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Introduction 
Calculus is a tool used almost everywhere in the modern world to describe change and 
motion. Its use is widespread in science, engineering, medicine, business, industry, and 
many other fields. Just as algebra introduces students to new ways of thinking about 
arithmetic problems (by way of variables, equations, functions, and graphs), calculus 
introduces new ways of thinking about algebra problems (considering, for example, how 
the height of a point moving along a graph changes as its horizontal position changes). 

What is calculus? 

Calculus is the branch of mathematics dealing with instantaneous rates of change of 
continuously varying quantities. For example, consider a moving car. It is possible to 
create a function describing the displacement of the car (where it is located in relation to 
a reference point) at any point in time as well as a function describing the velocity (speed 
and direction of movement) of the car at any point in time. If the car were traveling at a 
constant velocity, then algebra would be sufficient to determine the position of the car at 
any time; if the velocity is unknown but still constant, the position of the car could be 
used (along with the time) to find the velocity. 

However, the velocity of a car cannot jump from zero to 35 miles per hour at the 
beginning of a trip, stay constant throughout, and then jump back to zero at the end. As 
the accelerator is pressed down, the velocity rises gradually, and usually not at a constant 
rate (i.e., the driver may push on the gas pedal harder at the beginning, in order to speed 
up). Describing such motion and finding velocities and distances at particular times 
cannot be done using methods taught in pre-calculus, but it is not only possible but 
straightforward with calculus. 

Calculus has two basic applications: differential calculus and integral calculus. The 
simplest introduction to differential calculus involves an explicit series of numbers. 
Given the series (42, 43, 3, 18, 34), the differential of this series would be (1, -40, 15, 
16). The new series is derived from the difference of successive numbers which gives rise 
to its name "differential". Rarely, if ever, are differentials used on an explicit series of 
numbers as done here. Instead, they are derived from a series of numbers defined by a 
continuous function which are described later. 

Integral calculus, like differential calculus, can also be introduced via series of numbers. 
Notice that in the previous example, the original series can almost be derived solely from 
its differential. Instead of taking the difference, however, integration involves taking the 
sum. Given the first number of the original series, 42 in this case, the rest of the original 
series can be derived by adding each successive number in its differential (42, 42+1, 
43+(-40), 3+15, 18+16). Note that knowledge of the first number in the original series is 
crucial in deriving the integral. As with differentials, integration is performed on 
continuous functions rather than explicit series of numbers, but the concept is still the 
same. Integral calculus allows us to calculate the area under a curve of almost any shape; 
in the car example, this enables you to find the displacement of the car based on the 



velocity curve. This is because the area under the curve is the total distance moved, as we 
will soon see. 

Why learn calculus? 

Calculus is essential for many areas of science and engineering. Both make heavy use of 
mathematical functions to describe and predict physical phenomena that are subject to 
continual change, and this requires the use of calculus. Take our car example: if you want 
to design cars, you need to know how to calculate forces, velocities, accelerations, and 
positions. All require calculus. Calculus is also necessary to study the motion of gases 
and particles, the interaction of forces, and the transfer of energy. It is also useful in 
business whenever rates are involved. For example, equations involving interest or 
supply and demand curves are grounded in the language of calculus. 

Calculus also provided important tools in understanding functions and has led to the 
development of new areas of mathematics including real and complex analysis, topology, 
and non-euclidean geometry. 

What is involved in learning calculus? 

Learning calculus, like much of mathematics, involves two parts: 

• Understanding the concepts: You must be able to explain what it means when you 
take a derivative rather than merely apply the formulas for finding a derivative. 
Otherwise, you will have no idea whether or not your solution is correct. Drawing 
diagrams, for example, can help clarify abstract concepts.  

• Symbolic manipulation: Like other branches of mathematics, calculus is written 
in symbols that represent concepts. You will learn what these symbols mean and 
how to use them. A good working knowledge of trigonometry and algebra is a 
must, especially in integral calculus. Sometimes you will need to manipulate 
expressions into a usable form before it is possible to perform operations in 
calculus.  

What you should know before using this text 

There are some basic skills that you need before you can use this text. Continuing with 
our example of a moving car: 

• You will need to describe the motion of the car in symbols. This involves 
understanding functions.  

• You need to manipulate these functions. This involves algebra.  

• You need to translate symbols into graphs and vice verse. This involves 
understanding the graphing of functions.  



• It also helps (although it isn't necessarily essential) if you understand the 
functions used in trigonometry since these functions appear frequently in science.  

 



Functions 

Classical understanding of functions 

To provide the classical understanding of functions, a function can be thought of as a 
machine. Machines take in raw materials, change them in a predictable way, and give out 
a finished product. The kinds of functions we consider here, for the most part, take in a 
real number, change it in a formulaic way, and give out a real number (which in special 
cases could be the same as the one we put in). You can think of this as an input-output 
machine. You give a function an input and it gives you an output. For example, the 
squaring function gives the output value 16 when the input is 4 and the output value 1 
when the input is . 

A function is usually symbolized f or g or something similar, though it doesn't have to be. 
A function is always defined as "of a variable" which tells the reader what to replace in 
the formula for the function. 

For instance, tells the reader: 

• The function f is a function of x.  
• To evaluate the function at a certain number, replace the x with that number.  
• Replacing x with that number in the right side of the function will produce the 

function's output for that certain input.  
• In English, the definition of is interpreted, "Given a number, f will return two 

more than the triple of that number."  

Thus, if we want to know the value (or output) of the function at 3: 

 
We evaluate the function at x = 3.  

The value of at 3 is 11.  

See? It's easy! 

Note that means the value of the dependent variable when takes on the value of 3. 
So we see that the number 11 is the output of the function when we give the number 3 as 
the input. We refer to the input as the argument of the function (or the independent 
variable), and to the output as the value of the function at the given argument (or the 
dependent variable). A good way to think of it is the dependent variable 'depends' 
on the value of the independent variable . This is read as "the value of f at three is 
eleven", or simply "f of three equals eleven". 

 



Notation 

Functions are used so much that there is a special notation for them. The notation is 
somewhat ambiguous, so familiarity with it is important in order to understand the 
intention of an equation or formula. 

Though there are no strict rules for naming a function, it is standard practice to use the 
letters f, g, and h to denote functions, and the variable x to denote an independent 
variable. y is used for both dependent and independent variables. 

When discussing or working with a function f, it's important to know not only the 
function, but also its independent variable x. Thus, when referring to a function f, you 
usually do not write f, but instead f(x). The function is now referred to as "f of x". The 
name of the function is adjacent to the independent variable (in parentheses). This is 
useful for indicating the value of the function at a particular value of the independent 
variable. For instance, if 

,  

and if we want to use the value of f for x equal to 2, then we would substitute 2 for x on 
both sides of the definition above and write 

 

This notation is more informative than leaving off the independent variable and writing 
simply 'f', but can be ambiguous since the parentheses can be misinterpreted as 
multiplication. 

Modern understanding of functions 

The formal definition of a function states that a function is actually a rule that associates 
elements of one set called the domain of the function, with the elements of another set 
called the range of the function. For each value we select from the domain of the 
function, there exists exactly one corresponding element in the range of the function. The 
definition of the function tells us which element in the range corresponds to the element 
we picked from the domain. Classically, the element picked from the domain is pictured 
as something that is fed into the function and the corresponding element in the range is 
pictured as the output. Since we "pick" the element in the domain whose corresponding 
element in the range we want to find, we have control over what element we pick and 
hence this element is also known as the "independent variable". The element mapped in 
the range is beyond our control and is "mapped to" by the function. This element is hence 
also known as the "dependent variable", for it depends on which independent variable we 
pick. Since the elementary idea of functions is better understood from the classical 
viewpoint, we shall use it hereafter. However, it is still important to remember the correct 
definition of functions at all times. 



To make it simple, for the function f(x), all of the possible x values constitute the domain, 
and all of the values f(x) (y on the x-y plane) constitute the range. 

Remarks 

The following arise as a direct consequence of the definition of functions: 

1. By definition, for each "input" a function returns only one "output", 
corresponding to that input. While the same output may correspond to more than 
one input, one input cannot correspond to more than one output. This is expressed 
graphically as the vertical line test: a line drawn parallel to the axis of the 
dependent variable (normally vertical) will intersect the graph of a function only 
once. However, a line drawn parallel to the axis of the independent variable 
(normally horizontal) may intersect the graph of a function as many times as it 
likes. Equivalently, this has an algebraic (or formula-based) interpretation. We 
can always say if a = b, then f(a) = f(b), but if we only know that f(a) = f(b) then 
we can't be sure that a = b.  

2. Each function has a set of values, the function's domain, which it can accept as 
input. Perhaps this set is all positive real numbers; perhaps it is the set {pork, 
mutton, beef}. This set must be implicitly/explicitly defined in the definition of 
the function. You cannot feed the function an element that isn't in the domain, as 
the function is not defined for that input element.  

3. Each function has a set of values, the function's range, which it can output. This 
may be the set of real numbers. It may be the set of positive integers or even the 
set {0,1}. This set, too, must be implicitly/explicitly defined in the definition of 
the function.  

 
 
This is an example of an expression which fails the vertical line test. 

The vertical line test 

The vertical line test, mentioned in the preceding paragraph, is a systematic test to find 
out if an equation involving x and y can serve as a function (with x the independent 
variable and y the dependent variable). Simply graph the equation and draw a vertical line 



through each point of the x-axis. If any vertical line ever touches the graph at more than 
one point, then the equation is not a function; if the line always touches at most one point 
of the graph, then the equation is a function. 

(There are a lot of useful curves, like circles, that aren't functions (see picture). Some 
people call these graphs with multiple intercepts, like our circle, "multi-valued 
functions"; they would refer to our "functions" as "single-valued functions".) 

Important functions 

In order of degree (or complexity, informally said) 

Constant 
function 

 

It disregards the input and always outputs the constant c, and is a 
polynomial of the zeroth degree where f(x) = cx0= c(1) = c. Its graph is a 
horizontal line. 

Identity 
function 

 

The output is always the input. A polynomial of the first degree, f(x) = x1 
= x. Special case of a linear function. 

