In algebra, a determinant is a function depending on n that associates a scalar, det(A), to every n×n square matrix A. The fundamental geometric meaning of a determinant is as the scale factor for volume when A is regarded as a linear transformation. Determinants are important both in calculus, where they enter the substitution rule for several variables, and in multilinear algebra.

For a fixed positive integer n, there is a unique determinant function for the n×n matrices over any commutative ring R. In particular, this function exists when R is the field of real or complex numbers.

A determinant of A is also sometimes denoted by |A|, but this notation is ambiguous: it is also used to for certain matrix norms, and for the absolute value.

Determinants of 2-by-2 matrices

The 2×2 matrix 
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has determinant .

The interpretation when the matrix has real number entries is that this gives the area of the parallelogram with vertices at (0,0), (a,c), (b,d), and (a + b, c + d), with a sign factor (which is −1 if A as a transformation matrix flips the unit square over).

A formula for larger matrices will be given below.

Determinants as a wedge product

If u and v are vectors in an n-dimensional vector space, we may introduce the wedge product with the property u ⋀ v = - v ⋀ u. This antisymmetric property also entails u ⋀ u = 0. With such a product defined for vectors in an n(n-1)/2 dimensional vector space, and we can continue the process to k-fold products. Then an n-fold wedge product v1 ⋀ v2 ⋀ ... ⋀ vn is vector in a 1-dimensional vector space, whose single coefficient is a scalar. This scalar quantity is the determinant of the square matrix whose rows are the vectors v1, ..., vn. From the defining properties of a wedge product it easily follows that the determinant is zero if and only if v1 ... vn are linearly dependent, and that the determinant is antisymmetric with respect to swapping rows. Transposing, this is also true of columns.

This gives a means of computing the determinant, but more significantly, a means of demonstrating the basic properties of the determinant and placing it in a broader context.

Applications

Determinants are used to characterize invertible matrices (namely as those matrices, and only those matrices, with non-zero determinants), and to explicitly describe the solution to a system of linear equations with Cramer's rule. They can be used to find the eigenvalues of the matrix A through the characteristic polynomial
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where I is the identity matrix of the same dimension as A.

One often thinks of the determinant as assigning a number to every sequence of n vectors in [image: image3.png]


, by using the square matrix whose columns are the given vectors. With this understanding, the sign of the determinant of a basis can be used to define the notion of orientation in Euclidean spaces. The determinant of a set of vectors is positive if the vectors form a right-handed coordinate system, and negative if left-handed.

Determinants are used to calculate volumes in vector calculus: the absolute value of the determinant of real vectors is equal to the volume of the parallelepiped spanned by those vectors. As a consequence, if the linear map [image: image4.png]f:R" —-R"



is represented by the matrix A, and S is any measurable subset of [image: image5.png]


, then the volume of f(S) is given by [image: image6.png]det(A)| x volume(5)



. More generally, if the linear map [image: image7.png]f: R —R"



is represented by the m-by-n matrix A, and S is any measurable subset of [image: image8.png]


, then the n-dimensional volume of f(S) is given by [image: image9.png]Vdet(ATA) x volume(S)



. By calculating the volume of the tetrahedron bounded by four points, they can be used to identify skew lines.

The volume of any tetrahedron, given its vertices a, b, c, and d, is (1/6)·|det(a−b, b−c, c−d)|, or any other combination of pairs of vertices that form a simply connected graph.

General definition and computation

The definition of the determinant comes from the following Theorem.

Theorem. Let Mn(K) denote the set of all [image: image10.png]


matrices over the field K. There exists exactly one function
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with the two properties:

· F is alternating multilinear with regard to columns; 

· F(I) = 1. 

One can then define the determinant as the unique function with the above properties.

In proving the above theorem, one also obtains the Leibniz formula:
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Here the sum is computed over all permutations σ of the numbers {1,2,...,n} and sgn(σ) denotes the signature of the permutation σ: +1 if σ is an even permutation and −1 if it is odd.

This formula contains n! (factorial) summands, and it is therefore impractical to use it to calculate determinants for large n.

For small matrices, one does not actually need to take permutations, i.e.:

· if A is a 1-by-1 matrix, then [image: image13.png]det(A) = Ay 1.




