x x x dx− + +�

��
�
���

=
5
2

1
2

3 2 2 1 2

1

0
x x x dx− +�

��
�
���

= 5
2 5 2 3

1
2 3 2

5 2

1

0 3

1

0 3 2

1

0
x x x�
�
�

�
�
� −

�
�
�

�
�
� +

�
�
�

�
�
�

= − + − = −1
1
3

1
3

1

Using the above values in (ii), we get
L.H.S. = 1 – 1 = 0

Thus L.H.S. = R.H.S.; Hence, the Green’s theorem is verified.

EXERCISE 5.5

�
 Using Green’s theorem evaluate x y dx x dy
C

2 2+� � ,  where C is the boundary described

counter clockwise of the triangle with vertices (0, 0), (1, 0), (1, 1). (U.P.T.U., 2003)

 Ans.  
5

12
�
��

�
��

�
 Verify Green’s theorem in plane for xy y dx x dy
C

+ +� 2 2� � �, where C is the closed curve of

the region bounded by y = x2 and y = x. Ans.  –
1
20

�
��

�
��
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�� Evaluate (cos sin ) sin cosx y xy dx x y dy
C

− + ⋅�  by Green's theorem where C is the circle

x2 + y2 = 1. [���� 0]

�� Evaluate by Green's theorem e y dx e y dyx x

C

− −+� sin cos� � , where C is the rectangle with

vertices (0, 0) (π, 0), π π,
1
2

�
�

�
�  0

1
2

, π�
�

�
� . [���� 2(e–π–1)]

�� Find the area of the ellipse by applying the Green's theorem that for a closed curve C in
the xy-plane.
[�	�
� Parametric eqn. of ellipse x = a cos φ, y = a sin φ and φ vary from φ1 = 0 to φ2 = 2π]

[���� π ab]

�� Verify the Green's theorem to evaluate the line integral ( )2 32y dx x dy
C

+� , where C is the

boundary of the closed region bounded by y = x and y = x2 . Ans.
27
4

�
	


�
�

� Find the area bounded by the hypocycloid x2/3 + y2/3 = a2/3 with a > 0.

[�	�
� x = a cos3 φ, y = a sin3 φ, φ varies from φ1 = 0 to φ1 = π/2 
O

A ]

Ans.
3

8

2πa�
	


�
�

�� Verify Green's theorem ( ) ( )3 4 2 3x y dx x y dy
C

+ + −�  with C; x2 + y2 = 4.

[���� Common value: – 8π]

�� Find the area of the loop of the folium of descartes x3 + y3 = 3axy, a > 0. Ans.
3
2

2a�
	


�
�

[Hint: Put y = tx, t : 0 to ∞]

��� Evaluate the integral ( cos ) ( sin ) ,x hy dx y x dy
C

2 − + +�  where C: 0 ≤ x ≤ π, 0 ≤ y ≤ l.

[���� π (cos h 1 – 1)]

11. Verify Green’s theorem in the xy-plane for 3 8 4 62 2x y dx y xy dy
C

− + −� � � � � , where C is the

region bounded by parabolas y = x  and y = x2. Ans.
3

2
�
	


�
�

12. Find the area of a loop of the four - leafed rose r = 3 sin2θ. ���� � A r d= =��
	


�
�

1
2

9
8

2
0

2 θ
ππ

13. Verify the Green’s theorem for y dx x dy
C

2 2+� � � , where C is the boundary of the square –

1 ≤ x ≤ 1 and –1 ≤ y ≤ 1.
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14. Using Green’s theorem in the plane evaluate 2 1 2 2tan log− + +� y x dx x y dy
C

� � � � , where C

is the boundary of the circle (x – 1)2 + (y + 1)2 = 4.

5.20   STOKE’S THEOREM

If 
�

F  is any continuously differentiable vector function and S is a surface enclosed by a curve C,
then

F dr F ndS
SC

⋅ = ∇ × ⋅��� ( ) � .

where �n  is the unit normal vector at any point of S. (U.P.T.U., 2006)
������� Let S is surface such that its projection on the xy, yz and xz planes are regions

bounded by simple closed curves. Let equation of surface f(x, y, z) = 0, can be written as
z = f1 (x, y)
y = f2 (x, z)
x = f3 (y, z)

Let
�

F = F1 i + F2 j + F3 k
Then we have to show that

∇ × + + ⋅ = ⋅��� { } �F i F j F k ndS F dr
CS

1 2 3
� �

Considering integral ∇ × ⋅�� ( ) � ,F i ndS
S

1  we have

[∇  × (F1 i)]· �n dS = i
x

j
y

k
z

F i ndS
∂
∂

+ ∂
∂

+ ∂
∂

���
���

×
�
	



�
�
 ⋅1 �  ...(i)

=
∂
∂

−
∂
∂

�
	


�
�
⋅

F
z

j
F
y

k ndS1 1 �

=
∂
∂

⋅ − ∂
∂

⋅�
	


�
�

F
z

n j
F
y

n k dS1 1� � ...(ii)

�
r = xi + yj + zk

Also, = xi + yj + f1(x, y)k

So,
∂
∂

�
r
y

= j + 
∂
∂
f
y

k1 [As z = f(x, y)]

But 
∂
∂

�
r
y

 is tangent to the surface S. Hence, it is perpendicular to �n .

So, �n
r
y

⋅ ∂
∂

= � �n j
f
y

n k⋅ +
∂
∂

⋅1  = 0

�	��� ����
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Hence, �n ·j = −
∂
∂

⋅ = − ∂
∂

⋅
f
y

n k
z
y

n k1 � �

Hence, (ii) becomes

[∇  × (F1 i)]· �n  dS = – 
∂
∂

∂
∂

+
∂
∂

�
	


�
�

⋅
F
z

z
y

F
y

n k dS1 1 � ...(iii)

But on surface S
F1 (x, y, z) = F1 [x, y, f1 (x, y)]

= F(x, y) ...(iv)

∴
∂
∂

+
∂
∂

⋅ ∂
∂

F
y

F
z

z
y

1 1 =
∂
∂
F
y

...(v)

Hence, relation (iii) with the help of relation (v) gives

[∇  × (F1 i)]· �n  dS = – 
∂
∂
F
y

 ( �n ·k) dS = – 
∂
∂
F
y

 dx dy

( ) �∇ × ⋅�� F i n dS
S 1 = −

∂
∂��
�
F
y

dx dy
R

...(vi)

where R is projection of S on xy-plane.
Now, by Green’s theorem in plane, we have

�
Fdx

C1
� = −

∂
∂��
�
F
y

dx dy
R

,

where C1 is the boundary of R.
As at each point (x, y) of the curve C1 the value of F is same as the value of F1 at each point

(x, y, z) on C and dx is same for both curves. Hence, we have
�
F dx

C1
� =

�

F dx
C 1� .

Hence, F dx
C

1� = – 
∂
∂��
�
F
y

dx dy
R

...(vii)

From eqns. (vi) and (vii), we have

∇ × ⋅�� F i n dS
S 1� � � =

�
F dx

C 1� ...(viii)

Similarly, taking projection on other planes, we have

∇ × ⋅�� F j n dS
S 2� � � =

�

F dy
C 2� . ...(ix)

∇ × ⋅�� F k n dS
S 3� � � =

�

F dz
C 3� ...(x)

Adding eqns. (viii), (ix), (x), we get

∇ × + + ⋅�� { } �F i F j F k n dS
S 1 2 3 = { }F dx F dy F dz

C
1 2 3+ +�

⇒
�

F dr
C

⋅� = ( ) �∇ × ⋅�� F ndS
S

    .
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5.21   CARTESIAN REPRESENTATION OF STOKE'S THEOREM

Let
�

F = F1i + F2 j + F3 k

curl 
�

F =

i j k

x y z
F F F

∂
∂

∂
∂

∂
∂

1 2 3

=
∂
∂

− ∂
∂

���
���

+ ∂
∂

− ∂
∂

���
��� + ∂

∂
− ∂

∂
���

���
F
y

F
z

i
F
z

F
x

j
F
x

F
y

k3 2 1 3 2 1

So the relation
� �
F dr

C
⋅� = curl

�

F n dS
S

⋅� � ,

is transformed into the form

{ }F dx F dy F dz
C

1 2 3+ +� =
∂
∂

−
∂
∂

�
��

�
��

+
∂
∂

−
∂
∂

�
��

�
�� +

∂
∂

−
∂
∂

�
��

�
��

�
	



�
�
�� F

y
F
z

dy dz
F
z

F
x

dz dx
F
x

F
y

dx dy
S

3 2 1 3 2 1 .

�������� ��� Verify Stoke's theorem for 
�

F  = (x2 + y2) i – 2xy j taken round the rectangle
bounded by x = ± a, y = 0, y = b. (U.P.T.U., 2002)

 ���� We have
�

F dr⋅ = {(x2 + y2) i – 2xy j}· {dx i + dy j}
= (x2 + y2) dx – 2xy dy

∴
� �
F dr

C
⋅� =

� � � � � � � �
F dr F dr F dr F dr

C CCC
⋅ + ⋅ + ⋅ + ⋅� ���

2 431

= I1 + I2 + I3 + I4

∴ I1 = ( )x y dx xy dy
C

2 2 2
1

+ −� � �

= ( )x b dx
a

a
2 2 0+ −

−� � �     
� y b

dy

=
∴ =
�
	


�
�0

= x
b x

a

a3
2

3
+

�
��

�
��

−

= – 
2
3

23 2a b a+�
�

�
�

I2 = ( )x y dx xy dy
C

2 2 2
2

+ −� � �

= ( ) ( )− + − −� a y a y dy
b

2 20
0 2� � �x a

dx

= −
∴ =
�
	


�
�0

= 2a y dy
b

0�

X�

C B

(–a, 0) O C3
(a, 0) X

C2 C4

C1

A (a, b)(–a, b) D

Y

�	��� ��!�
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= 2a 
y

b

2 0

2

�
��
�
��  = – ab2

I3 = ( )x y dx xy dy
C

2 2 2
3

+ −�
= x dx

C

2

3
� � y

dy

=
∴ =
�
	


�
�

0
0

= x dx
x a

a

a

a

a
2

3 3

3
2

3
=
�
��
�
�� =

−−

+�
I4 = −� 2

4

ay dy
C

� x

dx

=
∴ =
�
	


�
�

0
0

= –2a y dy a
y

b
b

= −
�
��
�
��� 2

2

2

00

= – ab2

∴
� �
F dr

C
⋅� = I I I I1 2 3 4+ + +

= – 
2

3
2

2
3

3
2 2 3 2a

b a ab a ab+
�
��

�
�� − + −

= – 4ab2 ...(i)

Again, curl 
�

F =

i j k

x y z
x y xy

∂
∂

∂
∂

∂
∂

+ −2 2 2 0

= – 4yk

�n = k

∴ �n · curl 
�

F = k·(– 4yk) = – 4y

∴ �n F dS
S

⋅�� curl
�

= −��− 4
0

y dx dy
b

a

a

= −
�
��
�
��−

+� 4
2

2

0

y
dx

b

a

a

= – 2 2b x a
a( )−

= – 4ab2. ...(ii)
From eqns. (i) and (ii), we verify Stoke’s theorem.

��������!�� Verify Stoke's theorem when F
→

 = yi + zj + xk and surface S is the part of the
sphere x2 + y2 + z2 = 1, above the xy-plane.

 ���� Stoke’s theorem is
� �
F dr

C
⋅� = ( ) �curl

�

F ndS
S

⋅��
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Here, C is unit circle x2 + y2 = 1, z = 0

Also,
� �
F dr⋅ = (yi + zj + xk) · (dxi + dyj + dzk)

= ydx + zdy + xdz

∴
� �
F dr

C
⋅� = ydx zdy xdz

CCC
+ +���

Again, on the unit circle C, z = 0
dz = 0

Let x = cos φ,  ∴  dx = – sin φ.dφ
and y = sin φ,  ∴  dy = cos φ.dφ

∴
� �
F dr

C
⋅� = y dx

C�
= sin ( sin )φ φ φ

π
−� d

0

2

= – sin 2

0

2
φ φ

π
d�

= – π ...(i)

Again, curl 
�

F =

i j k

x y z
y z x

∂
∂

∂
∂

∂
∂  = – i – j – k

Using spherical polar coordinates

�n = sin θ cos φ i + sin θ sin φ j + cos θ k

∴ curl 
�

F · �n = – (sin θ cos φ + sin θ sin φ + cos θ).