Linear 
function 

 

Takes an input, multiplies by m and adds c. It is a polynomial of the first 
degree. Its graph is a line (slanted, except m = 0). 

Quadratic 
function  

A polynomial of the second degree. Its graph is a parabola, unless a = 0. 
(Don't worry if you don't know what this is.) 

Polynomial 
function  

The number n is called the degree. 

Signum 
function 

 

Determines the sign of the argument x. 

 

 



Example functions 

Some more simple examples of functions have been listed below. 

 
Gives 1 if input is positive, -1 if input is negative. Note that the function only 
accepts negative and positive numbers, not 0. Mathematics describes this 
condition by saying 0 is not in the domain of the function.  

 
Takes an input and squares it.  

 

Exactly the same function, rewritten with a different independent variable. This is 
perfectly legal and sometimes done to prevent confusion (e.g. when there are 
already too many uses of x or y in the same paragraph.)  

 
Note that we can define a function by a totally arbitrary rule.  

It is possible to replace the independent variable with any mathematical expression, not 
just a number. For instance, if the independent variable is itself a function of another 
variable, then it could be replaced with that function. This is called composition, and is 
discussed later. 

Manipulating functions 

Functions can be manipulated in the same manner as any other variable; they can be 
added, multiplied, raised to powers, etc. For instance, let 

and  

.  

Then 



,  

 

,  

 

,  

 

.  

Composition of functions 

However, there is one particular way to combine functions which cannot be done with 
other variables. The value of a function f depends upon the value of another variable x; 
however, that variable could be equal to another function g, so its value depends on the 
value of a third variable. If this is the case, then the first variable is a function h of the 
third variable; this function (h) is called the composition of the other two functions (f and 
g). Composition is denoted by 



 

.  

This can be read as either "f composed with g" or "f of g of x." 

 
For instance, let 

and  

.  

Then 

.  

 
Here, h is the composition of f and g and we write . Note that composition is 
not commutative: 

, and  

 
so .  

Composition of functions is very common, mainly because functions themselves are 
common. For instance, squaring and sine are both functions: 

,  
 

 
Thus, the expression sin2x is a composition of functions: 

sin2x =  
 = .



(Note that this is not the same as .) Since the function sine 
equals 1 / 2 if x = π / 6, 

.  

Since the function square equals 1 / 4 if x = 1 / 2, 

.  

Transformations 

Transformations are a type of function manipulation that are very common. They consist 
of multiplying, dividing, adding or subtracting constants to either the input or the output. 
Multiplying by a constant is called dilation and adding a constant is called translation. 
Here are a few examples: 

Dilation  
Translation  
Dilation  
Translation  

 
 
Examples of horizontal and vertical translations 



 
 
Examples of horizontal and vertical dilations 

Translations and dilations can be either horizontal or vertical. Examples of both vertical 
and horizontal translations can be seen at right. The red graphs represent functions in 
their 'original' state, the solid blue graphs have been translated (shifted) horizontally, and 
the dashed graphs have been translated vertically. 

Dilations are demonstrated in a similar fashion. The function 

 

has had its input doubled. One way to think about this is that now any change in the input 
will be doubled. If I add one to x, I add two to the input of f, so it will now change twice 

as quickly. Thus, this is a horizontal dilation by because the distance to the y-axis has 
been halved. A vertical dilation, such as 

 

is slightly more straightforward. In this case, you double the output of the function. The 
output represents the distance from the x-axis, so in effect, you have made the graph of 
the function 'taller'. Here are a few basic examples where a is any positive constant: 



Original graph  Reflection about origin  

Horizontal translation by a 
units left  

Horizontal translation by a 
units right  

Horizontal dilation by a 
factor of a  

Vertical dilation by a factor 
of a  

Vertical translation by a 
units down  

Vertical translation by a 
units up  

Reflection about x-axis  Reflection about y-axis  

Domain and Range 

Notation 

The domain and range of functions are commonly expressed using interval notation. This 
notation is very simple, but sometimes ambiguous because of the similarity to ordered 
pair notation: 

Meaning Interval 
Notation Set Notation 

All values greater than or equal to a and less 
than or equal to b   

All values greater than a and less than b   

All values greater than or equal to a and less 
than b   

All values greater than a and less than or equal 
to b   

All values greater than or equal to a.   

All values greater than a.   



All values less than or equal to a.   

All values less than a.   

All values.   

Note that and must always have an exclusive parenthesis rather than an inclusive 
bracket. This is because is not a number, and therefore cannot be in our set. is really 
just a symbol that makes things easier to write, like the intervals above. 
Note: ( is also denoted by ], and ) by [, i.e., (a,b) is the same as ]a,b[, and [a,b) is [a,b[. This is a source of 
funny misunderstandings. 

Domain 

 
 
The domain of the function is the interval from -1 to 1 

The domain of a function is the set of all points over which it is defined. More simply, it 
represents the set of x-values which the function can accept as input. For instance, if 

 

 

 
then f(x) is only defined for values of x between - 1 and 1, because the square root 
function is not defined (in real numbers) for negative values. Thus, the domain, in 
interval notation, is . In other words, 

 

.  



 

 
 
The range of the function is the interval from 0 to 1 

Range 

The range of a function is the set of all values which it attains (i.e. the y-values). For 
instance, if: 

,  

Then,  f(x) can only equal values in the interval from 0 to 1. Thus, the range of f is . 

One-to-one Functions 

A function f(x) is one-to-one (or less commonly injective) if, for every value of f, there is 
only one value of x that corresponds to that value of f. For instance, the function 

is not one-to-one, because both x = 1 and x = - 1 result in f(x) = 0. 
However, the function f(x) = x + 2 is one-to-one, because, for every possible value of f(x), 
there is exactly one corresponding value of x. Other examples of one-to-one functions are 
f(x) = x3 + ax, where . Note that if you have a one-to-one function and 
translate or dilate it, it remains one-to-one. (Of course you can't multiply x or f by a zero 
factor). 

If you know what the graph of a function looks like, it is easy to determine whether or not 
the function is one-to-one. If every horizontal line intersects the graph in at most one 
point, then the function is one-to-one. This is known as the Horizontal Line Test. 

 

 

Inverse functions 



We call g(x) the inverse function of f(x) if, for all x: 

.  

A function f(x) has an inverse function if and only if f(x) is one-to-one. For example, the 

inverse of f(x) = x + 2 is g(x) = x - 2. The function has no inverse. 

Notation 

The inverse function of f is denoted as f - 1(x). Thus, f - 1(x) is defined as the function that 
follows this rule 

f(f − 1(x)) = f − 1(f(x)) = x: 

To determine f - 1(x) when given a function f, substitute f - 1(x) for x and substitute x for 
f(x). Then solve for f - 1(x), provided that it is also a function. 

Example: Given f(x) = 2x − 7, find f - 1(x). 

Substitute f - 1(x) for x and substitute x for f(x). Then solve for f - 1(x): 

 
 
 

 

To check your work, confirm that f − 1(f(x)) = x: 

f − 1(f(x)) = 

f − 1(2x − 7) = 

 

If f isn't one-to-one, then, as we said before, it doesn't have an inverse. Then this method 
will fail. 

Example: Given f(x) = x2, find f - 1(x). 

Substitute f - 1(x) for x and substitute x for f(x). Then solve for f - 1(x): 

 



 
 

Since there are two possibilities for f - 1(x), it's not a function. Thus f(x) = x2 doesn't have 
an inverse. Of course, we could also have found this out from the graph by applying the 
Horizontal Line Test. It's useful, though, to have lots of ways to solve a problem, since in 
a specific case some of them might be very difficult while others might be easy. For 
example, we might only know an algebraic expression for f(x) but not a graph. 

Graphing Functions 

 
 
Graph of y=2x 

It is sometimes difficult to understand the behavior of a function given only its definition; 
a visual representation or graph can be very helpful. A graph is a set of points in the 
Cartesian plane, where each point (x,y) indicates that f(x) = y. In other words, a graph 
uses the position of a point in one direction (the vertical-axis or y-axis) to indicate the 
value of f for a position of the point in the other direction (the horizontal-axis or x-axis). 

 

Functions may be graphed by finding the value of f for various x and plotting the points 
(x, f(x)) in a Cartesian plane. For the functions that you will deal with, the parts of the 
function between the points can generally be approximated by drawing a line or curve 
between the points. Extending the function beyond the set of points is also possible, but 
becomes increasingly inaccurate. 

Plotting points like this is laborious. Fortunately, many functions' graphs fall into general 
patterns. For a simple case, consider functions of the form 



 

 

 
The graph of f is a single line, passing through (0,0) and (1,a). Thus, after plotting the two 
points, a straightedge may be used to draw the graph as far as is needed. After having 
learned calculus, you will know many more techniques for drawing good graphs of 
functions. 

Algebraic manipulation 

Purpose of review 

This section is intended to review algebraic manipulation. It is important to understand 
algebra in order to do calculus. If you have a good knowledge of algebra, you should 
probably just skim this section to be sure you are familiar with the ideas. 

Rules of arithmetic and algebra 

The following rules are always true. 

• Addition  
o Commutative Law: .  

o Associative Law: .  
o Additive Identity: .  
o Additive Inverse: .  

• Subtraction  
o Definition: .  

• Multiplication  
o Commutative law: .  
o Associative law: .  
o Multiplicative Identity: .  

o Multiplicative Inverse: , whenever  
o Distributive law: .  

• Division  

o Definition: , whenever .  

The above laws are true for all a, b, and c, whether a, b, and c are numbers, variables, 
functions, or other expressions. For instance, 



 = 

 
= 

 =  
 =  

Of course, the above is much longer than simply cancelling x + 3 out in both the 
numerator and denominator. But, when you are cancelling, you are really just doing the 
above steps, so it is important to know what the rules are so as to know when you are 
allowed to cancel. Occasionally people do the following, for instance, which is incorrect: 

 

.  

 
The correct simplification is 

 

,  

 
where the number 2 cancels out in both the numerator and the denominator. 

Exercises 
Functions 

1. Let f(x) = x2.  
1. Compute f(0) and f(2).  
2. What are the domain and range of f?  
3. Does f have an inverse? If so, find a formula for it.  

