In mathematics, a matrix (plural matrices) is a rectangular table of numbers or, more generally, a table consisting of abstract quantities that can be added and multiplied. Matrices are used to describe linear equations, keep track of the coefficients of linear transformations and to record data that depend on two parameters. Matrices can be added, multiplied, and decomposed in various ways, making them a key concept in linear algebra and matrix theory.

In this article, the entries of a matrix are real or complex numbers unless otherwise noted.





Organization of a matrix

Definitions and notations

The horizontal lines in a matrix are called rows and the vertical lines are called columns. A matrix with m rows and n columns is called an m-by-n matrix (written m×n) and m and n are called its dimensions. The dimensions of a matrix are always given with the number of rows first, then the number of columns.

The entry of a matrix A that lies in the i -th row and the j-th column is called the i,j entry or (i,j)-th entry of A. This is written as Ai,j or A[i,j]. The row is always noted first, then the column.

We often write [image: image1.png]


to define an m × n matrix A with each entry in the matrix A[i,j] called aij for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. However, the convention that the indices i and j start at 1 is not universal: some programming languages start at zero, in which case we have 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1.

A matrix where one of the dimensions equals one is often called a vector, and interpreted as an element of real coordinate space. A 1 × n matrix (one row and n columns) is called a row vector, and an m × 1 matrix (one column and m rows) is called a column vector.

Example

The matrix
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is a 4×3 matrix. The element A[2,3] or a2,3 is 7.

The matrix
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is a 1×9 matrix, or 9-element row vector.
Adding and multiplying matrices

 Sum

Given m-by-n matrices A and B, their sum A + B is the m-by-n matrix computed by adding corresponding elements (i.e. (A + B)[i, j] = A[i, j] + B[i, j] ). For example:[image: image4.png]o o
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Another, much less often used notion of matrix addition is the direct sum.

Scalar multiplication

Given a matrix A and a number c, the scalar multiplication cA is computed by multiplying the scalar c by every element of A (i.e. (cA)[i, j] = cA[i, j] ). For example:
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 Matrix multiplication

Multiplication of two matrices is well-defined only if the number of columns of the left matrix is the same as the number of rows of the right matrix. If A is an m-by-n matrix and B is an n-by-p matrix, then their matrix product AB is the m-by-p matrix (m rows, p columns) given by:
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for each pair i and j.
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These two operations turn the set M(m, n, R) of all m-by-n matrices with real entries into a real vector space of dimension mn.

Matrix multiplication has the following properties:

· (AB)C = A(BC) for all k-by-m matrices A, m-by-n matrices B and n-by-p matrices C ("associativity"). 

· (A + B)C = AC + BC for all m-by-n matrices A and B and n-by-k matrices C ("right distributivity"). 

· C(A + B) = CA + CB for all m-by-n matrices A and B and k-by-m matrices C ("left distributivity"). 

It is important to note that commutativity does not generally hold; that is, given matrices A and B and their product defined, then generally AB ≠ BA.

Linear transformations, ranks and transpose

Matrices can conveniently represent linear transformations because matrix multiplication neatly corresponds to the composition of maps, as will be described next. This same property makes them powerful data structures in high-level programming languages.

Here and in the sequel we identify Rn with the set of "columns" or n-by-1 matrices. For every linear map f : Rn → Rm there exists a unique m-by-n matrix A such that f(x) = Ax for all x in Rn. We say that the matrix A "represents" the linear map f. Now if the k-by-m matrix B represents another linear map g : Rm → Rk, then the linear map g o f is represented by BA. This follows from the above-mentioned associativity of matrix multiplication.

More generally, a linear map from an n-dimensional vector space to an m-dimensional vector space is represented by an m-by-n matrix, provided that bases have been chosen for each.

The rank of a matrix A is the dimension of the image of the linear map represented by A; this is the same as the dimension of the space generated by the rows of A, and also the same as the dimension of the space generated by the columns of A.

The transpose of an m-by-n matrix A is the n-by-m matrix Atr (also sometimes written as AT or tA) formed by turning rows into columns and columns into rows, i.e. Atr[i, j] = A[j, i] for all indices i and j. If A describes a linear map with respect to two bases, then the matrix Atr describes the transpose of the linear map with respect to the dual bases, see dual space.

We have (A + B)tr = Atr + Btr and (AB)tr = Btr Atr.

Square matrices and related definitions

A square matrix is a matrix which has the same number of rows and columns. The set of all square n-by-n matrices, together with matrix addition and matrix multiplication is a ring. Unless n = 1, this ring is not commutative.

M(n, R), the ring of real square matrices, is a real unitary associative algebra. M(n, C), the ring of complex square matrices, is a complex associative algebra.

The unit matrix or identity matrix In, with elements on the main diagonal set to 1 and all other elements set to 0, satisfies MIn=M and InN=N for any m-by-n matrix M and n-by-k matrix N. For example, if n = 3:
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The identity matrix is the identity element in the ring of square matrices.

Invertible elements in this ring are called invertible matrices or non-singular matrices. An n by n matrix A is invertible if and only if there exists a matrix B such that

AB = In ( = BA). 

In this case, B is the inverse matrix of A, denoted by A−1. The set of all invertible n-by-n matrices forms a group (specifically a Lie group) under matrix multiplication, the general linear group.

If λ is a number and v is a non-zero vector such that Av = λv, then we call v an eigenvector of A and λ the associated eigenvalue. (Eigen means "own" in German.) The number λ is an eigenvalue of A if and only if A−λIn is not invertible, which happens if and only if pA(λ) = 0. Here pA(x) is the characteristic polynomial of A. This is a polynomial of degree n and has therefore n complex roots (counting multiple roots according to their multiplicity). In this sense, every square matrix has n complex eigenvalues.

The determinant of a square matrix A is the product of its n eigenvalues, but it can also be defined by the Leibniz formula. Invertible matrices are precisely those matrices with nonzero determinant.

The Gaussian elimination algorithm is of central importance: it can be used to compute determinants, ranks and inverses of matrices and to solve systems of linear equations.

The trace of a square matrix is the sum of its diagonal entries, which equals the sum of its n eigenvalues.

Matrix exponential is defined for square matrices, using power series.