Hence, ( ) �curl
�
F n dS

S
⋅�� = – (sin cos sin sin cos )sin

/
θ φ θ φ θ θ θ φ

φ

π

θ

π
+ +

== �� d d
0

2

0

2

= – [sin sin sin cos cos ] sin
/

θ φ θ φ φ θ θ θπ

θ

π
− +

=� 0
2

0

2
d

= – 2π sin cos
/

θ θ θ
π

d
0

2�
= – π sin

/
2

0

2
θ θ

π
d�

=
π θ π

2
2 0

2(cos ) /

= – π ...(ii)
From eqns. (i) and (ii), we verify Stoke’s theorem.

�������� ��� Verify Stoke’s theorem for 
�

F  = xzi − yj + x2yk, where S is the surface of the
region bounded by x = 0, y = 0, z = 0, 2x + y + 2z = 8 which is not included in the xz-plane.

(U.P.T.U., 2006)
 ���� Stoke’s theorem states that

F dr
C

⋅� = ∇ × ⋅�� F ndS
S
� � �
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Here C is curve consisting of the straight lines
AO, OD and DA.

L.H.S. = F dr
C

⋅�  = 
AO OD DA+ +�

= + + = + +� ��AO DAOD
LI LI LI1 2 3

"��
#���
��	�#
��	����� � y = 0, z = 0, 
�

F  = 0, so

LI1 = F dr
AO

⋅ =� 0

"�� 
#�� �
��	�#
� �	��� ��� � x = 0, y = 0. F  = 0, so

LI2 = F dr
OD

⋅ =� 0

"�� 
#�� �
��	�#
� �	��� ��� x + z = 4 and y = 0, so

F = xzi = x (4 – x) i

LI3 = F dr x x i dxi x x dx
DA

⋅ = − ⋅ = − =��� ( ) ( )4 4
32
30

4

0

4

LI = 0 + 0 + 
32
3

 = 
32
3

Here the surface S consists of three surfaces (planes) S1 : OAB, S2 : OBD, S3 : ABD, so that

R.H.S. = ( ) ^∇ × ⋅ =
+ +���� F n dS

S S SS 1 2 3

= + + = + +������ SI SI SI
SSS

1 2 3
321

∇  × F =

i j k

x y z
xz y x y

∂
∂

∂
∂

∂
∂

− 2

 = x2i + x(1 – 2y) j

"�� 
#�� �$���%�� �
�
�� ������ ���� �� z = 0,  � �n k= − , so

( ) �∇ × ⋅F n =  x i x y j k2 1 2 0+ − ⋅ − =( ) ( )

SI1 = ( ) �∇ × ⋅ =�� F ndS
S

0
1

"���$���%�� �
!
�� ������ ���� �� Plane x = 0, �n  = – i, so

∇ × F = 0

SI2 = ( ) �∇× ⋅ =�� F ndS
S

0
2

"�� �$���%�� �
�
�� ������ ��� �� 2x + y + 2z = 8.

Unit normal �n to the surface S3 = 
∇ + +
∇ + +

( )
| ( )|

2 2
2 2

x y z
x y z

Z

D (0, 0, 4)

O
Y

X A (4, 0, 0)

B (0, 8, 0)

�	��� ��!�
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�n =
2 2

4 1 4

i j k+ +
+ +

 = 
2 2

3
i j k+ +

( ) �∇ × ⋅F n =
2
3

1
3

1 22x x y+ −( )

To evaluate the surface integral on the surface S3, project S3 on to say xz-plane i.e., projection
of ABD on xz-plane is AOD

dS =
dx dz
n j

dx dz
⋅

=
1 3

 =  3dx dz

Thus SI3 = ( ) �∇× ⋅�� F ndS
S3

=
2
3 3

1 2 32x
x

y dx dz
AOD

+ −�
	


�
��� ( )

= 2 1 22
0

4

0

4
x x y dz dx

z

x

x
+ −

=

−

= �� ( )

since the region AOD is covered by varying z from 0 to 4 – x, while x varies from 0 to 4. Using
the equation of the surface S3, 2x + y + 2z = 8, eliminate y, then

SI3 = 2 1 2 8 2 22
0

4

0

4
x x x z dz dx

x
+ − − −

−�� [ ( )]� �

= ( )6 15 42
0

4

0

4
x x xz dz dx

x
− +

−��
= 6 15

4
2

2
2

0

4

0

4
x z xz

xz
dx

x

− +
�
	



�
�


−

�
= ( )23 4 28

32
3

2 3

0

4
x x x dx− − =�

Thus L.H.S. = L.I. = R.H.S. = S.I.

Hence Stoke’s theorem is verified.

�����������Evaluate ( ) �∇× ⋅�� F ndS
S

 over the surface of intersection of the cylinders x2 + y2

= a2, x2 + z2 = a2 which is included in the first octant, given that F  = 2yzi – (x + 3y – 2) j
+ (x2 + z)k.

 ���� By Stoke’s theorem the given surface integral can be converted to a line integral i.e.,

SI = ( ) �∇ × ⋅ = ⋅ =��� F ndS F dr
CS

LI

Here C is the curve consisting of the four curves C1: x2 + z2 = a2, y = 0; C2: x
2 + y2 = a2, z = 0,

C3: x = 0, y = a, 0 ≤ z ≤ a: C4: x = 0, z = a, 0 ≤ y ≤ a.
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C2
X

Y

C3

x  + y  = a
2 2 2

C1

C4

x  + z  = a
2 2 2

Z

�	��� ��!!

LI = F dr
C C CCCC C C C

⋅ = = + + +� � ���� + + + 1 4321 2 3 4

= LI1 + LI2 + LI3 + LI4

"�� 
#�� %$�&�� �
�
��� y = 0; x2 + z2 = a2

LI1 = F dr x z dz
CC

⋅ = +�� ( )2

11

= ( )a z z dz a
a

a

2 2 3
20 2

3 2
− + = − −�

"�� 
#�� %$�&�� �
!
�� z = 0, x2 + y2 = a2

LI2 = F dr x y dy
CC

⋅ = − + −�� ( )3 2
22

= – a y y dy
a 2 2

0
3 2− + −� � �

= – 
πa

a a
2

2

4
3
2

2− +

"�� 
#�� %$�&�� �
�
�� x = 0, y = a, 0 ≤ z ≤ a

LI3 = F dr zdz
aa

C
⋅ = =��

2

0 23

"�� �
�
'� x = 0, z = a, 0 ≤ y ≤ a

LI4 = F dr y dy a
a

a
⋅ = − = − +�� ( )2 3 2

3
2

20

SI = ∇ × ⋅ = = − −
�
��

�
���� F ndS LI

a a
S
� � �

2
3 2

3 2

+ − − +
�
��

�
�� + + − +

�
��

�
��

πa a
a

a
a

a2 2 2 2

4
3

2
2

2
2

3
2

SI =
−

+
a

a
2

12
3 8( ).π
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��������	
�Evaluate F dr
S

⋅z  by Stoke’s theorem, where F y i x j x z k= + − +2 2� � ( ) �  and C is

the boundary of the triangle with vertices at (0, 0, 0) (1, 0, 0) and (1, 1, 0) (U.P.T.U., 2001)

���
�Since z-coordinates of each vertex of the triangle is zero, therefore, the triangle lies in

the xy-plane and � �n k=

curl F =

� � �

( )

i j k

x y z
y x x z

∂
∂

∂
∂

∂
∂

− +2 2

 = � ( ) �j x y k+ −2

∴ curl F n⋅ � = � ( ) � � ( )j x y k k x y+ − ⋅ = −2 2

The equation of line OB is y = x.

By Stoke’s theorem F dr F n dS
SC

⋅ = ⋅zzz curl �

= 2
00

1
( )x y dy dx

x
−zz

= 2
2

2
2

1
3

2

0

2
2

2
0

1

0

1

0

1
xy

y
dx x

x
dx x dx

x

−
L
NM

O
QP = −

F
HG

I
KJ = =zzz .

�������� 
� Apply Stoke’s theorem to prove that

( )ydx zdy xdz
C

+ +z = −2 2 2πa , where C  is the curve given by
x2 + y2 + z2 – 2ax – 2ay = 0, x + y = 2a and begins of the point (2a, 0, 0).

���
� The given curve C is
x2 + y2 + z2 – 2ax – 2ay = 0

x + y = 2a

⇒ (x – a)2 + (y – a)2 + z2 = 2
2ab g

x + y = 2a
which is the curve of intersection of the sphere

(x – a)2 + (y – a)2 + z2 = a 2
2b g

and the plane x + y = 2a.
Clearly, the centre of the sphere is (a, a, 0) and radius

is a 2 .

Also, the plane passes through (a, a, 0).
Hence, the circle C is a great circle.

∴ Radius of circle C = Radius of sphere = 2a

Now,  ( )ydx zdy xdz
C

+ +z = ( ) ( )yi zj xk dxi dyj dzk
C

+ + ⋅ + +z

O

S

A (1, 0) X

B (1, 1)

y =
 x

Y

���
� 	
��

���
� 	
��
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= ( )yi zj xk dr
C

+ + ⋅� �

= curl yi zj xk ndS
C

( ) �+ + ⋅� . [Using Stoke’s theorem]

But curl (yi + zj + xk) =

i j k

x y z
y z x

∂
∂

∂
∂

∂
∂  = – i – j – k.

Since S is the surface of the plane x + y = 2a bounded by the circle C. Then

�n =
∇ + −

∇ + −

x y a

x y a

2

2

� �
� �

=
i j+

2

∴ curl (yi + zj + xk) · �n = (– i – j – k) ·
i j+�
��

�
��2

= −
+1 1

2
 = – 2 .

Hence, the given line integral = −� 2 dS
S

= – 2  (Area of the circle C).

= – 2 π 2
2

a� �  = −2 2 2πa .

�������� �� Evaluate xy dx xy dy+� 2� �  taken round the positively oriented square with

vertices (1, 0), (0, 1), (– 1, 0) and (0, – 1) by using Stoke’s theorem and verify the theorem.
 ���� We have

( )xy dx xy dy
C

+� 2

= ( ) ( )xy i xy j dx i dy j
C

+ ⋅ +� 2

= ( )xy i xy j dr
C

+ ⋅� 2 �

= curl ( ) �xy i xy j ndS
S

+ ⋅�� 2

by Stoke’s theorem, where S is the area of the square ABCD.

Now, curl (xy i + xy2 j) =

i j k

x y z
xy xy

∂
∂

∂
∂

∂
∂

2 0

= (y2 – x) k

Y

B (0, 1)

x + y = 1

A (1, 0)

X

y – x = 1

C

X  (–1, 0)�

x + y = –1 x – y = 1

(0, –1) D

Y�

O

�	��� ��!�
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∴ curl (xy i + xy2j ) · n̂ = (y2 – x) k · k
= (y2 – x)

∴  curl ( ) �xy i xy j ndS
S

+ ⋅�� 2 = ( )y x dS
S

2 −��
= ( )y x dx dy

S

2 −��
= y dx dy x dx dy

SS

2 − ����
= 4 y dx dy Sx

x 2
0

1

0

1
−

−�� [By symmetry]

= 4 y dx dy S
x

2

0

1

0

1
0− ⋅

−�� [� x  = x-coordinate of

the C.G. of ABCD = 0]

= 4 y dx dy
x

2

0

1

0

1 −��
= 4 

y
dx

x3

0

1

0

1

3

�
��
�
��

−

�
=

4
3

 ( )1
1
3

3

0

1
− =� x dx . ...(i)

(��	�	%�
	��� ���  
�)�*�� 
#������� The given line integral

= ( )xy dx xy dy
C

+� 2
,

where C is the boundary of the square ABCD. Now C can be broken up into four parts namely:
(i) the line AB whose equation is x + y = 1,

(ii) the line BC whose equation is y – x = 1,
(iii) the line CD whose equation is x + y = – 1, and
(iv) the line DA whose equation is x – y = 1.