2. Let f(x) = x + 2, g(x) = 1 / x.  
1. Give formulae for  

1. f + g,  
2. f − g,  
3. g − f,  



4. ,  
5. f / g,  
6. g / f,  
7. and  
8. .  

2. Compute f(g(2)) and g(f(2)).  
3. Do f and g have inverses? If so, find formulae for them.  

3. Does this graph represent a function?  

Solutions- 

1.  
1. f(0) = 0, f(2) = 4  
2. The domain is ; the range is ,  
3. No, since f isn't one-to-one; for example, f( − 1) = f(1) = 1.  

2.  
1.  

1. (f + g)(x) = x + 2 + 1 / x = (x2 + 2x + 1) / x.  
2. (f − g)(x) = x + 2 − 1 / x = (x2 + 2x − 1) / x.  
3. (g − f)(x) = 1 / x − x − 2 = (1 − x2 − 2x) / x.  
4. .  
5. (f / g)(x) = x(x + 2) provided . Note that 0 is not in the 

domain of f / g, since it's not in the domain of g, and you can't 
divide by something that doesn't exist!  

6. (g / f)(x) = 1 / [x(x + 2)]. Although 0 is still not in the domain, we 
don't need to state it now, since 0 isn't in the domain of the 
expression 1 / [x(x + 2)] either.  

7. .  
8. .  

2. f(g(2)) = 5 / 2; g(f(2)) = 1 / 4.  
3. Yes; f − 1(x) = x − 2 and g − 1(x) = 1 / x. Note that g and its inverse are the 

same.  
3. As pictured, by the Vertical Line test, this graph represents a function.  

 



Limits 
Intuitive Look 
A limit looks at what happens to a function when the input approaches a certain value. 
The general notation for a limit is as follows: 

 

This is read as "The limit of f(x) as x approaches a". We'll take up later the question of 
how we can determine whether a limit exists for f(x) at a and, if so, what it is. For now, 
we'll look at it from an intuitive standpoint. 

Let's say that the function that we're interested in is f(x) = x2, and that we're interested in 
its limit as x approaches 2. Using the above notation, we can write the limit that we're 
interested in as follows: 

 

One way to try to evaluate what this limit is would be to choose values near 2, compute 
f(x) for each, and see what happens as they get closer to 2. This is implemented as 
follows: 

x 1.7 1.8 1.9 1.95 1.99 1.999 

f(x) = x2 2.89 3.24 3.61 3.8025 3.9601 3.996001 

Here we chose numbers smaller than 2, and approached 2 from below. We can also 
choose numbers larger than 2, and approach 2 from above: 

x 2.3 2.2 2.1 2.05 2.01 2.001 

f(x) = x2 5.29 4.84 4.41 4.2025 4.0401 4.004001 

We can see from the tables that as x grows closer and closer to 2, f(x) seems to get closer 
and closer to 4, regardless of whether x approaches 2 from above or from below. For this 
reason, we feel reasonably confident that the limit of x2 as x approaches 2 is 4, or, written 
in limit notation, 

 



Now let's look at another example. Suppose we're interested in the behavior of the 

function as x approaches 2. Here's the limit in limit notation: 

 

Just as before, we can compute function values as x approaches 2 from below and from 
above. Here's a table, approaching from below: 

x 1.7 1.8 1.9 1.95 1.99 1.999 

-3.333 -5 -10 -20 -100 -1000 

And here from above: 

x 2.3 2.2 2.1 2.05 2.01 2.001 

3.333 5 10 20 100 1000 

In this case, the function doesn't seem to be approaching any value as x approaches 2. In 
this case we would say that the limit doesn't exist. 

Both of these examples may seem trivial, but consider the following function: 

 

This function is the same as 

 

Note that these functions are really completely identical; not just "almost the same," but 
actually, in terms of the definition of a function, completely the same; they give exactly 
the same output for every input. 

In algebra, we would simply say that we can cancel the term (x − 2), and then we have 
the function f(x) = x2. This, however, would be a bit dishonest; the function that we have 
now is not really the same as the one we started with, because it is defined at x = 2, and 
our original function was, specifically, not defined at x = 2. In algebra we were willing to 



ignore this difficulty because we had no better way of dealing with this type of function. 
Now, however, in calculus, we can introduce a better, more correct way of looking at this 
type of function. What we want is to be able to say that, even though at x = 2 the function 
doesn't exist, it works almost as though it does, and it's 4. It may not get there, but it gets 
really, really close. The only question that we have is: what do we mean by "close"? 

Informal definition of a limit 
As the precise definition of a limit is a bit technical, it is easier to start with an informal 
definition; we'll explain the formal definition later. 

We suppose that a function f is defined for x near c (but we do not require that it be 
defined when x = c). 

 

Definition: (Informal definition of a limit) 
We call L the limit of f(x) as x approaches c if f(x) becomes close to L when x is close 
(but not equal) to c. 

When this holds we write 

 

or 

 

Notice that the definition of a limit is not concerned with the value of f(x) when x = c 
(which may exist or may not). All we care about are the values of f(x) when x is close to 
c, on either the left or the right (i.e. less or greater). 

Limit rules 
Now that we have defined, informally, what a limit is, we will list some rules that are 
useful for working with and computing limits. These will all be proven, or left as 
exercises, once we formally define the fundamental concept of the limit of a function. 

First, the constant rule states that if f(x) = b (that is, f is constant for all x) then the limit 
as x approaches c must be equal to b. In other words 

.  



Second, the identity rule states that if f(x) = x (that is, f just gives back whatever number 
you put in) then the limit of f as x approaches c is equal to c. That is, 

.  

The next few rules tell us how, given the values of some limits, to compute others. 

Suppose that and and that k is constant. Then 

 

 
Notice that in the last rule we need to require that M is not equal to zero (otherwise we 
would be dividing by zero which is an undefined operation). 

These rules are known as identities; they are the scalar product, sum, difference, product, 
and quotient rules for limits. (A scalar is a constant, and, when you multiply a function by 
a constant, we say that you are performing scalar multiplication.) 

Using these rules we can deduce another. In particular, using the rule for products many 
times we get that 

for a positive integer n.  

This is called the power rule. 

 

Examples 

Example 1 Find the limit . 

We need to simplify the problem, since we have no rules about this expression by itself. 

We know from the identity rule above that . By the power rule, 



. Lastly, by the scalar multiplication rule, we get 

. 

Example 2 

Find the limit . 

To do this informally, we split up the expression, once again, into its components. As 

above, . 

Also and . Adding these together 
gives 

.  

Example 3 

Find the limit,  . 

 

From the previous example the limit of the numerator is . 
The limit of the denominator is 

 

As the limit of the denominator is not equal to zero we can divide which gives 

.  

Example 4 

Find the limit,  . 

We apply the same process here as we did in the previous set of examples; 



.  

We can evaluate each of these; 

and 

Thus, the answer is . 

Example 5 

Find the limit . 

To evaluate this seemingly complex limit, we will need to recall some sine and cosine 
identities. We will also have to use two new facts. First, if f(x) is a trigonometric function 
(that is, one of sine, cosine, tangent, cotangent, secant or cosecant) and is defined at a, 

then,  . Second, . 

To evaluate the limit, recognize that 1 − cosx can be multiplied by 1 + cosx to obtain (1 − 
cos2x) which, by our trig identities, is sin2x. So, multiply the top and bottom by 1 + cosx. 
(This is allowed because it is identical to multiplying by one.) This is a standard trick for 
evaluating limits of fractions; multiply the numerator and the denominator by a carefully 
chosen expression which will make the expression simplify somehow. In this case, we 
should end up with: 



. 

Our next step should be to break this up into by the 

product rule. As mentioned above, . 

Next, . 

Thus, by multiplying these two results, we obtain 0. 

 

We will now present an amazingly useful result, even though we cannot prove it yet. We 
can find the limit at c of any polynomial or rational function, as long as that rational 
function is defined at c (so we are not dividing by zero). That is, c must be in the domain 
of the function. 

 

Limits of Polynomials and Rational functions 



If f is a polynomial or rational function that is defined at c then 

 

 
We already learned this for trigonometric functions, so we see that it is easy to find limits 
of polynomial, rational or trigonometric functions wherever they are defined. In fact, this 
is true even for combinations of these functions; thus, for example, 

. 

The Squeeze Theorem 

 
 
Graph showing f being squeezed between g and h 

The Squeeze Theorem is very important in calculus, where it is typically used to find the 
limit of a function by comparison with two other functions whose limits are known. 



It is called the Squeeze Theorem because it refers to a function f whose values are 
squeezed between the values of two other functions g and h, both of which have the same 
limit L. If the value of f is trapped between the values of the two functions f and g, the 
values of f must also approach L. 

Expressed more precisely: 

Theorem: (Squeeze Theorem) 
Suppose that holds for all x in some 
open interval containing a, except possibly at x = a itself. 

Suppose also that . Then 

also. 

 
 
Plot of x*sin(1/x) for -0.5 < x <0.5 

Example: Compute . Note that the sine of anything is in the interval [ − 
1,1]. That is, for all x. If x is positive, we can multiply these 
inequalities by x and get . If x is negative, we can similarly 
multiply the inequalities by the positive number - x and get . 
Putting these together, we can see that, for all nonzero x, . 

But it's easy to see that . So, by the Squeeze Theorem, 

. 

Finding limits 



Now, we will discuss how, in practice, to find limits. First, if the function can be built out 
of rational, trigonometric, logarithmic and exponential functions, then if a number c is in 
the domain of the function, then the limit at c is simply the value of the function at c. 

If c is not in the domain of the function, then in many cases (as with rational functions) 
the domain of the function includes all the points near c, but not c itself. An example 

would be if we wanted to find , where the domain includes all numbers besides 0. 

In that case, in order to find we want to find a function g(x) similar to f(x), 
except with the hole at c filled in. The limits of f and g will be the same, as can be seen 
from the definition of a limit. By definition, the limit depends on f(x) only at the points 
where x is close to c but not equal to it, so the limit at c does not depend on the value of 

the function at c. Therefore, if , also. And since the 
domain of our new function g includes c, we can now (assuming g is still built out of 
rational, trigonometric, logarithmic and exponential functions) just evaluate it at c as 

before. Thus we have . 