· if A is a 2-by-2 matrix, then [image: image14.png]det(A) = Ay 14,5 — Ay Ay,




· for a 3-by-3 matrix A, the formula is more complicated:
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In general, determinants can be computed using Gaussian elimination using the following rules:

· If A is a triangular matrix, i.e. [image: image16.png]


whenever i > j or, alternatively, whenever i < j, then [image: image17.png]det(A) = A 1 A,




(the product of the diagonal entries of A). 

· If B results from A by exchanging two rows or columns, then [image: image18.png]det(B)

det(A).





· If B results from A by multiplying one row or column with the number c, then [image: image19.png]det(B) = c det(A).




· If B results from A by adding a multiple of one row to another row, or a multiple of one column to another column, then [image: image20.png]det(B) = det(A)




Explicitly, starting out with some matrix, use the last three rules to convert it into a triangular matrix, then use the first rule to compute its determinant.

It is also possible to expand a determinant along a row or column using Laplace's formula, which is efficient for relatively small matrices. To do this along row i, say, we write
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where the Ci,j represent the matrix cofactors, i.e. Ci,j is ( − 1)i + j times the minor Mi,j, which is the determinant of the matrix that results from A by removing the i-th row and the j-th column.

Quick Reference

The determinants for square matrices of size 1 to 3 are:
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Example

Suppose we want to compute the determinant of
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We can go ahead and use the Leibniz formula directly:
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Alternatively, we can use Laplace's formula to expand the determinant along a row or column. It is best to choose a row or column with many zeros, so we will expand along the second column:
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A third way (and the method of choice for larger matrices) would involve the Gauss algorithm. When doing computations by hand, one can often shorten things dramatically by smartly adding multiples of columns or rows to other columns or rows; this does not change the value of the determinant, but may create zero entries which simplifies the subsequent calculations. In this example, adding the second column to the first one is especially useful:
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and this determinant can be quickly expanded along the first column:
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Properties

The determinant is a multiplicative map in the sense that
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for all n-by-n matrices A and B. 

This is generalized by the Cauchy-Binet formula to products of non-square matrices.

It is easy to see that [image: image46.png]det(rl,)




and thus
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for all n-by-n matrices A and all scalars r. 

A matrix over a commutative ring R is invertible if and only if its determinant is a unit in R. In particular, if A is a matrix over a field such as the real or complex numbers, then A is invertible if and only if det(A) is not zero. In this case we have
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Expressed differently: the vectors v1,...,vn in Rn form a basis if and only if det(v1,...,vn) is non-zero.

A matrix and its transpose have the same determinant:
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The determinants of a complex matrix and of its conjugate transpose are conjugate:
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(Note the conjugate transpose is identical to the transpose for a real matrix)

The determinant of a matrix A exhibits the following properties under elementary matrix transformations of A:

1. Exchanging rows or columns multiplies the determinant by -1. 

2. Multiplying a row or column by m multiplies the determinant by m. 

3. Adding a multiple of a row or column to another leaves the determinant unchanged. 

This follows from the multiplicative property and the determinants of the elementary matrix transformation matrices.

If A and B are similar, i.e., if there exists an invertible matrix X such that A = X − 1BX, then by the multiplicative property,

[image: image51.png]det(A) = det(B)




This means that the determinant is a similarity invariant. Because of this, the determinant of some linear transformation T : V → V for some finite dimensional vector space V is independent of the basis for V. The relationship is one-way, however: there exist matrices which have the same determinant but are not similar.

If A is a square n-by-n matrix with real or complex entries and if λ1,...,λn are the (complex) eigenvalues of A listed according to their algebraic multiplicities, then
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This follows from the fact that A is always similar to its Jordan normal form, an upper triangular matrix with the eigenvalues on the main diagonal.

From this connection between the determinant and the eigenvalues, one can derive a connection between the trace function, the exponential function, and the determinant:
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Performing the substitution [image: image54.png]A log A



in the above equation yields
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Derivative

The determinant of real square matrices is a polynomial function from [image: image56.png]B ™



to [image: image57.png]


, and as such is everywhere differentiable. Its derivative can be expressed using Jacobi's formula:
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where adj(A) denotes the adjugate of A. In particular, if A is invertible, we have

[image: image59.png]ddet(A) =det(A)tr(A™" dA)




or, more colloquially,
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if the entries in the matrix X are sufficiently small. The special case where A is equal to the identity matrix I yields

[image: image61.png]det(l + X )~ 14 tr(X)