Hence, the given line integral

= ( ) ( )xy dx xy dy xy dx xy dy
BCAB

+ + +�� 2 2  + ( ) ( )xy dx xy dy xy dx xy dy
DACD

+ + +�� 2 2

= x x dx y y dy( ) ( )1 1 2

0

1

0

1
− + −���

�����  + x x dx y y dy( ) ( )1 1 2
1

0

0

1
+ + −���

�����−

+ x x dx y y dy( ) ( )− − + − +��− 1 12

0

1

1

0
� �  + x x dx y y dy( ) ( )− + +���

���−�� 1 12
1

0

0

1

= 2 x x dx x x dx( ) ( )− + +
−�� 1 2 1

0

1

0

1
 + 2 ( ) ( )1 2 12 2

1

0

0

1
− + +

−�� y y dy y y dy
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= 2 
x x x x y y y y2 2

0

1 3 2

0

1 3 4

0

1 3 4

1

0

3 2
2

3 2
2

3 4
2

3 4
−

�
��

�
�� + +

�
��

�
�� + −

�
��

�
�� + +

�
��

�
��

−

−

= 2 
1
3

1
2

2
1
3

1
2

2
1
3

1
4

2
1
3

1
4

−�
�

�
� + − +�

�
�
� + −�

�
�
� + −�

�
�
�

= 4 
1
3

1
4

−�
�

�
�

=
1
3

· ...(ii)

From eqns. (i) and (ii), it is evident that
� �
F dr

C
⋅� = curl

�

F n dS
C

⋅� �

Hence, Stoke’s theorem is verified.

����������� Verify Stoke’s theorem for the function
�

F = (x + 2y) dx + (y + 3x) dy
where C is the unit circle in the xy-plane.

 ���� Let
�

F = F1 i + F2 j + F3 k
�

F · dr = (F1 i + F2 j + F3 k) · (dx i + dy j + dz k)
= F1dx + F2dy + F3dz

Here, F1 = x + 2y, F2 = y + 3x, F3 = 0
Unit circle in xy-plane is x2 + y2 = 1

or x = cos φ, dx = – sin φ dφ
y = sin φ, dy = cos φ dφ.

Hence,
� �
F dr

C
⋅� = ( ) ( )x y dx y x dy+ + +� 2 3

= [ (cos sin )− +� φ φ
π

2
0

2
sin φ dφ + (sin φ + 3 cos φ) cos φ dφ]

= − − + +� sin cos sin sin cos cosφ φ φ φ φ φ φ
π

2 32 2

0

2 � � d

= ( cos sin )3 22 2

0

2
φ φ φ

π
−� d

= ( cos ( cos )3 2 12 2

0

2
φ φ φ

π
− −� � � d

= 5 22

0

2
cos φ φ

π
−� � � d
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=
5 1 2

2
2

0

2 ( cos )+ −�
	


�
�� φ φ

π
d

=
1
2

5
2

2
0

2
+���

���� cos φ φ
π

d

=
1
2

5
2

2
0

2

φ φ
π

+�	

�
�sin

=
1
2

2 0[ ] .π π+ =

curl 
�

F =

i j k

x y z
x y y x

∂
∂

∂
∂

∂
∂

+ +2 3 0

= i {0} – j {0} + k 
∂
∂

+ −
∂
∂

+���
���x

y x
y

x y( ) ( )3 2

= k (3 – 2) = k.

Hence, curl
�

F n dS
S

⋅�� � = ( )k k dS⋅�
= dS�
= dx dy��
= xdy�
= cos2

0

2
φ φ

π
d�

=
1
2

1 2
0

2
( cos )+� φ φ
π

d

=
1
2

2
2 0

2

φ φ π

+�	

�
�

sin

= π.
So Stoke’s theorem is verified.
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EXERCISE 5.6

�� Evaluate ∇ × ⋅�� A ndS
S
� �  where S is the surface of the hemisphere x2 + y2 + z2 = 16 above

the xy-plane and A  = (x2 + y – 4) i + 3xyj + (2xz + z2) k. Ans.  16− π

�� If F  = (y2 + z2 + x2) i + (z2 + x2 – y2) j + (x2 + y2 – z2) k evaluate ∇ × ⋅�� F n dS
S
� � �  taken over

the surface S = x2 + y2 – 2ax + az = 0, z ≥ 0. Ans.  2πa3

�� Evaluate ∇ × + + ⋅��S yi zj xk n dS� � �  over the surface of the paraboloid z = 1 – x2 – y2, z ≥ 0.

Ans.  π

�� F  = (2x – y) i – yz2j – y2zk, where S upper half surface of the sphere x2 + y2 + z2 = 1.

Hint:  Here ,   +   =  1,   =  0C x y z2 2
� Ans.  π

�� Using Stoke’s theorem or otherwise, evaluate

2 2 2x y dx yz dy y z dz
C

− −� � � – .

where C is the circle x2 + y2 = 1, corresponding to the surface of sphere of unit radius.
Ans.  π

�� Use the Stoke’s theorem to evaluate

x y dx x z dy y z dz
C

+ + − + −� 2� � � � � � .

where C is the boundary of the triangle with vertices (2, 0, 0) (0, 3, 0) and (0, 0, 6) oriented

in the anti-clockwise direction. Ans.  15

	� Verify Stoke’s theorem for the Function 
�

F  = x2 i – xy j integrated round the square in the
plane z = 0 and bounded by the lines x = 0, y = 0, x = a, y = a.

Ans.  Common value 
–

2
a 3�

	




�
�



� Verify Stoke’s theorem for F  = (x2 + y – 4)i + 3xy j + (2xz + z2)k over the surface of
hemisphere x2 + y2 + z2 = 16 above the xy plane. Ans.  Common value – 16π

�� Verify Stoke’s theorem for the function F  = zi + xj + yk, where C is the unit circle in xy

plane bounding the hemisphere z = 1 2 2− −x y� � . (U.P.T.U., 2002)

Ans.  ommon value C π

��� Evaluate F dr
C

⋅� �
 by Stoke’s theorem for F  = yzi + zxj + xyk and C is the curve of inter-

section of x2 + y2 = 1 and y = z2. Ans.  0
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5.22   GAUSS’S DIVERGENCE THEOREM

If F  is a continuously differentiable vector point function in a region V and S is the closed surface
enclosing the region V, then

F n dS
S

⋅�� � = diV F dV
V��� ...(i)

where �n  is the unit outward drawn normal vector to the surface S. (U.PT.U., 2006)

������ Let i, j, k are unit vectors along X, Y, Z axes respectively. Then 
�

F  = F1i + F2j + F3k,
where F1, F2, F3, and their derivative in any direction are assumed to be uniform, finite and
continuous. Let S is a closed surface which is such that any line parallel to the coordinate axes
cuts S at the most on two points. Let z coordinates of these points be z = F1 (x, y) and z = F2
(x, y), we have assumed that the equations of lower and upper portions S2 and S1 of S are z = F2
(x, y) and z = F1 (x, y) respectively.

The result of Gauss divergence theorem (i) incomponent form is

F i F j F k nds
S 1 2 3+ + ⋅��� � � �  = 

∂
∂

+
∂
∂

+
∂
∂

�
��

�
����� F

x
F
y

F
z

dV
V

1 2 3 ...(ii)

Now, consider the integral

I1 =
∂
∂��� F

z
dx dy dz

V
3

=
∂
∂

�
	


�
���� F

z
dz dx dy

F

F

R
3

2

1

where R is projection of S on xy-plane.

I1 = F x y z dx dy
F x y

F x y

R 3
2

1, ,
,

,� � � �
� ���

= F x y F F x y F dx dy
R 3 1 3 2, , , ,� � � �−��

F x y F dx dy F x y F dx dy
RR 3 1 3 2, , , ,� � � �− ����

For the upper portion S1 of S,

dx dy = k n dS⋅ ⋅�1 1

where �n1  is unit normal vector to surface dS1 in outward direction.

For the lower portion S2 of S.

dx dy = – k n dS⋅ ⋅�1 2

where �n2  is unit normal vector to surface dS2 in outward direction.

Thus, we have

F x y F dx dy
R 3 1, ,� ��� = F k n dS

S 3 1 1
1

⋅�� �

and F x y F dx dy
R 3 2, ,� ��� = – F k n dS

S 3 2 2
2

⋅�� �

O

X

Y

Z

n1

r1

K dS1

S S1

S2

dS2

r2

n2

–K

R
�x �y

����� ����
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So   F x y F dx dy F x y F dx dy
RR 3 1 3 2, , , ,� � � �− ����

= F k n dS F k n dS
SS 3 1 1 3 2 2

21

⋅ + ⋅���� � �� � � �

= F k n dS n dS3 1 1 2 2. � �+�� � �

= F k n dS
S 3 ⋅�� �� � � � � �nS n S n S= +1 1 2 2

Hence, I1 =
∂
∂��� F
z

dx dy dz
V

3

= F k n dS
S 3

1

⋅�� �� � ...(iii)

Similarly, projecting S on other coordinate planes, we have

∂
∂��� F
y

dx dy dz
V

3
= F j n dS

S 2 ⋅�� �� � ...(iv)

∂
∂��� F
x

dx dy dz
V

1 = F i n dS
S 1 ⋅�� �� � ...(v)

Adding eqns. (iii), (iv), (v)

∂
∂

+
∂
∂

+
∂
∂

�
�
�

�
�
���� F

x
F
y

F
z

dx dy dz
V

1 2 3 = F i n F j n F k n dS
S 1 2 3. � . � . �� � � � � �� �+ +��

⇒  i
x

j
y

k
zV

∂
∂

+ ∂
∂

+ ∂
∂

�
�
�

�
�
�

⋅��� {F1i + F2 j + F3k} dx dy dz

= F i F j F k n dS
S 1 2 3+ + ⋅�� � � �

⇒ div
�

F dV
V��� =

�

F n dS
S

⋅�� �

=
�
F n dS

S
⋅�� �

or
�

F n ds
S

⋅�� � = div
�

F dV
V���   .

5.23   CARTESIAN REPRESENTATION OF GAUSS’S THEOREM

Let
�

F = F1 i + F2 j + F3 k
where F1, F2, F3 are functions of x, y, z.
and dS = dS (cos α i + cos β j + cos γ k)
where α, β, γ are direction angles of dS. Hence, dS cos α, dS cos β, dS cos γ are the orthogonal
projections of the elementary area dS on yz-plane, zx-plane and xy-plane respectively. As the
mode of sub-division of surface is arbitrary, we choose a sub-division formed by planes parallel
to yz-plane, zx-plane and xy-plane. Clearly, its projection on coordinate planes will be rectangle
with sides dy and dz on yz-plane, dz and dx on zx-plane, dx and dy on xy-plane.
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Hence, projected surface elements are dy dz on yz-plane, dz dx on zx-plane and dx dy on
xy-plane.

∴
�
F n dS

S
⋅� � = F dy dz F dz dx F dx dy

S 1 2 3+ +�� ...(i)

By Gauss divergence theorem, we have
�
F n dS

S
⋅�� � = div

�
F dV

V
.��� ...(ii)

In cartesian coordinates,
dV = dx dy dz.

Also, div 
�

F = ∇ ·
�

F

=
∂
∂

+
∂
∂

+
∂
∂

F
x

F
y

F
z

1 2 3

Hence, div
�
F dV

V� =
∂
∂

+
∂
∂

+
∂
∂

�
�
�

�
�
���� F

x
F
y

F
z

dx dy dz
V

1 2 3 ...(iii)

Hence cartesian form of Gauss theorem is,

F dy dz F dz dx F dx dy
S 1 2 3+ +�� � �

=
∂
∂

+
∂
∂

+
∂
∂

�
�
�

�
�
���� F

x
F
y

F
z

dx dy dz
V

1 2 3 .