In our example, this is easy; canceling the x's gives g(x) = 1, which equals f(x) = x / x at 

all points except 0. Thus, we have . In general, when computing 
limits of rational functions, it's a good idea to look for common factors in the numerator 
and denominator. 

Lastly, note that the limit might not exist at all. There are a number of ways in which this 
can occur: 

1. "Gap"  
There is a gap (not just a single point) where the function is not defined. As an 
example, in  

 

 

does not exist when . There is no way to "approach" the 
middle of the graph. Note also that the function also has no limit at the endpoints 
of the two curves generated (at c = − 4 and c = 4). For the limit to exist, the point 
must be approachable from both the left and the right. Note also that there is no 
limit at a totally isolated point on the graph.  

 
2. "Jump"  

If the graph suddenly jumps to a different level, there is no limit. For example, let 
f(x) be the greatest integer . Then, if c is an integer, when x approaches c 



from the right f(x) = c, while when f(x) approaches from the left f(x) = c − 1. Thus 

will not exist.  
 

3. Vertical asymptote  
In  

 
the graph gets arbitrarily high as it approaches 0, so there is no limit. (In this case 
we sometimes say the limit is infinite; see the next section.)  

 
4. Infinite oscillation  

These next two can be tricky to visualize. In this one, we mean that a graph 
continually rises above and falls below a horizontal line. In fact, it does this 
infinitely often as you approach a certain x-value. This often means that there is 
no limit, as the graph never approaches a particular value. However, if the height 
(and depth) of each oscillation diminishes as the graph approaches the x-value, so 
that the oscillations get arbitrarily smaller, then there might actually be a limit.  
The use of oscillation naturally calls to mind the trigonometric functions. An 
example of a trigonometric function that does not have a limit as x approaches 0 is  

 
As x gets closer to 0 the function keeps oscillating between - 1 and 1. In fact, 
sin(1 / x) oscillates an infinite number of times on the interval between 0 and any 
positive value of x. The sine function is equal to zero whenever x = kπ, where k is 
a positive integer. Between every two integers k, sinx goes back and forth 
between 0 and - 1 or 0 and 1. Hence, sin(1 / x) = 0 for every x = 1 / (kπ). In 
between consecutive pairs of these values, 1 / (kπ) and 1 / [(k + 1)π], sin(1 / x) 
goes back and forth from 0, to either - 1 or 1 and back to 0. We may also observe 
that there are an infinite number of such pairs, and they are all between 0 and 1 / 
π. There are a finite number of such pairs between any positive value of x and 1 / 
π, so there must be infinitely many between any positive value of x and 0. From 
our reasoning we may conclude that, as x approaches 0 from the right, the 
function sin(1 / x) does not approach any specific value. Thus, 

does not exist.  

Using limit notation to describe asymptotes 
Now consider the function 

 

What is the limit as x approaches zero? The value of g(0) does not exist; it is not defined. 



 

Notice, also, that we can make g(x) as large as we like, by choosing a small x, as long as 
. For example, to make g(x) equal to one trillion, we choose x to be 10 - 6. Thus, 

does not exist. 

However, we do know something about what happens to g(x) when x gets close to 0 
without reaching it. We want to say we can make g(x) arbitrarily large (as large as we 
like) by taking x to be sufficiently close to zero, but not equal to zero. We express this 
symbolically as follows: 

 

Note that the limit does not exist at 0; for a limit, being is a special kind of not 
existing. In general, we make the following definition. 

Definition: Informal definition of a limit being  
We say the limit of f(x) as x approaches c is infinity if f(x) becomes very big (as big as 
we like) when x is close (but not equal) to c. 

In this case we write 

 

or 

.  

Similarly, we say the limit of f(x) as x approaches c is negative infinity if f(x) becomes 
very negative when x is close (but not equal) to c. 

In this case we write 

 

or 

.  



An example of the second half of the definition would be that . 

Key application of limits 
To see the power of the concept of the limit, let's consider a moving car. Suppose we 
have a car whose position is linear with respect to time (that is, a graph plotting the 
position with respect to time will show a straight line). We want to find the velocity. This 
is easy to do from algebra; we just take the slope, and that's our velocity. 

But unfortunately, things in the real world don't always travel in nice straight lines. Cars 
speed up, slow down, and generally behave in ways that make it difficult to calculate 
their velocities. 

Now what we really want to do is to find the velocity at a given moment (the 
instantaneous velocity). The trouble is that in order to find the velocity we need two 
points, while at any given time, we only have one point. We can, of course, always find 
the average speed of the car, given two points in time, but we want to find the speed of 
the car at one precise moment. 

This is the basic trick of differential calculus, the first of the two main subjects of this 
book. We take the average speed at two moments in time, and then make those two 
moments in time closer and closer together. We then see what the limit of the slope is as 
these two moments in time are closer and closer, and say that this limit is the slope at a 
single instant. 

We will study this process in much greater depth later in the book. First, however, we 
will need to study limits more carefully. 

Continuity 
We are now ready to define the concept of a function being continuous. The idea is that 
we want to say that a function is continuous if you can draw its graph without taking your 
pencil off the page. But sometimes this will be true for some parts of a graph but not for 
others. Therefore, we want to start by defining what it means for a function to be 
continuous at one point. The definition is simple, now that we have the concept of limits: 

Definition: (continuity at a point) 

If f(x) is defined on an open interval containing c, then f(x) is said to be continuous at c if 

and only if . 



Note that for f to be continuous at c, the definition in effect requires three conditions: 

1. that f is defined at c, so f(c) exists,  
2. the limit as x approaches c exists, and  
3. the limit and f(c) are equal.  

If any of these do not hold then f is not continuous at c. 

The idea of the definition is that the point of the graph corresponding to c will be close to 
the points of the graph corresponding to nearby x-values. Now we can define what it 
means for a function to be continuous in general, not just at one point. 

A function is said to be continuous if it is continuous at every point in its domain. 

Discontinuities 
A discontinuity is a point where a function is not continuous. There are lots of possible 
ways this could happen, of course. Here we'll just discuss two simple ways. 

Removable Discontinuities 

The function is not continuous at x = 3. It is discontinuous at that point 

because the fraction then becomes , which is indeterminate. Therefore the function fails 
the first of our three conditions for continuity at the point 3; 3 is just not in its domain. 

However, we say that this discontinuity is removable. This is because, if we modify the 
function at that point, we can eliminate the discontinuity and make the function 
continuous. To see how to make the function f(x) continuous, we have to simplify f(x), 

getting . We can define a 
new function g(x) where g(x) = x + 3. Note that the function g(x) is not the same as the 
original function f(x), because g(x) is defined at x = 3, while f(x) is not. Thus, g(x) is 

continuous at x = 3, since . However, whenever , f(x) 
= g(x); all we did to f to get g was to make it defined at x = 3. 

In fact, this kind of simplification is always possible with a discontinuity in a rational 
function. We can divide the numerator and the denominator by a common factor (in our 
example x − 3) to get a function which is the same except where that common factor was 



0 (in our example at x = 3). This new function will be identical to the old except for being 
defined at new points where previously we had division by 0. 

Jump Discontinuities 

 

Unfortunately, not all discontinuities can be removed from a function. Consider this 
function: 

 

Since does not exist, there is no way to redefine k at one point so that it will be 
continuous at 0. These sorts of discontinuities are called nonremovable discontinuities. 

Note, however, that both one-sided limits exist; and 

. The problem is that they are not equal, so the graph "jumps" from one 
side of 0 to the other. In such a case, we say the function has a jump discontinuity. (Note 
that a jump discontinuity is a kind of nonremovable discontinuity.) 

One-Sided Continuity 
Just as a function can have a one-sided limit, a function can be continuous from a 
particular side. 

 

Intermediate value theorem (IVT) 
The intermediate value theorem is a very important theorem in calculus and analysis. It 
says: 



If a function is continuous on a closed interval [a,b], then for every value k between 
f(a) and f(b) there is a value c on [a,b] such that f(c)=k. 

 
A few steps of the bisection method applied over the starting range [a1;b1]. The bigger red 
dot is the root of the function. 

The bisection method is the simplest and most reliable algorithm to find roots to an 
equation. 

Suppose we want to solve the equation f(x) = 0. Given two points a and b such that f(a) 
and f(b) have opposite signs, we know by the intermediate value theorem that f must have 
at least one root in the interval [a, b] as long as f is continuous on this interval. The 
bisection method divides the interval in two by computing c = (a+b) / 2. There are now 
two possibilities: either f(a) and f(c) have opposite signs, or f(c) and f(b) have opposite 
signs. The bisection algorithm is then applied recursively to the sub-interval where the 
sign change occurs. In this way we home in to a small sub-interval containing the root. 
The mid point of that small sub-interval is usually taken as the root. 

 
 



What is differentiation? 
Differentiation is a method that allows us to find a function that relates the rate of 
change of one variable with respect to another variable. 

Informally, we may suppose that we're tracking the position of a car on a two-lane road 
with no passing lanes. Assuming the car never pulls off the road, we can abstractly study 
the car's position by assigning it a variable, x. Since the car's position changes as the time 
changes, we say that x is dependent on time, or x = x(t). But this is not enough to study 
how the car's position changes as the time changes; so far, we only have a way to tell 
where the car is at a specific time. Differentiation allows us to study dx / dt, which is the 
mathematical expression for how the car's position changes with respect to time. 

Formally, we are able to find the slope at any point of a non-linear function (compare 
with determining the slope of a linear function: quite easy). Suppose we have determined 
the position of a particle at any time t modeled by the function: 

 

Differentiating this would give us the amount of change in distance with respect to 
time (a rate, or speed). 

The Definition of Slope 

On a Line 

 
Three lines with different gradients 



The slope of a line, also called the gradient of the line, is a measure of its inclination. A 
line that is horizontal has slope 0, a line from the bottom left to the top right has a 
positive slope, a line from the top left to the bottom right has a negative slope. 

Gradient can be defined in two (equivalent) ways. The first way is to express it as how 
much the line climbs for a given "step" horizontally. We denote a step in a quantity using 
a delta (Δ) symbol. Thus, a step in x is written as Δx. We can therefore write this 
definition of gradient as: 

 

Alternatively, we can define gradient as the "tangent function" of the line: 

 

where α is the angle between the line to the horizontal (measured clockwise). Those who 
know how the tangent function is generated (opposite side over adjacent side) will be 
able to spot the equivalence here. 

If we have two points on a line, and , the step in x from P to Q is 
given by: 

 

Likewise, the step in y from P to Q is given by: 

 

This leads to the very important result below. 

The definition of slope, m, between two points (x1,y1) and (x2,y2) on a line is  

.  

On a Function 

Most functions we are interested in are not straight lines (although they can be). We 
cannot define a gradient of a curved function in the same way as we can for a line. In 
order for us to understand how to find the gradient of a function at a point, we will first 
have to cover the idea of tangency. A tangent is a line which just touches a curve at a 
point, such that the angle between them at that point is zero. Consider the following four 
curves and lines: 



(i) (ii) 

(iii) (iv) 

i. The line L crosses, but is not tangent to C at P.  
ii. The line L crosses, and is tangent to C at P.  

iii. The line L crosses C at more than one point, but is tangent to C at P.  
iv. There are many lines that cross C at P, but none are tangent. In fact, this curve has 

an undefined tangent at 'P.  

A secant is a line drawn through two points on a curve. We can construct a definition of 
the tangent as the limit of a secant of the curve drawn as the separation between the 
points tends to zero. Consider the diagram below. 



 

As the distance h tends to zero, the secant line becomes the tangent at the point x0. The 
two points we draw our line through are: 

 

and 

 

As a secant line is simply a line and we know two points on it, we can find its slope, m, 
from before: 

 

Substituting in the points on the line, 

 

This simplifies to 

 



This expression is called the difference quotient. Note that h can be positive or negative 
— it is perfectly valid to take a secant with a secondary point to the left. 

Now, to find the slope of the tangent, m0 we let h be zero. We cannot simply set it to zero 
as this would imply division of zero by zero which would yield an undefined result. 
Instead we must find the limit of the above expression as h tends to zero: 

 
 
  

The Slope at a Point 

Consider the formula for average velocity in the x-direction, . This formula can be 
used to find approximate results for speed, but is rarely exact. To correct this we look at 
the change in position as the change in time approaches 0. Mathematically this is 

written as: , where d denotes change, x denotes distance, and t denotes 
time. Compare the operator d with Δ. The delta should be familiar to you from studying 
slope. They both indicate a difference between two numbers, however d denotes an 
infinitesimal difference. 

(Note that the letter s is often used to denote distance, which would yield . The letter d 

is often avoided in denoting distance due to the ambiguity in the expression .) 

If a function f(x) is plotted on an (x,y) Cartesian coordinate system, differentiation will 
yield a function which describes the rate of change of y with respect to x. 

The rate of change at a specific point is called the instantaneous rate of change. The line 
with a slope equal to the instantaneous rate of change and that only touches the graph at 
that specific point is known as a tangent. 

Historically, the primary motivation for the study of differentiation was the tangent line 
problem: for a given curve, find the slope of the straight line that is tangent to the curve at 
a given point. The word tangent comes from the Latin word tangens, which means 
touching. Thus, to solve the tangent line problem, we need to find the slope of a line that 
is "touching" a given curve at a given point. But what exactly do we mean by "touching"? 



The solution is obvious in some cases: for example, a line y = mx + c is its own tangent; 
the slope at any point is m. For the parabola y = x2, the slope at the point (0,0) is 0 (the 
tangent line is flat). In fact, at any vertex of any smooth function the slope is zero, 
because the slope of the tangent lines on either side of the point are opposite signs. 

But how can you find the slope of, say, y = sinx + x2 at x = 1.5? 

The easiest way to find slopes for any function is by differentiation. Differentiation 
results in another function whose value for any value x is the slope of the original 
function at x. This function is known as the derivative of the original function, and is 
denoted by either a prime sign, as in (read "f prime of x"), the quotient notation, 

or , which is more useful in some cases, or the differential operator notation, 
Dx[f(x)], which is generally just written as Df(x). 

Most of the time the brackets are not needed, but are useful for clarity if we are dealing 
with something like D(fg) for a product. 

Example: If , , no matter what x.  

Example: If (the absolute value function) then 

 

Here, f(x) is not smooth (though it is continuous) at x = 0 and so the limits 

and (the limits as 0 is approached from the right and left respectively) are 
not equal. f'(0) is said to be undefined, and so f'(x) has a discontinuity at 0. This sort of 
point of non-differentiability is called a cusp. Functions may also not be differentiable 
because they go to infinity at a point, or oscillate infinitely frequently. 

The Definition of the Derivative 
The derivative is the formula mtan (slope of tangent line) on a curve at a specific point. 

An example 

Draw a curve defined as y = 3x2 and select any point on it. We select the point at which x 
= 4; what is the slope at this point? We can do it "the hard (and imprecise) way", without 
using differentiation, as follows, using a calculator and using small differences below and 
above the given point: 



When x = 3.999, y = 47.976003. 

When x = 4.001, y = 48.024003. 

Then the difference between the two values of x is Δx = 0.002. 

Then the difference between the two values of y is Δy = 0.048. 

Thus, the slope at the point of the graph at which x = 4. 

 
Now using differentiation rules (see below) to solve this problem again, when y = 3x2 
then the slope at any point of that curve is found by evaluating y' = 6x. 

Our x is 4, so that again. No need for a calculator! 

 

 

This is the definition of the derivative. If the limit exists we say that f is differentiable at x 
and its derivative at x is f'(x). A visual explanation of this formula is that the slope of the 
tangent line is the limit of the slope of a secant line when the difference of the points (Δx) 
tends to zero. 

Example 

Let us try this for a simple function: 

 =  

 
= 

 
=  



 
=  

This is consistent with the definition of the derivative as the slope of a function. 

Sometimes, the slope of a function varies with x. This is demonstrated by the function 
f(x) = x2, 

 =  

 
=  

 
= 

 
=  

 =  
 = 2x 

Understanding the Derivative Notation 

The derivative notation is special and unique in mathematics. The most common use of 
derivatives you'll run into when first starting out with differentiating is the Leibniz 

notation, expressed as . You may think of this as "rate of change in y with respect to 
x". You may also think of it as "infinitesimal value of y divided by infinitesimal value of 

x". Either way is a good way of thinking. Often, in an equation, you will see just , 
which literally means "derivative with respect to x". You may safely assume that it is the 

equivalent of for now. 

As you advance through your studies, you will see that dy and dx can act as separate 
entities that can be multiplied and divided (to a certain degree). Eventually you will see 

derivatives such as , which sometimes will be written . Or, you may see a 

derivative in polar coordinates marked as . 



All of the following are equivalent for expressing the derivative of y = x2 

•  

•  
•  
•  
• s 

Exercises 

Using the definition of the derivative find the derivative of the function f(x) = 2x + 3 

Using the definition of the derivative find the derivative of the function f(x) = x3. Now try 
f(x) = x4. Can you see a pattern? In the next section we will find the derivative of f(x) = xn 
for all n. 

The text states that the derivative of is not defined at x = 0. Use the definition of the 
derivative to show this. 

Graph the derivative to y = 4x2 on a piece of graph paper without solving for dy / dx. 
Then, solve for dy / dx and graph that; compare the two graphs. 

Use the definition of the derivative to show that the derivative of sinx is cosx. Hint: Use a 

suitable sum to product formula and the fact  

Differentiation rules 
The process of differentiation is tedious for large functions. Therefore, rules for 
differentiating general functions have been developed, and can be proved with a little 
effort. Once sufficient rules have been proved, it will be possible to differentiate a wide 
variety of functions. Some of the simplest rules involve the derivative of linear functions. 

Derivative of a Constant Function 

For any fixed real number c, 

 

Intuition 



The function f(x) = c is a horizontal line, which has a constant slope of zero. Therefore, it 
should be expected that the derivative of this function is zero, regardless of the value of x. 

Proof 

From the definition of a derivative: 

 

Let f(x) = c. Then f(x + Δx) = c because there are no x's in the function with which to plug 
in x + Δx. Therefore: 

 

Example 

 

Example 

 

Derivative of a Linear Function 

For any fixed real numbers m and c, 

 

The special case shows the advantage of the notation -- rules are intuitive by 
basic algebra, though this does not constitute a proof, and can lead to misconceptions to 
what exactly dx and dy actually are. 

Constant multiple and addition rules 

Since we already know the rules for some very basic functions, we would like to be able 
to take the derivative of more complex functions and break them up into simpler 



functions. Two tools that let us do this are the constant multiple rules and the addition 
rule. 

The Constant Rule 

For any fixed real number c, 

 

The reason, of course, is that one can factor c out of the numerator, and then of the entire 
limit, in the definition. 

Example 

We already know that 

.  

Suppose we want to find the derivative of 3x2 

 =  
 =  
 =  

Another simple rule for breaking up functions is the addition rule. 

The Addition and Subtraction Rules 

 

Proof 

From the definition: 

 



 

 

By definition then, this last term is  

Example: 

 =  

 
= 

 
=  

 =  

The fact that both of these rules work is extremely significant mathematically because it 
means that differentiation is linear. You can take an equation, break it up into terms, 
figure out the derivative individually and build the answer back up, and nothing odd will 
happen. 

We now need only one more piece of information before we can take the derivatives of 
any polynomial. 

The Power Rule 

 

For example, in the case of x2 the derivative is 2x1 = 2x as was established earlier. This 
rule is actually in effect in linear equations too, since xn − 1 = x0 when n=1, and of course, 
any real number or variable to the zero power is one. 

This rule also applies to fractional and negative powers. Therefore 

 =  



 
=  

 
=  

Since polynomials are sums of monomials, using this rule and the addition rule lets you 
differentiate any polynomial. A relatively simple proof for this can be derived from the 
binomial expansion theorem. 