�������� �� Find F n dS
S

⋅�� � , where F  = 2 3 22x z i xz y j y z k+ + + +� � � � � �� – � �  and S is the
surface of the sphere having centre at (3, – 1, 2) and radius 3. (U.P.T.U., 2000, 2005)

�����Let V be the volume enclosed by the surface S. Then by Gauss divergence theorem, we
have

F n dS
S

⋅�� � = div F dV
V���

=
∂
∂

+ +
∂
∂

− − +
∂
∂

+
�
	



�
�
��� x

x z
y

xz y
z

y z dV
V

2 3 22� � � � � �

= 2 1 2 3 3− + = =������ � � dV dV V
VV

But V is the volume of a sphere of radius 3.

∴ V =
4
3

3 3π� �  = 36π.

Hence F n dS
S

⋅�� � = 3 × 36π = 108π.

�������� �� Evaluate y z i z x j z y k n dS
S

2 2 2 2 2 2� � � �+ + ⋅�� � � , where S is the part of the sphere

x2 + y2 + z2 = 1 above the xy-plane and bounded by this plane.
����� Let V be the volume enclosed by the surface S. Then by divergence theorem, we have

y z i z x j z y k n dS
S

2 2 2 2 2 2� � � �+ + ⋅�� � � = div y z i z x j z y k dV
V

2 2 2 2 2 2� � �+ +��� � �

=
∂
∂

+
∂
∂

+
∂
∂

�
	



�
�
��� x

y z
y

z x
z

z y dV
V

2 2 2 2 2 2� � � � � �
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= 2 22 2zy dV zy dV
V V��� ���=

Changing to spherical polar coordinates by putting

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ
dV = r2 sin θ dr dθ dφ

To cover V, the limits of r will be 0 to 1, those of θ will be 0 to 
π
2

 and those of φ will be

0 to 2π.

∴ 2 2zy dV
V��� = 2 2 2 2 2

0

1

0

2

0

2
r r r dr d dcos sin sin sinθ θ φ θ θ φ

ππ � �� ����
= 2 5 3 2

0

1

0

2

0

2
r dr d dsin cos sinθ θ φ θ φ

ππ ���
= 2

6
3 2

6

0

1

0

2

0

2
sin cos sinθ θ φ θ φ

ππ r
d d

�
	



�
�
��

= 1
12

1
12 12

2 2

0

2

0

2
sin sin .φ φ φ φ πππ

⋅ = =�� d d

�������� �� Evaluate F n dS
S

⋅�� �  over the entire surface of the region above the xy-plane

bounded by the cone z2 = x2 + y2 and the plane z = 4, if F  = 4 32xzi xyz j zk� � �+ + .

����� If V is the volume enclosed by S, then V is bounded by the surfaces z = 0, z = 4, z2 =
x2 + y2.

By divergence theorem, we have F n dS
S

⋅�� �  = div F dV
V���

=
∂
∂

+
∂
∂

+
∂
∂

�
	



�
�
��� x

xz
y

xyz
z

z dV
V

4 32� � � � � � = 4 32z xz dV
V

+ +��� � �

= 4 32
0

4
2 2

2 2

z xz dx dy dz
z y

z y

z

z
+ +

− −

−

− ��� � �

= 2 4 3 0
2 2

2 22 2

00

4
z dx dy dz x dx

z y

z yz y

z

z
+ =

− −

−− ���� � � ,
–

since

= 2 4 3 4 4 3
0

4 2 2

0

4

0

2 2� � �� + − = + −
−

z z y dy dz z z y dy dz
z

z

z � � � �

= 4 4 3
2 2

2 2 2
1

0
0

4
z

y z y z y
z

dz

z

+
−

+
�

	





�

�



−� � � sin

= 4 4 3
2

1
2

1

0

4
z

z
dz+

�
	



�
�
−� � � sin  = 4

4
4 33 2

0

4
× +�π

z z dz� �

= π π πz z4 3

0

4
256 64 320+ = + =� � .
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�������� �� By transforming to a triple integral evaluate

I = x dy dz x y dz dx x z dx dy
S

3 2 2+ +�� � � (U.P.T.U., 2006)

where S is the closed surface bounded by the planes z = 0, z = b and the cylinder x2 + y2 = a2.
����� By divergence theorem, the required surface integral I is equal to the volume integral

∂
∂

+
∂
∂

+
∂
∂

�
	



�
�
��� x

x
y

x y
z

x z dV
V

3 2 2� � � � � �

= 3 2 2 2

0 2 2

2 2

x x x dx dy dz
x a y

a y

y a

a

z

b
+ +

= −

−

== ��� � �
� �

� �
––

= 4 5 20
3

2
3

0
00000

2 2
2 2

× =
�
	



�
�


=

−

===

−

== ����� x dx dy dz
x

dy dz
x

a y

y

a

z

b

x

a y

y

a

z

b
� �

� �

=
20
3

2 2
3
2

00
a y dy dz

y

a

z

b
−

== �� � �  = 
20
3

20
3

2 2
3
2

0
0

0

2 2
3
2a y z dy b a y dy

y

a

z

b

y

a
−

�
	





�
�



= −
=

=
=� �� � � � .

Put y = a sin t so that dy = a cos t dt.

∴ I =
20
3

20
3

3 3 4

0
2b a t a t dt a bcos cos� � =�
π

cos
.

4 4 4

0
2 20

3
3

4 2 2
5
4

t dt a b a b= =� π π
π

.

���������� Verify divergence theorem for 
�

F  = (x2 – yz) i + (y2 – zx) j + (z2 – xy) k taken over
the rectangular parallelopiped 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c. [U.P.T.U. (C.O.), 2006]

����� We have div 
�

F  = ∇ · 
�

F  = 
∂
∂

− + ∂
∂

− + ∂
∂

− = + +
x

x yz
y

y zx
z

z xy x y z2 2 2 2 2 2� � � � � � .

∴  Volume integral = ∇ ⋅ = + +������ �
F dV x y z dV

VV
2� �

= 2 2
2

2

0
00000

x y z dx dy dz
x

yx zx dy dz
x

a

y

b

z

c

x

a

y

b

z

c
+ + = + +

�
	



�
�


=
===== ����� � �

= 2
2

2
2 2

2 2 2

0
000

a
ay az dy dz

a
y a

y
azy dz

y

b

z

c

y

b

z

c
+ +

�
	



�
�
 = + +

�
	




�
�
 =

=== ���

= 2
2 2

2 2

0

a b ab
abz dz

z

c
+ +

�
	



�
�
=�

= 2
2 2 2

2 2 2

0

a b
z

ab
z ab

z
c

+ +
�
	



�
�
  = [a2bc + ab2c + abc2] = abc (a + b + c).

�������� �� ������ Now we shall calculate
�

F n dS
S

⋅�� �

Over the six faces of the rectangular parallelopiped.
Over the face DEFG,

�n = i, x = a.
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Therefore, � �F n dS
DEFG

⋅��
= a yz i y a j z ay k i dy dz

y

b

z

c 2 2 2

00
2− + − + − ⋅

== �� � � � � � �

= a yz dy dz a y z
y

dz
y

b

z

c

y

b

z

c 2 2
2

0
000 2

− = −
�
	




�
�
 =

=== ��� � �

= a b
zb

dz a bz
z

b a bc
c b

c

z

c 2
2

2
2

2

0

2
2 2

0 2 4 4
−

�
	




�
�


= −
�
	




�
�


=
=� – .

Over the face ABCO, �n  = – i, x = 0. Therefore

= � �F n dS
ABCO

⋅��  = 0 2 2− + + ⋅ −�� yz i y j z k i dy dz� � � �

= yz dy dz
y z

dz
b

zdz
b c

y

b

z

c

y

b

z

c

z

c
=

�
	




�
�


= =
==

=
==�� ��00

2

0

2 2 2

00 2 2 4

Over the face ABEF, �n  = j, y = b. Therefore
�
F n dS

ABEF
⋅�� �  = x bz i b zx j z bx k j dx dz

x

a

z

c 2 2 2

00
− + − + − ⋅

== �� � � � � � �

= b zx dx dz b ca
a c

x

a

z

c 2

00

2
2 2

4
− = −

== �� � � .

Over the face OGDC, �n  = – j, y = 0. Therefore

�

F n dS
OGDC

⋅�� �  = zx dx dz
c a

x

a

z

c
=

== ��
2 2

00 4
.

Over the face BCDE, �n  = k, z = c. Therefore

�

F n dS
BCDE

⋅�� � = c xy dx dy c ab
a b

x

a

y

b 2 2
2 2

00 4
− = −

== �� � � ·

Over the face AFGO, �n  = – k, z = 0. Therefore

�

F n dS
AFGO

⋅�� �  = xy dx dy
a b

x

a

y

b
=

== ��
2 2

00 4
·

Adding the six surface integrals, we get

�
F n dS

S
⋅�� � = a bc

c b c b
b ca

a c a c
c ab

a b a b2
2 2 2 2

2
2 2 2 2

2
2 2 2 2

4 4 4 4 4 4
− +

�
��

�
��

+ − +
�
��

�
��

+ − +
�
��

�
��

=  abc (a + b + c).
Hence, the theorem is verified.

�������� �� If 
�

F  = 4xzi – y2j + yzk and S is the surface bounded by x = 0, y = 0, z = 0,

x = 1, y = 1, z = 1, evaluate 
�
F n dS

S
⋅�� � .

Z

C
B

D E

O

X

G F

A
Y

����� ���	
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����� By Gauss divergence theorem,
�
F n dS

S
⋅�� � = ∇ ⋅��� �

F dV
V

,  where V is the volume enclosed by the surface S

=
∂
∂

+ ∂
∂

− + ∂
∂

�
	



�
�
 = − +��� ���x

xz
y

y
z

yz dV z y y dV
V V

4 4 22� � � � � � � �

= 4 4
0

1

0

1

0

1
z y dx dy dz z y dx dy dz

V zyx
− = −��� ��� ===

� � � �

= 2 22
0

1

0

1

0

1

0

1

0

1
z yz dx dy y dx dy

z x yyx
− = −

= = === � ��� � �

= 2
2

2
1
2

3
2

3
2

2

0

1

0

1

0

1

0

1
y

y
dx dx dx

y
x

−
�
	




�
�


= −�
	


�
�

= =
=

= � �� .

�������� 	� Evaluate y z i z x j z y k n dS
S

2 2 2 2 2 2+ + ⋅� � � � ,  where S is the part of the sphere

x2 + y2 + z2 = 1, above the xy-plane and bounded by this plane.

����� We have
�

F = y2z2 i + z2x2 j + z2y2 k

div 
�

F =
∂
∂

+ ∂
∂

+ ∂
∂x

y z
y

z x
z

z y2 2 2 2 2 2� � � � � �

= 2zy2

∴ Given integral = 2 2zy dV
V��� [By Gauss’s divergence theorem]

where V is the volume enclosed by the surface S, i.e., it is the hemisphere x2 + y2 + z2 = 1, above
the xy-plane.