Derivatives of polynomials 

With these rules in hand, you can now find the derivative of any polynomial you come 
across. Rather than write the general formula, let's go step by step through the process. 

 

The first thing we can do is to use the addition rule to split the equation up into terms: 

 

We can immediately use the linear and constant rules to get rid of some terms: 

 

Now you may use the constant multiplier rule to move the constants outside the 
derivatives: 

 

Then use the power rule to work with the individual monomials: 

 

And then do some algebra to get the final answer: 

 

These are not the only differentiation rules. There are other, more advanced, 
differentiation rules, which will be described in a later chapter. 



Exercises 

• Find the derivatives of the following equations:  

f(x) = 42  
f(x) = 6x + 10  
f(x) = 2x2 + 12x + 3  

• Use the definition of a derivative to prove the derivative of a constant function, of 
a linear function, and the constant rule and addition or subtraction rules.  

• Answers:  

f'(x) = 0  
f'(x) = 6  
f'(x) = 4x + 12  

Extrema and Points of Inflexion 

 
The four types of extrema. 

Maxima and minima are points where a function reaches a highest or lowest value, 
respectively. There are two kinds of extrema (a word meaning maximum or minimum): 
global and local, sometimes referred to as "absolute" and "relative", respectively. A 
global maximum is a point that takes the largest value on the entire range of the function, 
while a global minimum is the point that takes the smallest value on the range of the 
function. On the other hand, local extrema are the largest or smallest values of the 
function in the immediate vicinity. 

All extrema look like the crest of a hill or the bottom of a bowl on a graph of the 
function. A global extremum is always a local extremum too, because it is the largest or 
smallest value on the entire range of the function, and therefore also its vicinity. It is also 
possible to have a function with no extrema, global or local: y=x is a simple example. 

At any extremum, the slope of the graph is necessarily zero, as the graph must stop rising 
or falling at an extremum, and begin to fall or rise. Because of this, extrema are also 
commonly called stationary points or turning points. Therefore, the first derivative of a 
function is equal to zero at extrema. If the graph has one or more of these stationary 



points, these may be found by setting the first derivative equal to zero and finding the 
roots of the resulting equation. 

 
The function f(x)=x3, which contains a point of inflexion at the point (0,0). 

However, a slope of zero does not guarantee a maximum or minimum: there is a third 
class of stationary point called a point of inflexion. Consider the function 

.  

The derivative is 

 

The slope at x=0 is 0. We have a slope of zero, but while this makes it a stationary point, 
this doesn't mean that it is a maximum or minimum. Looking at the graph of the function 
you will see that x=0 is neither, it's just a spot at which the function flattens out. True 
extrema require the a sign change in the first derivative. This makes sense - you have to 
rise (positive slope) to and fall (negative slope) from a maximum. In between rising and 
falling, on a smooth curve, there will be a point of zero slope - the maximum. A 
minimum would exhibit similar properties, just in reverse. 

 
Good (B and C, green) and bad (D and E, blue) points to check in order to classify the 
extremum (A, black). The bad points lead to an incorrect classification of A as a 
minimum. 

This leads to a simple method to classify a stationary point - plug x values slightly left 
and right into the derivative of the function. If the results have opposite signs then it is a 



true maximum/minimum. You can also use these slopes to figure out if it is a maximum 
or a minimum: the left side slope will be positive for a maximum and negative for a 
minimum. However, you must exercise caution with this method, as, if you pick a point 
too far from the extremum, you could take it on the far side of another extremum and 
incorrectly classify the point. 

The Extremum Test 

A more rigorous method to classify a stationary point is called the extremum test. As we 
mentioned before, the sign of the first derivative must change for a stationary point to be 
a true extremum. Now, the second derivative of the function tells us the rate of change of 
the first derivative. It therefore follows that if the second derivative is positive at the 
stationary point, then the gradient is increasing. The fact that it is a stationary point in the 
first place means that this can only be a minimum. Conversely, if the second derivative is 
negative at that point, then it is a maximum. 

Now, if the second derivative is zero, we have a problem. It could be a point of inflexion, 
or it could still be an extremum. Examples of each of these cases are below - all have a 
second derivative equal to zero at the stationary point in question: 

• y = x3 has a point of inflexion at x = 0  
• y = x4 has a minimum at x = 0  
• y = − x4 has a maximum at x = 0  

However, this is not an insoluble problem. What we must do is continue to differentiate 
until we get, at the (n+1)th derivative, a non-zero result at the stationary point: 

 

If n is odd, then the stationary point is a true extremum. If the (n+1)th derivative is 
positive, it is a minimum; if the (n+1)th derivative is negative, it is a maximum. If n is 
even, then the stationary point is a point of inflexion. 

As an example, let us consider the function 

 

We now differentiate until we get a non-zero result at the stationary point at x=0 (assume 
we have already found this point as usual): 

 
 
 

 



Therefore, (n+1) is 4, so n is 3. This is odd, and the fourth derivative is negative, so we 
have a maximum. Note that none of the methods given can tell you if this is a global 
extremum or just a local one. To do this, you would have to set the function equal to the 
height of the extremum and look for other roots. 

More Differentiation Rules 
Chain Rule 
We know how to differentiate regular polynomial functions. For example: 

 

 

 
 

 

However, there is a useful rule known as the chain method rule. The function above 
(f(x) = (x2 + 5)2) can be consolidated into two nested parts f(x) = u2, where u = m(x) = (x2 
+ 5). Therefore: 

if  

and  

 

Then: 

 

Then 

 

The chain rule states that if we have a function of the form y(u(x)) (i.e. y can be written 
as a function of u and u can be written as a function of x) then: 

 

 



Chain Rule 

If a function F(x) is composed to two differentiable functions 
g(x) and m(x), so that F(x)=g(m(x)), then F(x) is differentiable 

and, 

 

We can now investigate the original function: 

 

 

Therefore 

 

This can be performed for more complicated equations. If we consider: 

 

and let y=√u and u=1+x2, so that dy/du=1/2√u and du/dx=2x, then, by applying the chain 
rule, we find that 

 

So, in just plain words, for the chain rule you take the normal derivative of the whole 
thing (make the exponent the coefficient, then multiply by original function but decrease 
the exponent by 1) then multiply by the derivative of the inside. 

Product and Quotient Rules 
When we wish to differentiate a more complicated expression such as: 

 



our only way (up to this point) to differentiate the expression is to expand it and get a 
polynomial, and then differentiate that polynomial. This method becomes very 
complicated and is particularly error prone when doing calculations by hand. It is 
advantageous to find the derivative of h(x) using just the functions f(x) = (x2+5)5 and g(x) 
= (x3 + 2)3 and their derivatives. 

 

Derivatives of products (Product rule) 

 

 
What this rule basically means is that if one has a function that is the product of two 
functions, then all one has to do is differentiate the first function, multiply it by the other 
undifferentiated function, add that to the first function undifferentiated multiplied by the 
differentiated second function. For example, if one were to take the function 

 

its derivative would not be 

 

Instead it would be 

 

Another way of approaching this is if one were to have a function that was a product of 
the two functions A and B 

 

Its derivative would be 

 

Proof 

Proving this rule is relatively straightforward, first let us state the equation for the 
derivative: 



 

We will then apply one of the oldest tricks in the book—adding a term that cancels itself 
out to the middle: 

 

 

Notice that those terms sum to zero, and so all we have done is add 0 to the equation. 

Now we can split the equation up into forms that we already know how to solve: 

 

Looking at this, we see that we can separate the common terms out of the numerators to 
get: 

 

Which, when we take the limit, becomes: 

, or the mnemonic "one 
D-two plus two D-one"  

 
This can be extended to 3 functions: 

 

For any number of functions, the derivative of their product is the sum, for each function, 
of its derivative times each other function. 

 

Application, proof of the power rule 



The product rule can be used to give a proof of the power rule for whole numbers. The 
proof proceeds by mathematical induction. We begin with the base case n = 1. If f1(x) = x 
then from the definition is easy to see that 

 

Next we suppose that for fixed value of N, we know that for fN(x) = xN, fN'(x) = NxN − 1. 
Consider the derivative of fN + 1(x) = xN + 1, 

 

We have shown that the statement is true for n = 1 and that if this 
statement holds for n = N, then it also holds for n = N + 1. Thus by the principle of 
mathematical induction, the statement must hold for . 

Quotient rule 

For quotients, where one function is divided by another function, the equation is more 
complicated but it is simply a special case of the product rule. 

 

Then we can just use the product rule and the chain rule: 

 

We can then multiply through by 1, or more precisely: g(x)2 / g(x)2, which cancels out 
into 1, to get: 

 

This leads us to the so-called "quotient rule": 

 

Derivatives of quotients (Quotient Rule) 



 

Which some people remember with the mnemonic "low D-high minus high D-low over 
the square of what's below." 

Examples 

The derivative of (4x − 2) / (x2 + 1) is: 

 

Remember: the derivative of a product/quotient is not the product/quotient of the 
derivatives. (That is, differentiation does not distribute over multiplication or division.) 
However one can distribute before taking the derivative. That is 

 

Implicit Differentiation 
Generally, one will encounter functions expressed in explicit form, that is, y = f(x) form. 
You might encounter a function that contains a mixture of different variables. Many 
times it is inconvenient or even impossible to solve for y. A good example is the function 

. It is too cumbersome to isolate y in this function. One can utilize 
implicit differentiation to find the derivative. To do so, consider y to be a nested function 
that is defined implicitly by x. You need to employ the chain rule whenever you take the 

derivative of a variable with respect to a different variable: i.e., (the derivative with 

respect to x) of x is 1; of y is . 

Remember: 



 

Therefore: 

 

Examples 

 

can be solved as: 

 

then differentiated: 

 

However, it can also be differentiated like this: 

 

(use the product rule)  

(solve for )  

Note that, if we substitute into , we end up with again. 

• Find the derivative of y2 + x2 = 25 with respect to x.  

You are seeking . 

Take the derivative of each side of the equation with respect to x. 



 

 

 

 

Exponential, logarithmic, and trigonometric functions 

Exponential 

To determine the derivative of an exponent requires use of the symmetric difference 
equation for determining the derivative: 

 

First we will solve this for the specific case of an exponent with a base of e and then 
extend it to the general case with a base of a where a is a positive real number. 

First we set up our problem using f(x) = ex: 

 

Then we apply some basic algebra with powers (specifically that ab + c = ab ac): 

 

Treating ex as a constant with respect to what we are taking the limit of, we can use the 
limit rules to move it to the outside, leaving us with: 

 

A careful examination of the limit reveals a hyperbolic sine: 

 



The limit of as h approaches 0 is equal to 1, leaving us with: 

Derivative of the exponential function 

 

in which f'(x) = f(x). 

Now that we have derived a specific case, let us extend things to the general case. 
Assuming that a is a positive real constant, we wish to calculate: 

 

One of the oldest tricks in mathematics is to break a problem down into a form that we 
already know we can handle. Since we have already determined the derivative of ex, we 
will attempt to rewrite ax in that form. 

Using that eln(c) = c and that ln(ab) = b · ln(a), we find that: 

 

Thus, we simply apply the chain rule: 

 

In which we can solve for the derivative and substitute back with ex · ln(a) = ax to get: 

 

Derivative of the exponential function 

 

Logarithms 



Closely related to the exponentiation is the logarithm. Just as with exponents, we will 
derive the equation for a specific case first (the natural log, where the base is e), and then 
work to generalize it for any logarithm. 

First let us create a variable y such that: 

 

It should be noted that what we want to find is the derivative of y or . 

Next we will put both sides to the power of e in an attempt to remove the logarithm from 
the right hand side: 

ey = x  

Now, applying the chain rule and the property of exponents we derived earlier, we take 
the derivative of both sides: 

 

This leaves us with the derivative: 

 

Substituting back our original equation of x = ey, we find that: 

 

Derivative of the Natural Logarithm 

 

If we wanted, we could go through that same process again for a generalized base, but it 
is easier just to use properties of logs and realize that: 

 



Since 1 / ln(b) is a constant, we can just take it outside of the derivative: 

 

which leaves us with the generalized form of: 

Derivative of the Logarithm 

 

Trigonometric Functions 

Sine, Cosine, Tangent, Cosecant, Secant, Cotangent: These are functions that crop up 
continuously in mathematics and engineering and have a lot of practical applications. 
They also appear in more advanced mathematics, particularly when dealing with things 
such as line integrals with complex numbers and alternate representations of space like 
spherical and cylindrical coordinate systems. 

We use the definition of the derivative, i.e., 

,  

to work these first two out. 

Let us find the derivative of sin x, using the above definition. 

 

 

Definition of derivative 

 

trigonometric identity 



 

factoring 

 

separation of terms 

 
application of limit 

 
solution 

Now for the case of cos x 

 

 

Definition of derivative 

 

trigonometric identity 

 

factoring 

 

separation of terms 

 



application of limit 

 
solution 

Therefore we have established 

Derivative of Sine and Cosine 

 

 

 

To find the derivative of the tangent, we just remember that: 

 

which is a quotient. Applying the quotient rule, we get: 

 

Then, remembering that cos2(x) + sin2(x) = 1, we simplify: 

 
 

 

Derivative of the Tangent 



 

For secants, we just need to apply the chain rule to the derivations we have already 
determined. 

 

So for the secant, we state the equation as: 

 
u(x) = cos(x)  

Take the derivative of both equations, we find: 

 

 

Leaving us with: 

 

Simplifying, we get: 

 

Derivative of the Secant 

 

Using the same procedure on cosecants: 



 

We get: 

Derivative of the Cosecant 

 

Using the same procedure for the cotangent that we used for the tangent, we get: 

Derivative of the Cotangent 

 

Inverse Trigonometric Functions 

Arcsine, arccosine, arctangent: These are the functions that allow you to determine the 
angle given the sine, cosine, or tangent of that angle. 

First, let us start with the arcsine such that: 

y = arcsin(x)  

To find dy/dx we first need to break this down into a form we can work with: 

x = sin(y)  

Then we can take the derivative of that: 

 

...and solve for dy / dx: 

 



At this point we need to go back to the unit triangle. Since y is the angle and the opposite 
side is sin(y) (which is equal to x), the adjacent side is cos(y) (which is equal to the square 
root of 1 minus x2, based on the Pythagorean theorem), and the hypotenuse is 1. Since we 
have determined the value of cos(y) based on the unit triangle, we can substitute it back 
in to the above equation and get: 

Derivative of the Arcsine 

 

We can use an identical procedure for the arccosine and arctangent: 

Derivative of the Arccosine 

 

Derivative of the Arctangent 

 

Exercises 
By using the above rules, practice differentiation on the following. 

1.  

2.  

3.  

4.  

5.  



6.  

7.  

8.  

9.  

10.  

Applications of Derivatives 

Newton's Method 
Newton's Method (also called the Newton-Raphson method) is a recursive algorithm for 
approximating the root of a differentiable function. We know simple formulas for finding 
the roots of linear and quadratic equations, and there are also more complicated formulae 
for cubic and quartic equations. At one time it was hoped that there would be formulas 
found for equations of quintic and higher-degree, though it was later shown by Neils 
Henrik Abel that no such equations exist. The Newton-Raphson method is a method for 
approximating the roots of polynomial equations of any order. In fact the method works 
for any equation, polynomial or not, as long as the function is differentiable in a desired 
interval. 

Newton's Method 

Let f(x) be a differentiable function. Select a point x1 based on a 
first approximation to the root, arbitrarily close to the function's 
root. To approximate the root you then recursively calculate 
using: 

 

As you recursively calculate, the xn's become increasingly better 
approximations of the function's root. 

For n number of approximations, 



 

Examples 

Find the root of the function . 

 

 

 

 

 

 

 

 

As you can see xn is gradually approaching zero (which we know is the root of f(x)). One 
can approach the function's root with arbitrary accuracy. 

Answer:  has a root at . 

Notes 
This method fails when f'(x) = 0. In that case, one should choose a new starting place. 
Occasionally it may happen that f(x) = 0 and f'(x) = 0 have a common root. To detect 
whether this is true, we should first find the solutions of f'(x) = 0, and then check the 
value of f(x) at these places. 

Newton's method also may not converge for every function, take as an example: 



 

For this function choosing any x1 = r − h then x2 = r + h would cause successive 
approximations to alternate back and forth, so no amount of iteration would get us any 
closer to the root than our first guess. 

Related Rates 
Process for solving related rates problems: 

• Write out any relevant formulas and information.  
• Take the derivative of the primary equation with respect to time.  
• Solve for the desired variable.  
• Plug-in known information and simplify.  

As stated, when doing related rates, you generate a function which compares the rate of 
change of one value with respect to change in time. For example, velocity is the rate of 
change of distance over time. Likewise, acceleration is the rate of change of velocity over 
time. Therefore, for the variables for distance, velocity, and acceleration, respectively x, 
v, and a, and time, t: 

 

 

Using derivatives, you can find the functions for velocity and acceleration from the 
distance function. This is the basic idea behind related rates: the rate of change of a 
function is the derivative of that function with respect to time. 

Common Applications 

Filling Tank 

This is the easiest variant of the most common textbook related rates problem: the filling 
water tank. 

• The tank is a cube, with volume 1000L.  
• You have to fill the tank in ten minutes or you die.  
• You want to escape with your life and as much money as possible, so you want to 

find the smallest pump that can finish the task.  



We need a pump that will fill the tank 1000L in ten minutes. So, for pump rate p, volume 
of water pumped v, and minutes t: 

 

 

Examples 
Related rates can get complicated very easily. 

Example 1: 

A cone with a circular base is being filled with water. Find a formula 
which will find the rate with which water is pumped. 

• Write out any relevant formulas or pieces of information.  

 

• Take the derivative of the equation above with respect to time. Remember to use 
the Chain Rule and the Product Rule.  

 

 

Answer:  

Example 2: 

A spherical hot air balloon is being filled with air. The volume is 
changing at a rate of 2 cubic feet per minute.  
How is the radius changing with respect to time when the radius is 
equal to 2 feet? 

• Write out any relevant formulas and pieces of information.  

 



 
 

• Take the derivative of both sides of the volume equation with respect to time.  

 

 
= 

 = 
 

   

• Solve for  

 

• Plug-in known information.  

 

Answer:  ft/min. 

Example 3: 

An airplane is attempting to drop a box onto a house. The house is 300 
feet away in horizontal distance and 400 feet in vertical distance. The 
rate of change of the horizontal distance with respect to time is the 
same as the rate of change of the vertical distance with respect to 
time. How is the distance between the box and the house changing with 
respect to time at the moment? The rate of change in the horizontal 
direction with respect to time is -50 feet per second.  

Note: Because the vertical distance is downward in nature, the rate of change of y is 
negative. Similarly, the horizontal distance is decreasing, therefore it is negative (it is 
getting closer and closer). 

The easiest way to describe the horizontal and vertical relationships of the plane's motion 
is the Pythagorean Theorem. 



• Write out any relevant formulas and pieces of information.  

(where s is the distance between the plane and the house)  
 
 

 

 

• Take the derivative of both sides of the distance formula with respect to time.  

 

 

• Solve for .  

 

• Plug-in known information  

 
= 

 = 
 

 = ft/s 
   

Answer:  ft/sec. 

Example 4: 

Sand falls onto a cone shaped pile at a rate of 10 cubic feet per 
minute.  The radius of the pile's base 
is always 1/2 of its altitude.  When the pile is 5 ft deep, how fast is 
the altitude of the pile increasing? 

• Write down any relevant formulas and information.  



 

 

 
 

Substitute into the volume equation. 

 = 
 

 = 
 

 = 
 

   

• Take the derivative of the volume equation with respect to time.  

 

 

• Solve for .  

 

• Plug-in known information and simplify.  

 
= 

 

 = 
ft/min 

   



Answer:  ft/min. 

Example 5: 

A 10 ft long ladder is leaning against a vertical wall.  The foot of 
the ladder is being pulled away from 
the wall at a constant rate of 2 ft/sec.  When the ladder is exactly 8 
ft from the wall, how fast is  
the top of the ladder sliding down the wall? 