Z

z =   1 – x  – y
2 2

dx dy dz

OZ = 0
dx dy X

Y

Y

y =   1 – x
2

dx dy

OX� X

y = – 1 – x
2

Y�

(i) (ii)
����� ���


From the above Figure 5.28 (i) and (ii), it is evident that

limits of z are from 0 to 1 2 2− −x y

limits of y are from – 1 2− x  to 1 2− x
and limits of x are from –1 to + 1.
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∴  Given integral

= 2 2

0

1

1

11 2 2

2

2

zy dx dy dz
z

x y

y x

x

x =

− −

= −

−

= ��� ––1

= 2
2

2

0

1
2

1

11
2 2

2

2 z
y dx dy

x y

y x

x

x

�
��

�
��

− −

= −

−

= �� ––1

= 1 2 2 2
1

11
2

2

− −
= −

−

= �� x y y dx dy
y x

x

x
� �

––1

= 1
3 5

2
3 5

1

1
1

2

2

− −
�
	




�
�
 −

−

=� x
y y

dx
x

x

x
� �

–
–1

= 2
1
3

1
1
5

12
5
2 2

5
2

1

1
− − −

�
� 
� 

�
� 
� =−� x x dx

x � � � �

= 4 1
3

1

5

2 5 2 2 5 2

0

1
− −

−�
� 
� 

�
� 
� 

� x x dx� � � �/
/

=
8
15

1 2
5
2

0

1
−� x dx� �

=
8
15

1 2
5
2

0
2 −� sin cosθ θ θ
π

� � d [Putting x = sin θ]

=
8
15

2

0
2 cos θ θ
π

d�
=

8
15

5
32 12

⋅ =π π
·

��������
� Evaluate 
�

F n dS
S

⋅� �  where 
�

F  = (x + y2) i – 2x j + 2yz k where S is surface bounded

by coordinate planes and plane 2x + y + 2z = 6.
����� We know from Gauss divergence theorem,

�
F n dS

S
⋅�� � = div

�

F dV
V���

�

F = (x + y2) i – 2x j + 2yz k

div 
�

F = i
x

j
y

k
z

x y i x j yz k
∂
∂

+
∂
∂

+
∂
∂

�
��

�
�� ⋅ + − +2 2 2� �! "

=
∂
∂

+ + ∂
∂

+ ∂
∂x

x y
y

x
z

yz2 2� � � � � �–2

= 1 + 2y

Let I =
� �

F n dS F dV
S V

⋅ =��� ���� div

= 1 2+��� y dV
V
� �

= 1 2+��� y dx dy dz� �
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Limit of z is 0 to 
6 2

2
− −x y

Limit of y is 0 to 6 – 2x
Limit of x is 0 to 3

Hence, I = 1 2+��� y dx dy dz� �

= 1 2 0
6 2 2+ − −�� y z dx dyx y� � # $� �/

=
1
2

1 2 6 2+ − −�� y x y dx dy� � � �

=
1
2

6 2 11 4 2 2− + − −�� x y xy y dx dy% &

=
1
2

6 2
11
2

2
2
3

2 2 3

0

6 2

y xy y xy y dx
x

− + − −���
���

−

�
=

1
2

6 6 2 2 6 2
11
2

6 2 2 6 2
2
3

6 22 2 3− − − + − − − − −�
	


�
�� x x x x x x x dx� � � � � � � � � �

=
1
2

8
3

26 84 903 2− + − +���
���� x x x dx

=
1
2

2
3

26
3

42 904 3 2

0

3

− + − +�
	


�
�

x x x x

=
1
2

54 234 378 270− + − +

= 1
2

72 36= .

�������� �� Verify Gauss divergence theorem for

x yz dy dz x y dz dx z dx dy
S

3 22− − +�� � �! "
over the surface of cube bounded by coordinate planes and the planes x = y = z = a

����� Let
�

F = F1 i + F2 j + F3 k.
From Gauss divergence theorem, we know

�

F n dS
S

⋅�� � = F dy dz F dz dx F dx dy F dV
S V1 2 3+ + =�� ��� div

�

...(i)

Here, F1 = x3 – yz, F2 = – 2x2y, F3 = z

So,
�

F = (x3 – yz) i – 2x2y j + z k

div 
�

F = i
x

j
y

k
z

x yz i x y j z k
∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��

⋅ − − +3 22� �! "

=
∂
∂

− + ∂
∂

+ ∂
∂x

x yz
y

x y
z

z3 22� � � � � �–

= 3x2 − 2x2 + 1 = x2 + 1

Hence,
�
F n dS

S
⋅�� � = x dV

V

2 1+��� � �
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= x dx dy dz
aaa 2
000

1+��� � �

= x z dx dyaaa 2
000

1+�� � � # $

= a x dx dy
aa 2

00
1+�� � �

= a x y dx
aa 2
00

1+� � � � �

= a x dx
a2 2

0
1+� � �

= a
a

x
a

2
3

0
3

+
�
�
�

�
�
�

= a
a

a
a

a2
3 5

3

3 3
+

�
� 
� 

�
� 
� 

= + ...(ii)

!������� ����"#�$���� ��� �������Outward drawn unit vector normal to face OEFG is – i and
dS is dy dz.

If I1 is integral along this face,

I1 =
� �

F n dS F i dy dz
S S

⋅ = ⋅ −� ��� � �

= x yz dy dz
S

3 −�� � � [As x = 0 for this face]

= yz dy dz
aa

00 ��
= y

z
dy

a
a 2

0
0 2

�
� 
� 

�
� 
� �

= a
y dy

a y aa
a2 2 2

0
0

4

2 2 2 4
=

�
	




�
�


=�
For face ABCD, its equation is x = a and �n dS = �i dy dz,

If I2 is integral along this face

I2 =
�

F i dy dz
S

⋅��
= x yz dy dz

S
3 −�� � �

= a yz dy dz
aa 3

00
−�� � �

= a z y
z
z

dy
a

a 3
2

0
0

−
�
� 
� 

�
� 
� �

= a a y
a

dy
a 3

2

0 2
−

�
�
�

�
�
��

Z
k

FG

D C
–i

a
–j

j

a O a

B

E
Y

A

X
i –k

����� ����
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= a y
a y

a
4

2 2

0
2 2

−
�
	




�
�


= a
a5

4

4
−

If I3 is integral along face OGDA whose equation is
y = 0

�n dS = – j dxdz

Hence, I3 =
�

F j dx dz
S

⋅ −�� � �

= – – 2 2x y dx dz
S��

= 0, as y = 0.
If I4 is integral along face BEFC whose equation is

y = a

�n dS = j dx dz

Then I4 = – 2 2x y dx dz
S��

= – 2 2
00

a x dx dz
aa��

= – 2 2
00

a x z dxaa # $�
= – 2 2 2

0
a x dx

a�
= – –2

3
2
3

2
3

0

5a
x

a
a�

	



�
�
 = .

If I5 is integral along face OABE whose equation is
z = 0

�n dS = – k dx dy

I5 =
�

F k dx dy
S

⋅�� –� �

= – .z dx dy as z
S

= =�� 0 0

If I6 is integral along face CFGD whose equation is
z = a

�n dS = k dx dy

I6 = z dx dy a dx dy
aa

S
= ���� 00

= a y dx a dx a
a aa

0
2 3

00
= =��

Total surface I = I1 + I2 + I3 + I4 + I5 + I6
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=
a

a
a

a a
4

5
4

5 3

4 4
0

2
3

0+ + + +– –

= a
a

5
3

3
+ ...(iii)

which is equal to volume integral. Hence Gauss theorem is verified.

�������� ��� Evaluate by Gauss divergence theorem

xz dy dz x y z dz dx xy y z dx dy
S

2 2 3 22+ − + +�� � � � �! "

where S is surface bounded by z = 0 and z = a x y2 2 2− − .

����� Let
�

F = F1 i + F2 j + F3 k.
Cartesian form of Gauss divergence theorem is

�

F n dS
S

⋅�� � = F dy dz F dz dx F dx dy F dV
S V1 2 3+ + =� ���� div

�

Here, F1 = xz2 ; F2 = x2y – z3, F3 = 2xy + y2z.

Hence,
�

F = xz2 i + (x2y – z3) j + (2xy – y2z) k

div 
�

F =
∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
��x

i
y

j
z

k  {xz2 i + (x2y – z3) j + (2xy + y2z) k}

=
∂
∂

+ ∂
∂

+ ∂
∂

+
x

xz
y

x y z
z

xy y z2 2 3 22� � � � � �–

= z2 + x2 + y2.

Let I =
� �

F n ds F dV
S V

⋅ =�� ���� div

= x y z dx dy dz2 2 2+ +��� � �

Limit of z is 0 to a x y2 2 2− −

Limit of y is   − −a x2 2  to a x2 2−
Limit of x is  – a to a

I = x y z dx dy dz2 2 2+ +��� � �

= x y z
z

dx dy
a x y

2 2
3

0
3

2 2 2

+ +
�
	




�
�
��

− −

� �

= x y a x y
a x y

dx dy2 2 2 2 2
2 2 2

3
2

3
+ − − +

− −
�

	










�

�






�� � �
� �

= a x y x y
a x y

dx dy2 2 2 2 2
2 2 2

3
− − + +

− −�
� 
� 

�
� 
� ��
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=
1
3

3 32 2 2 2 2 2 2 2a x y x y a x y dx dy− − + + − −�� % &

=
1
3

2 22 2 2 2 2 2a x y x y a dx dy− − + +�� % &

=
1
3

2 22 2 2 2 2 2 2 2 2
2 2

2 2

x a a x y y a x y dx dy
a x

a x

a

a
+ − − + − −

− −

−

− �� � �! "

=
2
3

2 22 2 2 2 2 2 2 2 2
0

2 2

x a a x y y a x y dx dy
a x

a

a
+ − − + − −���

���
−

− �� � �

Let y = a x2 2− sinθ

dy = a x d2 2− cosθ θ

I =
2
3

2 22 2 2 2 2 2 2 2 2 2

0
2 x a a x a x dx d

a

a
+ − + −�

	

�
���− � � � � � �cos sin cosθ θ θ θ

π

=
2
3 2

3
2

1
2

2 2
2

3
2

3
2

2 3
2 2 2 2 2 2 2

x a a x a x dx
a

a

+ − + −

�

	







�

�




−� � � � � � �

=
2
3

2
4

2
16

2 2 2 2 2 2 2
x a a x a x dx

a

a
+ − + −�

	

�
�−� � � � � � �π π

=
4
3 8

2 2 2 2 2 2 2 2 2

0
× + − + −�

	

�
��π

x a a x a x dx
a

� � � � � �

= π
3 2

2 2 2 22 2 4 4 2 2 4 4 2 2

0×
− + − + + −� x a x a a x a x x dx

a
� �

=
π
6

3 34 4

0
a x dx

a
−� � �

=
π
2

4 4

0
a x dx

a
−� � �

= π
2 5

4
5

0

a x
x

a

−
�
	



�
�


=
π π
2

4
5

2
5

5 5× =a a .

�������� ���� Using the divergence theorem, evaluate the surface integral

yz dy dz zx dz dx xy dy dx
S

+ +�� � � , where S : x2 + y2 + z2 = 4. (U.P.T.U., 2008)

����� Let F = F1i + F2j + F3k

From Gauss divergence theorem, we have

F n dS
S

. ��� = F dy dz F dz dx F dx dy div F dV
S V

1 2 3+ + =� ���� ...(i)
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Comparing L.H.S. of (i) with given integral, we get
F1 = yz, F2 = zx, F3 = xy

So F = F1i + F2 j + F3k ⇒ F  = (yz)i + (zx)j + (xy)k

div F = i
x

j
y

k
z

∂
∂

+
∂
∂

+
∂
∂

�
��

�
��

.{(yz)i + (zx)j + (xy)k}

=
∂
∂

+ ∂
∂

+ ∂
∂

=
x

yz
y

zx
z

xy� � � � � � 0

Thus

yz dy dz zx dz dx xy dy dx dV
VS

+ + = =����� � � 0 0. .

EXERCISE 5.7

�� Use divergence theorem to evaluate F dS
S

⋅��  where 
�

F  = x3i + y3j + z3k and S is the surface

of the sphere x2 + y2 + z2 = a2. %�&.  
12

5
πa5�

	



�
�


�� Use divergence theorem to show that ∇ + + =�� x y z dS V
S

2 2 2 6� �  Where S is any closed
surface enclosing volume V.

�� Apply divergence theorem to evaluate Fn dS
S�� � , where F  = 4 3 2 2x i x yj x zk� � �− +  and S is

the surface of the cylinder x2 + y2 = a2 bounded by the planes z = 0 and z = b.

%�&.  3 4ba π

�� Use the divergence theorem to evaluate x dy dz y dz dx z dx dy
S

+ +�� � � , where S is the

portion of the plane x + 2y + 3z = 6 which lies in the first octant. (U.P.T.U., 2003)

%�&.  18

�� The vector field F  = x2i + zj + yzk is defined over the volume of the cuboid given by 0

≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c enclosing the surface S. Evaluate the surface integral F dS
S

⋅�� .

(U.P.T.U., 2001) %�&.  +
2

abc a
b�

��
�
��

�
	


�
�

�� Evaluate yzi zxj xyk dS
S

� � �+ +�� � �  where S is the surface of the sphere x2 + y2 + z2 = a2 in the

first octant. (U.P.T.U., 2004) %�&.  0

	� Evaluate e dy dz ye dz dx z dx dyx x

S
– +�� 3� � , where S is the surface of the cylinder x2 + y2

= c2, 0 ≤ z ≤ h. %�&.  3  2π hc
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� Evaluate F n ds
S

⋅�� � , where F  = 2xyi + yz2j + xzk, and S is the surface of the region

bounded by x = 0, y = 0, z = 0, y = 3 and x + 2z = 6. %�&.  
351

2
�
	


�
�

�� F  = 4xi – 2y2j + z2k taken over the region bounded by x2 + y2 = 4, z = 0 and z = 3.
%�&.  ommon value 8C π

��� F  = x yz i x yj zk3 22− +� � –  taken over the entire surface of the cube 0 ≤ x ≤ a, 0 ≤ y ≤ a,

0 ≤ z ≤ a. %�&.  ommon value 
3

5

C
a

a+
�
	



�
�
3

��� F  = 2xyi + yz2j + xzk and S is the total surface of the rectangular parallelopiped bounded

by the coordinate planes and x = 1, y = 2, z = 3. %�& �. Common value 33

��� F  = x i y j z k2 2 2� � �+ + taken over the surface of the ellipsoid

x
a

y

b
z
c

2

2

2

2

2

2+ + = 1. %�&.  ommon value C 0

��� F  = xi + yj taken over the upper half on the unit sphere

x2 + y2 + z2 = 1. %�&.  ommon value 
3

C
4π�

	

�
�

��� Prove that 
dV

r

r n

r
ds

SV
2 2= ����� . �

.

��� Evaluate r n ds
S

. ��� , where S : surface of cube bounded by the planes x = –1, y = –1,

z = –1, x = 1, y = 1, z = 1. [%�&� 24]

OBJECTIVE TYPE QUESTIONS

%�� ��'�  (�� ������ � ��&)��� ���  (�� �(����&� ��*��� "���)�

�� If r  = xi + yj + zk is position vector, then value of ∇ (log r) is

(i)
r
r

(ii)
r

r 2

(iii) − r

r3 (iv) None of these [U.P.T.U., 2008]

�� The unit vector normal to the surface x2y + 2xz = 4 at  (2, –2, 3) is

(i)
1
3

 (i – 2j + 2k) (ii)
1
3

 (i – 2j – 2k)

(iii)
1
3

 (i + 2j – 2k) (iv) None of these
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�� If r  is a position vector then the value of ∇ rn is

(i) nrn–2 r (ii) nrn–2

(iii) nr2 (iv) nrn–3

�� If f(x, y, z) = 3x2y – y3z2, then |∇ f| at (1, –2, –1) is

(i) 481 (ii) 381

(iii) 581 (iv) 481

�� If a  is a constant vector, then grad r a.� �  is equal to

(i) r (ii) − a

(iii) 0 (iv) a

�� The vector rn r  is solenoidal if n equals
(i) 3 (ii) – 3

(iii) 2 (iv) 0

	� If r  is a position vector then div r  is equal to
(i) 3 (ii) 0

(iii) 5 (iv) –1


� If r  is a position vector then curl r  is equal to
(i) – 5 (ii) 0

(iii) 3 (iv) –1

�� If F  = ∇φ , ∇ 2φ = – 4πρ where P is a constant, then the value of F n dS
S

. ���  is:

(i) 4π (ii) – 4πρ
(iii) – 4πρV (iv) V

��� If �n  is the unit outward drawn normal to any closed surface S, the value of div F dV
V
���

is
(i) V (ii) S

(iii) 0 (iv) 2S

��� If S is any closed surface enclosing a volume V and F  = xi + 2yj + 3zk then the value

of the integral F n dS
S

. ���  is

(i) 3V (ii) 6V

(iii) 2V (iv) 6S

��� The integral r n dS
S

5 ���  is equal

(i) 0 (ii) 5 3r r dV
V

.���
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(iii) 5 3r r dV
V

−��� . (iv) None of these

��� A vector F  is always normal to a given closed surface S in closing V the value of the

integral curl F dV
V
���  is :

(i) 0 (ii) 0
(iii) V (iv) S

+�� ����� ���  (�� "���'&�

�� If f  = (bxy – z3)i + (b – 2)x2 j + (1 – b)xz2 k has its curl identically equal to zero then

b = ..........

�� ∇ �
��

�
��

2 1
r

 = ..........

�� div grad f = ..........
�� curl grad f = ..........
�� grad r = ..........

�� grad 
1
r

 = ..........

	� If A  = 3x yz2 i + 2x y3 j – x2 yz k and f = 3x2 – yz then A f. ∇  = ..........


� If r  = r, then ∇ f(r) × r  = ..........

�� If r  = r, then 
∇

∇
f r

r
� �

 = ..........

��� The directional derivative of φ = xy + yz + zx in the direction of the vector i + 2j + k
at (1, 2, 0) is = ..........

��� The value of xdy ydx−� � �  around the circle x2 + y2 = 1 is ..........

��� If ∇ 2φ = 0, ∇ 2ψ = 0, then φ ψ
∂ψ
∂

−
∂φ
∂

�
��

�
���� n n

dS
S

 = ..........

��� F n dS. ���  is called the .......... dF  over S.

��� If S is a closed surface, then r n dS
S

. ���  = ..........

��� ∇ = ����� . F dV A dS
SV

, then A is equal to ..........

,�� -�$��� �� .���� ��� ���&�� ����  (�� �����)���� & � ���� &�

�� (i) If v  is a solenoidal vector then div v  = 0.
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(ii) div v  represents the rate of loss of fluid per unit volume.

(iii) If f  is irrotational then curl f  ≠ 0.

(iv) The gradient of scalar field f(x, y, z) at any point P represents vector normal to the
surface f = const.

�� (i) The gradient of a scalar is a scalar.
(ii) Curl of a vector is a scalar.

(iii) Divergence of a vector is a scalar.
(iv) ∇ f is a vector along the tangent to the surface f = 0.

�� (i) The directional derivative of f along �a  is f. �a .

(ii) The divergence of a constant vector is zero vector.
(iii) The family of surfaces f(x, y, z) = c are called level surfaces.

(iv) If a  and b  are irrotational then div a b×� �  = 0.

�� (i) Any integral which is evaluated along a curve is called surface integral.

(ii) Green’s theorem in a plane is a special case of stoke theorem.

(iii) If the surface S has a unique normal at each of its points and the direction of this
normal depends continuously on the points of S, then the surface is called smooth
surface.

(iv) The integral F dr
S

.�  is called circulation.

�� (i) The formula curl F F drn ds
CS

� � . � .= ���  is governed by Stoke’s theorem.

(ii) If the initial and terminal points of a curve coincide, the curve is called closed
curve.

(iii) If �n  is the unit outward drawn normal to any closed surface S, then ∇ ≠��� . �n dv S
V

.

(iv) The integral 
1
2

xdy ydx
C

−� � �  represents the area.

/�� 0� �(�  (�� �����)����

�� (i) ∇ ∇ ×. a� � (a) dφ

(ii) curl (φ grad φ) (b) 0

(iii) div a r×� � (c) 0

(iv) ∇φ  . d r (d) r  curl a

�� (i) ∇ 2 r2 (a) a . (∇ f)
(ii) df/ds (b) grad f ± grad g
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(iii) a f. ∇� � (c) ∇
�
��

�
��

f
a
a

.

(iv) ∇ (f ± g) (d) 6

�� (i) grad of φ along �n (a) a (acceleration)

(ii)
d r
dt

2

2 (b) 
∂φ
∂n

n�

(iii) curl v (c) curl f  = 0

(iv) irrotational (d) 2ω

ANSWERS TO OBJECTIVE TYPE QUESTIONS

%�� ��'�  (�� ������ � ��&)���

�� (ii) �� (ii) �� (i) �� (iv)
�� (iv) �� (ii) 	� (i) 
� (ii)
�� (iii) ��� (ii) ��� (ii) ��� (ii)

��� (i)

+�� ����� ���  (�� "���'&�

�� 4 �� 0 �� ∇ 2 f �� 0

��
r
r

��
r

r3 	� –15 
� 0

�� f ′(r) ���
10
3

��� 2π ��� 0

��� flux ��� 3V ��� F n. �

,�� .���� ��� ���&��

�� (i) T (ii) T (iii) F (iv) F

�� (i) F (ii) T (iii) T (iv) F

�� (i) F (ii) F (iii) T (iv) T

�� (i) F (ii) F (iii) T (iv) T

�� (i) T (ii) T (iii) F (iv) T

,�� 0� �(�  (�� �����)����

�� (i) � (b) (ii) � (c) (iii) � (d) (iv) � (a)

�� (i) � (d) (ii) � (c) (iii) � (a) (iv) � (b)

�� (i) � (b) (ii) � (a) (iii) � (d) (iv) � (c)

���



�������

��	
�� ��� ���� ��	�������� �������������������� �	� ���� ������	� ������� 

��!"�� # � !$���	����	%� ����&��

"��'!"��#���#

Time: 3 Hours] [Total Marks: 100

SECTION A
All parts of this question are compulsorycompulsorycompulsorycompulsorycompulsory..... 2 × 10 = 202 × 10 = 202 × 10 = 202 × 10 = 202 × 10 = 20

1.1.1.1.1. (a) For which value of ‘b’ the rank of the martix.

A = 

1 5 4
0 3 2

13 10b

�

�

�
�
�

�

�

�
�
�

 is 2, b = 4 cm →

(b) Determine the constants a and b such that the curl of vector A
—

 = (2xy + 3yz)i^ +
(x2 + axz – 4z2)j^ + (3xy + byz)k

^
 is zero, a = .........., b = .......... .

(c) The nth derivative (yn) of the function y = x2 sin x at x = 0 is .......... .
(d) With usual notations, match the items on right hand side with those on left hand

side for properties of maximum and minimum:
(i) Maximum (p) rt – s2 = 0

(ii) Minimum (q) rt – s2 < 0
(iii) Saddle point (r) rt – s2 > 0, r > 0
(iv) Failure case (s) rt – s2 > 0 and r < 0

(e) Match the items on the right hand side with those on left hand side for the following
special functions : (Full marks is awarded if all matchings are correct).

(i) β(p, q) (p) 1 2� �

(ii)
p q

p q+
(q) 

y
y p q

dy
p−∞

+ +	
1

0 1� � � �
(iii) π (r) β(p, q)

(iv)
π

πsin p
(s) p p1 −

Indicate TIndicate TIndicate TIndicate TIndicate Trrrrrue or False for the following statements:ue or False for the following statements:ue or False for the following statements:ue or False for the following statements:ue or False for the following statements:
(f) (i) If |A| = 0, then at least one eigen value is zero. (True/False)

(ii) A–1 exists iff 0 is an eigen value of A. (True/False)

419
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(iii) If |A| ≠ 0, then A is known as singular matrix. (True/False)
(iv) Two vectors X and Y is said to be orthogonal Y, XT Y = YT X ≠ 0. (True/False)

(g) (i) The curve y2 = 4ax is symmetric about x-axis. (True/False)
(ii) The curve x3 + y3 = 3axy is symmetric about the line y = – x. (True/False)

(iii) The curve x2 + y2 = a2 is symmetric about both the axis x and y. (True/False)
(iv) The curve x3 – y3 = 3axy is symmetric about the line y = x. (True/False)

Pick the correct answer of the choices given below:Pick the correct answer of the choices given below:Pick the correct answer of the choices given below:Pick the correct answer of the choices given below:Pick the correct answer of the choices given below:
(h) If r— = xi

^ + yj
^ + zk

^
 is position vector, then value of ∇ (log r) is :

(i)
r
r
⋅ (ii) 

r

r
⋅
2

(iii) − ⋅r

r 3 (iv) None of these

(i) The Jacobian 
∂
∂

uv
xy

 �
� �

 for the function u = ex sin y, v = (x + log sin y) is

(i) 1 (ii) sin x sin y – xy cos x cos y

(iii) 0 (iv) 
e
x

x

.

(j) The volume of the solid under the surface az = x2 + y2 and whose base R is the circle
x2 + y2 = a2 is given as

(i) π|2a (ii) πa3|2

(iii)
4
3

3πa (iv) none of these.

SECTION B

Attempt any three three three three three parts of the following: 10 × 3 = 3010 × 3 = 3010 × 3 = 3010 × 3 = 3010 × 3 = 30
2.2.2.2.2. (a) If y = (sin–1 x)2 prove that yn(0) = 0 for n odd and yn(0) = 2, 22, 42, 62 ...(n – 2)2,

n ≠ 2 for n is even.
(b) Find the dimension of rectangular box of maximum capacity whose surface area is

given when (a) box is open at the top (b) box is closed.

(c) Find a matrix P which diagonalizes the matrix A = 
4 1
2 3
�
��

�
��

, verify P–1. AP = D where

D is the diagonal matrix.
(d) Find the area and the mass contained m the first quadrant enclosed by the curve

x
a

y
b

�
�
�
�� + ��

�
�� =

α β

1  where α > 0, β > 0 given that density at any point p(xy) is k xy .

(e) Using the divergence theorem, evaluate the surface integral

yz dy dz zx dz dx xy dy dx
S

+ +		 � �  where S : x2 + y2 + z2 = 4.
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SECTION C
Attempt any two two two two two parts from each question. All questions are compulsory.compulsory.compulsory.compulsory.compulsory.

3.3.3.3.3. (a) Trace the curve r2 = a2 cos 2θ

(b) If u = log
x y

x y

2 2+

+

�


��

�

�
��

� �
� �

, prove that

x
u
x

y
u
y

∂
∂

+ ∂
∂

= 1.

(c) If V = f(2x – 3y, 3y – 4z, 4z – 2x), compute the value of 6Vx + 4Vy + 3Vz.

4.4.4.4.4. (a) The temperature ‘T’ at any point (xyz) in space is T(xyz) = K xyz2 where K is con-
stant. Find the highest temperature on the surface of the sphere x2 + y2 + z2 = a2.

(b) Verify the chain rule for Jacobians if x = u, y = u tan v, z = w.
(c) The time ‘T’ of a complete oscillation of a simple pendulum of length ‘L’ is governed

by the equation T = 2π
⋅L
g

, g is constant, find the approximate error in the calculated

value of T corresponding to an error of 2% in the value of L.
5.5.5.5.5. (a) Determine ‘b’ such that the system of homogeneous equation 2x + y + 2z = 0;

x + y + 3z = 0; 4x + 3y + bz = 0 has (i) Trivial solution, (ii) Non-trivial solution. Find
the Non-trivial solution using matrix method.

(b) Verify Cayley-Hamilton theorem for the matrix A = 
1 2
2 1−
�
�

�
��  and hence find A–1.

(c) Find the eigen value and corresponding eigen vectors of the matrix.

I = 
−

−
�
�

�
��

5 2
2 2

.

6.6.6.6.6. (a) Find the directional derivative of ∇ (∇ f) at the point (1, –2, 1) in the direction of the
normal to the surface xy2z = 3x + z2 where f = 2x3 y2z4.

(b) Using Green’s theorem, find the area of the region in the first quadrant bounded by
the curves

y = x, y = 
1

4x
y

x
, = .

(c) Prove that (y2 – z2 + 3yz)i^ + (3xz + 2xy) j^ + (3xy – 2xz + 2z) k^ is both solenoidal and
irrotational.

7.7.7.7.7. (a) Changing the order of integration of

e nx dx dyxy−∞∞ 		 sin
00

Show that 
sin nx

x
dx�

�
�
�� =

∞	 π
20

.

(b) Determine the area bounded by the curves xy = 2, 4y = x2 and y = 4.
(c) For a β function, show that

β(p, q) = β(p + 1, q) + β(p, q + 1)
���
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Time: 3 Hours] [Total Marks: 100

������ Attempt ��� the problems. Internal choices are mentioned in every problem.

*� Attempt any �+��parts of the following: �*�� × × × × × �� ,� �� 

(a) Define the eigen values, eigen vectors and the characteristic equation of a square
matrix. Find the characteristic equation/polynomial, eigen values and eigen vectors of
the matrix:

2 5 7
5 3 1
7 0 2

�

�

�
�
�

�

�

�
�
�

(b) Check the consistency of the following system of linear non-homogeneous equations
and find the solution, if exists:

7x1 + 2x2 + 3x3 = 16
2x1 + 11x2 + 5x3 = 25

x1 + 3x2 + 4x3 = 13
(c) Find the inverse of the matrix

1
2

1
3

1
5

1
3

1
5

1
7

1
5

1
7

1
11

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�� Attempt any �+� parts of the following: �*�� × × × × × �� ,� �� 

(a) State Leibnitz theorem for nth differential coefficient of the product of two functions.

If y ym m
1 1

+
−

 = 2x, prove that
(x2 – 1)yn + 2 + (2n + 1)xyn + 1 + (n2 – m2)yn = 0

(b) Verify that ∂
∂ ∂

2u
x y

 = 
∂

∂ ∂

2u
y x

,  where u(x, y) = loge
x y

xy

2 2+�
�

�
��

(c) If u = x
x
y

y
y
x

sin sin− −�
�
�
��

+ �
�
�
��

1 1 , find the value of  x
u

x
xy

u
x y

y
u

y
2

2

2

2
2

2

22
∂
∂

+
∂

∂ ∂
+

∂
∂

.

-� Attempt any �.� parts of the following: �/� × × × × × 0� ,� �� 

(a) Expand ex cos y about the point 1
4

,
π�

�
�
�� .

422
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(b) Calculate the  Jacobian 
∂
∂

u v w

x y z

, ,
, ,

 �
� �

 of the following:

u = x + 2y + z
v = x + 2y + 3z
w = 2x + 3y + 5z

(c) Discuss the maxima and minima of the function:
f(x, y) = cos x cos y cos(x + y)

(d) Find a point on the ellipse 4x2 + y2 = 4 nearest to the point (1, 2).
(e) Find the extreme value x2 + y2 + z2 subject to the condition

xy + yz + zx = p.

(f) If f(x, y) = x y2
1

10 , compute the value of f when x = 1.99 and y = 3.01.
0� Attempt any �.��of the following: �/� × × × × × 0� ,� �� 

(a) Evaluate the following by changing into polar coordinates: y x y dx dx
a ya 2 2 2

00

2 2

+
−		

(b) Find the area enclosed between the parabola y = 4x – x2 and the line y = x.

(c) Change the order of integration in f x y dx dyx
a

a xa
,� �2

2

0

−		

(d) Find the volume of the solid surrounded by the surface 
x
a

y
b

z
c

�
�
�
�� + ��

�
�� + ��

�
��

2
3

2
3

2
3

 = 1.

(e) Define Gamma and Beta functions. Prove that B(l, m) B(l + m, n) B(l + m + n, p)

= 
l m n p

l m n p+ + +

(f) Show that  x x dx5 3 10

0

1
1 −	 � �  = 

1
396

/� Attempt any �+��of the following: �*�� × × × × × �� ,� �� 

(a) If r  = xi yj zk� � �+ + then show that

(i) ∇ ⋅a r� �  = a , where a  is a constant vector.

(ii) grad r = 
r
r

(iii) grad 
1
r

 = – r
r 3

, where a  is a constant vector.

(iv) grad rn = nr rn−2

when r = r
→

(b) Prove that a r× ∇ ×� �  = ∇ ⋅ − ⋅ ∇a r a r� � � � , where a  is a constant vector and

r  = xi yj zk� � �+ + .

(c) State the Green’s theorem. Verify it by evaluating x xy dx y xy dy
c

3 3 2 2− + −	 � � � �  where

C is the square having the vertices at the points (0, 0), (2, 0), (2, 2) and (0, 2).

���
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Time: 3 Hours] [Total Marks: 100

����� (i) Attempt All questions.
(ii) All questions carry equal marks.

(iii) In case of numerical problems assume data wherever not provided.
(iv) Be precise in your answer.

*� Attempt any �.��parts of the following: �/� × × × × × 0� ,� �� 

(a) If y = x log (1 + x), prove that yn  = − − + +−1 2 12
 � 
 � 
 �n nn x n x/

(b) If x = tan y, prove that 1 2 1 12
1 1+ + − + −+ −x y nx y n n yn n n� � 
 � 
 �  = 0

(c) If u(x, y, z) = log(tan x + tan y + tan z) prove that sin 2x 
∂
∂

+ ∂
∂

+ ∂
∂

u
x

y
u
y

z
u
z

sin sin2 2 = 2.

(d) State and prove Euler’s theorem for partial differentiation of a homogeneous function
f(x, y).

(e) If u(x, y) = sin tan− −+1 1x
y

y
x

, prove that x
u
x

y
u
y

∂
∂

+ ∂
∂  = 0

(f) Trace the curve y2(a – x) = x3, a > 0
�� Attempt any �+��parts of the following: �*�� × × × × × �� ,� �� 

(a) If u3 + v3 = x + y, u2 + v2 = x3 + y3

show that 
∂
∂

u v
x y

,
,

 �
� �   = 

y x
uv u v

2 2

2
−

−
 �
(b) Find Taylor series expansion of function on f(x, y) = e–x2–y2 cos xy about the point x0 = 0,

y0 = 0 up to three terms.
(c) Find the minimum distance from the point (1, 2, 0) to the cone z2 = x2 + y2.

-� Attempt any� �+��parts of the following: �*�� × × × × × �� ,� �� 

(a) Define the gradient, divergence and curl.
 (i) If f(x, y, z) = 3x2y – y3z2, find grad f at the point (1, – 2, – 1).

(ii) If 
�
F x y z, ,� �  = xz i x yzj yz k3 2 42 2� � �− + , find divergence and curl of F x y z, ,� � .

(b) State Gauss divergence theorem. Verify this theorem by evaluating the surface integral
as a triple integral

x dy dz x ydz dx x z dx dy
S

3 2 2+ +		 � �, where S is the closed surface consisting of the

cylinder x2 + y2 = a2, (0 ≤ z ≤ b) and the circular discs z = 0 and z = b (x2 + y2 ≤ a2).

(c) State the Stoke’s theorem. Verify this theorem for F x y z, ,� �  = xzi yj x yk� � �− + 2 , where the

surface S is the surface of the region bounded by x = 0, y = 0, z = 0, 2x + y + 2z = 8
which is not included on xz-plane.
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0� Attempt any �.��parts of the following: �/� × × × × × 0� ,� �� 

(a) Find the rank of matrix

2 3 2 4
3 2 1 2
3 2 3 4
2 4 0 5

−
−

−

�

�

�
�
�
�

�

�

�
�
�
�

(b) Solve the system of equations
2x + 3x2 + x3 = 9
x + 2x2 + 3x3 = 6
3x1 + x2 + 2x3 = 8

by Gaussian elimination method.
(c) Find the value of λ for which the vectors (1, –2, λ), (2, –1, 5) and (3, –5, 7λ) are linearly

dependent.

(d) Find the characteristic equation of the matrix 

1 2 2
0 2 1
1 2 2−

�


�
�

�

�
�
� . Also, find the eigen

values and eigen vectors of this matrix.

(e) Verify the Cayley-Hamilton theorem for the matrix 

1 2 3
2 4 5
3 5 6

�


�
�

�

�
�
� . Also, find its inverse

using this theorem.

(f) Diagonalize the matrix 

1 6 1
1 2 0
0 0 3

�

�

�
�
�

�

�

�
�
�

.

������ Following question no. 5 is for New Syllabus only (TAS–104/MA–101 (New)).

/� Attempt any �+��parts of the following: �*�� × × × × × �� ,� �� 

(a) Evaluate by changing the variable x y dx dy
R

+		 � �2  where R is the region bounded by

the parallelogram x + y = 0, x + y = 3x – 2y = 0 and 3x – 2y = 3.
(b) Find the volume bounded by the elliptical paraboloids z = x2 + 9y2 and z = 18 – x2 – 9y2.
(c) Using Beta and Gamma functions, evaluate

x
x

dx
3

3

1
2

0

1

1 −

�
�

�
��	

������ Following question no. 6 is for Old Syllabus only (MA-101 (old)).
1� Attempt any �+��parts of the following: �*�� × × × × × �� ,� �� 

(a) In a binomial distribution the sum and product of the mean and variance of the

distribution are 
25
3

 and 
50
3

 respectively. Find the distribution.
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(b) From the following data which shows the ages X and systolic blood pressure Y of 12
women, find out whether the two variables ages X and blood pressure Y are correlated?

Ages (X) : 56 42 72 36 63 47 55 49 38 42 68 60
B.P. (Y) : 147 125 160 118 149 128 150 145 115 140 152 155

(c) (i) If θ is the acute angle between the two regression lines in case of two variables x
and y, show that

tan θ =
1 2

2 2
− ⋅

+
r

r
x y

x y

σ σ

σ σ

where r, σx and σy have their usual meanings. Explain the significance of the
formula when r = 0 and r = ± 1.

(ii) Two variables x and y are correlated by the equation ax + by + c = 0. Show that the
correlation between them is –1 if signs of a and b are alike and +1, if they are
different.

���
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Time: 3 Hours] [Total Marks: 100

����� (i) Attempt All questions.
(ii) All questions carry equal marks.

(iii) Question no. 1–4 are common to all candidates.
(iv) Be precise in your answer.

*� Attempt any �.��parts of the following: �/� × × × × × 0� ,� �� 

(a) Use elementary transformation to reduce following matrix A to triangular form and
hence the rank of A.

A =

2 3 1 1
1 1 2 4
3 1 3 2
6 3 0 7

− −
− − −

−
−

�

�

�
�
�
�

�

�

�
�
�
�

(b) Define unitary matrix. Show that the matrix

α γ β δ
β δ α γ

+ − +
+ −

�
��

�
��

i i

i i
 is a unitary matrix if α2 + β2 + γ2 + δ2 = 1.

(c) Reduce the matrix A to diagonal form

A =
− −

− −

�

�

�
�
�

�

�

�
�
�

1 2 2
1 2 1
1 1 0

(d) Find the eigen values and eigen vectors of matrix A

A =

1 7 13
2 5 7
3 11 5

�

�

�
�
�

�

�

�
�
�

['�	�2 λ3 – 11λ2 – 95λ – 116 = 0, which cannot be solve.]
(e) Test the consistency of following system of linear equations and hence find the

solution
4x1 – x2 = 12

– x1 + 5x2 – 2x3 = 0
– 2x2 + 4x3 = – 8

(f) State Cayley-Hamilton theorem. Using this theorem find the inverse of the matrix.

A =
2 1 1
1 2 1
1 1 2

−
− −

−

�

�

�
�
�

�

�

�
�
�

427
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�� Attempt any �.��parts of the following: �/� × × × × × 0� ,� �� 

(a) Find the directional derivative of 
1
2r

 in the direction of r , where r  = x i y j z k� � �+ + .

(b) Find F n ds⋅		 � , where

F  = 2 3 22x z i xz y j y z k+ − + + +
 � � � � �� � �  and s is the surface of sphere having centre
(3, –1, 2) and radius 3.

(c) Show that the vector field F  = 
r

r 3  is irrotational as well as solenoidal. Find the scalar

potential.

(d) If A  is a vector function and φ is a scalar function, then show that ∇ ⋅ φ A� �  =

φ∇ ⋅ + ⋅ ∇φA A .

(e) Apply Green’s theorem to evaluate 2 32y dx x dy
C

+	 ,  where C is the boundary of closed

region bounded between y = x and y = x2.

(f) Suppose F x y z, ,� �  = x i yj zk3� � �+ +  is the force field. Find the work done by F  along the

line from the (1, 2, 3) to (3, 5, 7).
-� Attempt any �.��parts of the following: �/� × × × × × 0� ,� �� 

(a) If y = (sin–1 x)2, prove that
(1 – x2) yn + 2 – (2n + 1) xyn + 1– n2yn = 0
Hence find the value of yn at x = 0.

(b) If u = f(r) and x = r cos θ, y = r sin θ, prove that

∂
∂

+ ∂
∂

2

2

2

2
u

x

u

y  = f r
r

f r″ + ′
 � 
 �1
.

(c) Trace the curve x y
2
3

2
3+  = a

2
3 .

(d) Expand tan–1 y
x
�
�
�
��

 in the neighbourhood of (1, 1).

(e) If u = x log(xy), where x3 + y3
 + 3xy = 1. Find 

du
dx

.

(f) State Euler’s theorem of differential calculus and verify the theorem for the function

u = log
x y

x y

4 4+
+

�
�

�
��

.

0� Attempt any �+��parts of the following: �*�� × × × × × �� ,� �� 

(a) If J be the Jacobian of the system u, v with respect to x, y and J′  the Jacobian of the
system x, y with respect to u, v then prove that JJ′ = 1.

(b) A rectangular box open at top is to have capacity of 32 c.c. Find the dimensions of the
box least material.

(c) A balloon in the form of right circular cylinder of radius 1.5 m and length 4.0 m and
is surmounted by hemispherical ends. If the radius is increased by 0.01 m and length
by 0.05 m, find the percentage change in the volume of the balloon.
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(��� 3�+� ��

�4.�� �	
�

/� Attempt any �+��parts of the following: �*�� × × × × × �� ,� �� 

(a) Evaluate the integral x
x
y

dy dx
x

exp −
�
�

�
��		∞

2

00

changing the order of integration.
(b) Find the triple integration, the volume paraboloid of revolution x4 + y2 = 4z cut off

plane z = 4.
(c) State the Dirichlet’s theorem for three variables. Hence evaluate the integral

x y z dx dy dzl m n− − −			 1 1 1 .

where x, y, z are all positive but limited condition 
x
a

y
b

z
c

p q r�
�
�
�� + ��

�
�� + ��

�
��  ≤ 1.

(��� �
�� ��

�4.�� �	
�

1� Attempt any �+� parts of the following: �*�� × × × × × �� ,� �� 

(a) The following data regarding the heights (y) and weights (x) of 100 college students
are given Σx = 15000, Σx2 = 2272500, Σy = 6800, Σy = 463025 and Σxy = 1022250.
Find the correlation coefficient between height and weight and equation of regression
line of height on weight.

(b) Fit a Poisson distribution to the following data and calculate the theoretical
frequencies:

    1   2          x

f

0 3 4

192 100 24 3 1

(c) Assume the mean height of soldiers to be 68.22 inches with a variance of 10.8 inches
square. How many soldiers in a regiment of 10,000 would you expect to be over 6 feet
tall, given that the area under the standard normal curve between x = 0 and x = 0.31
is 0.1368 and between x = 0 and x = 1.15 is 0.3746.

���
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����� (1) There are five questions in all.
(2) Each question has three parts.
(3) Attempt any two parts in each question.

*� (a) Find the eigen values and eigen vectors of the matrix �/� ×××××� 0� ,� �� 

A =

3 1 4
0 2 6
0 0 5

�

�

�
�
�

�

�

�
�
�

(b) Verify Cayley-Hamilton theorem for the matrix

A =

2 1 2
1 2 1
1 1 2

−
− −

−

�

�

�
�
�

�

�

�
�
�

Hence compute A–1.
(c) Reduce the matrix A to its normal form when

A =

1 2 1 4
2 4 3 4
1 2 3 4
1 2 6 7

−

− − −

�

�

�
�
�
�

�

�

�
�
�
�

Hence find the rank of A.
�� (a) If y = sin (m sin–1x), prove that �*�� ×××××� �� ,� �� 

(1 – x2) yn + 2 – (2n + 1) xyn + 1 + (m2 + n2)yn= 0, and hence find yn at x = 0.

(b) If u = u
y x
xy

z x
xz

− −�
�

�
��

, , show that

x
u
x

y
u
y

z
u
z

2 2 2∂
∂

+ ∂
∂

+ ∂
∂  = 0.

(c) Trace the curve y2 (2a – x) = x3.

-� (a) If y1 = 
x x

x
y

x x
x

2 3

1
2

3 1

2
, = and y

x x
x3
1 2

3
= , show that Jacobian of y1, y2, y3 with respect to

x1, x2, x3 is 4. �*�� ×××××� �� ,� �� 

(b) In estimating the cost of a pile of bricks measured as 6 m × 50 m × 4 m, the tape is
stretched 1% beyond the standard length. If the count is 12 bricks in 1 m3 and bricks
cost Rs. 100 per 1000, find the approximate error in the cost.

(c) Find the extreme values of x3 + y3 – 3axy.

430
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0� (a) Calculate the volume of the solid bounded by the surface x = 0, y = 0, x + y + z = 1
and z = 0, where D is the domain x ≥ 0, y ≥ 0 and x + y ≤ h. �*�� ×××××� �� ,� �� 

(b) Prove that x y dx dyl m

D

− −	 1 1  = 
l m

l m
hl m

+ +
+

1

(c) Change the order of integration in l = xy dx dy
x

x

2

2

0

1
−		  and hence evaluate the same.

/� (a) Prove div(grad rn) = n(n + 1)rn – 2, where r = x y z2 2 2
1
2+ +� � . Hence show that ∇ ��

�
��

2 1
r = 0.

�*�� ×××××� �� ,� �� 

(b) Apply Green’s theorem to evaluate 2 2 2 2 2x y dx x y dy
C

–� � � �+ +	 , where C is the

boundary of the area enclosed by the x-axis and the upper half of circle x2 + y2 = a2.

(c) Evaluate yzi zx j xy k ds
S

� � �+ +		 � � , where S is the surface of the sphere x2 + y2 + z2 = a2

in the first octant.

���
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A
Absolute error, 112
Absolute maximum, 121
Absolute minimum, 121
Acceleration, 334
Associative law, 156
Asymptotes, 65
Augmented matrix, 189

B
Beta, 283

C
Chain rule, 50, 96
Circulation, 365
Column matrix, 152
Conjugate of a matrix, 153
Consistent system, 189
Curve tracing, 63

D
Del operator, 337
Diagonal matrix, 152
Directional derivative, 339
Distributive law, 156
Dritchlet’s integral, 324

E
Eigen, 214
Eigen values of diagonal, 216
Equivalent matrices, 167
Expansion of function of several variables, 81
Exponential function, 2
Extremum value or point, 122

F
Functional dependence, 107

G
Gamma function, 283
Geometrical representation, 215

H
Hermitian matrix, 154

I
Idempotent matrix, 154
Identity matrix, 152
Implicit functions, 102
Independence of path, 367
Intercepts, 64
Intersection point with x- and y-axis, 64
Involutory matrix, 155
Irrotational vector, 354
Irrotational vector field, 365

J
Jacobian for functional dependence

functions, 107
Jacobians, 95

K
Kirchhoff’s current law, 250
Kirchhoff’s voltage law (KVL), 250

L
Lagrange’s conditions for maximum or

minimum, 123
Linear independence of vectors, 210
Linearly dependent vectors, 210
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Logarithm case, 2
Lower triangular matrix, 153

M
Maclaurin’s series expansion, 83
Matrix polynomial, 233
Minor of a matrix, 176
Multiple integral, 258

N
Nilpotent matrix, 154
Non-singular, 163
Non-trivial solution, 197
Normal derivative, 339
Null matrix, 152

O
Oblique asymptotes (not parallel to x-axis and

y-axis), 65
Oblique asymptotes (when curve is represented

by implicit equation f ), 65
Origin and tangents at the origin, 64
Orthogonal matrix, 155
Own characteristic or individual or eigen, 214

P
Partial differentiation, 20
Points of intersection, 65
Power function, 1
Product functions, 3
Properties of beta and gamma functions, 283
Proportional or relative error, 112

R
Rectangular matrix, 152
Regions, 64
Row matrix, 152

S
Saddle point, 122
Scalar field, 337

Scalar matrix, 152
Similar matrix, 239
Skew hermitian matrix, 154
Skew symmetric matrix, 153
Solenoidal, 353
Square matrix, 152
Symmetric about origin, 64
Symmetric about the line, 64
Symmetric about x-axis, 64
Symmetric about y-axis, 64
Symmetry, 64
Symmetric matrix, 153

T
Total differential, 49
Tranjugate or conjugate transpose of a matrix,

154
Transpose of a matrix, 153
Trigonometric functions cos (ax + b) or

sin (ax + b),  2
Triangular matrix, 153
Trivial solution, 189

U
Unitary matrix, 155
Upper triangular matrix, 153

V
Vector differential calculus, 333
Vector field, 337
Vector form of green’s theorem, 377
Velocity, 334
Volume in cylindrical coordinates, 315
Volume in spherical polar coordinates, 315

Z
Zero matrix, 152
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