• Write out any relevant formulas and information.  

Use the Pythagorean Theorem to describe the motion of the ladder. 

(where l is the length of the ladder)  
 

 
 

 

• Take the derivative of the equation with respect to time.  

(  so .)  

• Solve for .  

 

 

 

• Plug-in known information and simplify.  

 
= 

 



 = 
ft/sec 

   

Answer:  ft/sec. 

Exercises 

Problem Set 

Here's a few problems for you to try: 

1. A spherical balloon is inflated at a rate of 100 ft3/min. Assuming the rate of 
inflation remains constant, how fast is the radius of the balloon increasing at the 
instant the radius is 4 ft?  

2. Water is pumped from a cone shaped reservoir (the vertex is pointed down) 10 ft 
in diameter and 10 ft deep at a constant rate of 3 ft3/min. How fast is the water 
level falling when the depth of the water is 6 ft?  

3. A boat is pulled into a dock via a rope with one end attached to the bow of a boat 
and the other end held by a man standing 6 ft above the bow of the boat. If the 
man pulls the rope at a constant rate of 2 ft/sec, how fast is the boat moving 
toward the dock when 10 ft of rope is out?  

Solution Set 

1.  

2.  

3.  

Kinematics 
Kinematics or the study of motion is a very relevant topic in calculus. 

This section uses the following conventions: 

• represents the position equation  
• represents the velocity equation  
• represents the acceleration equation  



Differentiation 

Average Velocity and Acceleration 

Average velocity and acceleration problems use the algebraic definitions of velocity and 
acceleration. 

•  

•  

Examples 

Example 1: 

A particle's position is defined by the equation . 
Find the 
average velocity over the interval [2,7]. 

• Find the average velocity over the interval [2,7]:  

 = 
 

 = 
 

 =  
   

Answer: . 

Instantaneous Velocity and Acceleration 

Instantaneous velocity and acceleration problems use the derivative definitions of 
velocity and acceleration. 

•  

•  



Examples 

Example 2: 

A particle moves along a path with a position that can be determined by 

the function .  
Determine the acceleration when t = 3. 

• Find  

 

• Find  

 

• Find  

 
=  

 =  
 = 
   

Answer:  

Integration 

•  

•  

Optimization 



Optimization is the use of Calculus in the real world. Let us assume we are a pizza parlor 
and wish to maximize profit. Perhaps we have a flat piece of cardboard and we need to 
make a box with the greatest volume. How does one go about this process? 

Obviously, this requires the use of maximums and minimums. We know that we find 
maximums and minimums via derivatives. Therefore, one can conclude that Calculus will 
be a useful tool for maximizing or minimizing (also known as "Optimizing") a situation. 

Examples 
Example 1: 

A box manufacturer desires to create a box with a surface area of 100 
inches squared.  
What is the maximum size volume that can be formed by bending this 
material into a box?  
The box is to be closed.  The box is to have a square base, square top, 
and rectangular sides. 

• Write out known formulas and information  

 
 

 
 

• Eliminate the variable h in the volume equation  

 
 
 

 

 = 
 

 = 
 

   

• Find the derivative of the volume equation in order to maximize the volume  

 



• Set and solve for  

 
 

 

 

• Plug-in the x value into the volume equation and simplify  

 = 

 =  
   

Answer:  

Sales Example 

 

A small retailer can sell n units of a product for a revenue of r(n)=8.1n and at a cost of 
c(n)=n3-7n2+18n, with all amounts in thousands. How many units does it sell to 
maximize its profit? 

The retailer's profit is defined by the equation p(n)=r(n) - c(n), which is the revenue 
generated less the cost. The question asks for the maximum amount of profit which is the 
maximum of the above equation. As previously discussed, the maxima and minima of a 



graph are found when the slope of said graph is equal to zero. To find the slope one finds 
the derivative of p(n). By using the subtraction rule p'(n)=r'(n) - c'(n): 

 =  

 = 
 =  

Therefore, when the profit will be maximized or minimized. 
Use the quadratic formula to find the roots, giving {3.798,0.869}. To find which of these 
is the maximum and minimum the function can be tested: 

p(0.869) = - 3.97321, p(3.798) = 8.58802 

Because we only consider the functions for all n >= 0 (i.e. you can't have n=-5 units), the 
only points that can be minima or maxima are those two listed above. To show that 3.798 
is in fact a maximum (and that the function doesn't remain constant past this point) check 
if the sign of p'(n) changes at this point. It does, and for n greater than 3.798 P'(n) the 
value will remain decreasing. Finally, this shows that for this retailer selling 3,798 units 
would return a profit of $8,588.02. 

 



Integration 
Definition of the Integral 

 
Figure 1 

 
Figure 2 

 



The rough idea of defining the area under the graph of f is to approximate this area with a 
finite number of rectangles. Since we can easily work out the area of the rectangles we 
get an estimate of the area under the graph. If we use a larger number of rectangles we 
expect a better approximation, and the limit as we approach an infinite number of 
rectangles will give the exact area. 

Suppose first that f is positive and a<b. We pick an integer n and divide the interval [a,b] 
into n subintervals of equal width (see Figure 2). As the interval [a,b] has width b-a each 

subinterval has width We denote the endpoints of the subintervals by 
so 

 

 
Figure 3 

Now for each pick a sample point in the interval and consider 
the rectangle of height and width Δx (see Figure 3). The area of this rectangle is 

. By adding up the area of all the rectangles for we get that the 
area S is approximated by 

 

A more convenient way to write this is with the summation notation as 



 

For each number n we get a different approximation. As n gets larger the width of the 
rectangles gets smaller which yields a better approximation (see Figures 4 and 5). In the 
limit as An as n tends to infinity we get the area of S. 

 

Definition of the Definite Integral Suppose f is a continuous function on [a,b] and 

. Then the definite integral of f between a and b is 

 
where are any sample points in the interval [xi − 1,xi]. 

 

It is a fact that if f is continuous on [a,b] then this limit always exists and does not depend 
on the choice of the points . For instance they may be evenly spaced, or 
distributed ambiguously throughout the interval. The proof of this is technical and is 
beyond the scope of this section. 

Notation When considering the expression the function f is called the 
integrand and the interval [a,b] is the interval of integration. Also a is called the lower 
limit and b the upper limit of integration. 

One important feature of this definition is that we also allow functions which take 
negative values. If f(x)<0 for all x then so . So the definite 
integral of f will be strictly negative. More generally if f takes on both positive an 

negative values then will be the area under the positive part of the graph of f 
minus the area under the graph of the negative part of the graph (see Figure 6). For this 

reason we say that is the signed area under the graph. 



 
 
Figure 6 

 
 
Figure 

 



 
The area spanned by f(x) 

A geometrical proof that anti-derivative gives the area 

Suppose we have a function F(x) which returns the area between x and some unknown 
point u. (Actually, u is the first number before x which satisfies F(u) = 0, but our solution 
is independent from u, so we won't bother ourselves with it.) We don't even know if 
something like F exists or not, but we're going to investigate what clue do we have if it 
does exist. 

We can use F to calculate the area between a and b, for instance, which is obviously F(b)-
F(a); F is something general. Now, consider a rather peculiar situation, the area bounded 
at x and x + Δx, in the limit of . Of course it can be calculated by using F, but 
we're looking for another solution this time. As the right border approaches the left one, 
the shape seems to be an infinitesimal rectangle, with the height of f(x) and width of Δx. 
So, the area reads: 

 

Of course, we could use F to calculate this area as well: 

 

By combining these equations, we have 



 

If we divide both sides by Δx, we get 

 

which is an interesting result, because the left-hand side is the derivative of F with respect 
to x. This remarkable result doesn't tell us what F itself is, however it tells us what the 
derivative of F is, and it is f. 

Independence of Variable 

It is important to notice that the variable x did not play an important role in the definition 
of the integral. In fact we can replace it with any other letter, so the following are all 

equal: Each of these is 
the signed area under the graph of f between a and b. 

Left and Right Handed Riemann Sums 

These methods are sometimes referred to as L-RAM and R-RAM, RAM standing for 
"Rectangular Approximation Method." 

We could have decided to choose all our sample points to be on the right hand side of 
the interval [xi − 1,xi] (see Figure 7). Then for all i and the approximation that we 
called An for the area becomes 

 

This is called the right-handed Riemann sum, and the integral is the limit 

 

Alternatively we could have taken each sample point on the left hand side of the interval. 
In this case (see Figure 8) and the approximation becomes 

 



Then the integral of f is 

 

The key point is that, as long as f is continuous, these two definitions give the same 
answer for the integral. 

 
Figure 7 



 
Figure 8 

Example 1 

In this example we will calculate the area under the curve given by the graph of f(x) = x 
for x between 0 and 1. First we fix an integer n and divide the interval [0,1] into n 
subintervals of equal width. So each subinterval has width 

 

To calculate the integral we will use the right-handed Riemann Sum. (We could have 
used the left-handed sum instead, and this would give the same answer in the end). For 
the right-handed sum the sample points are 

 

Notice that . Putting this into the formula for the approximation, 

 

Now we use the formula 



 

to get 

 

To calculate the integral of f between 0 and 1 we take the limit as n tends to infinity, 

 

Example 2 

Next we show how to find the integral of the function f(x) = x2 between x=a and x=b. 
This time the interval [a,b] has width b-a so 

 

Once again we will use the right-handed Riemann Sum. So the sample points we choose 
are 

 

Thus 

 
 

 
 

 
 

 

We have to calculate each piece on the right hand side of this equation. For the first two, 



 

 

For the third sum we have to use a formula 

 

to get 

 

Putting this together 

 

Taking the limit as n tend to infinity gives 

  

 
 

 
 

 
 

Basic Properties of the Integral 

The Constant Rule 

From the definition of the integral we can deduce some basic properties. We suppose that 
f and g are continuous on [a,b]. 



Integrating Constants 

If c is constant then  

When c > 0 and a < b this integral is the area of a rectangle of height c and width b-a 
which equals c(b-a). 

Example 

 

 

 

Constant Rule 

 

When f is positive, the height of the function cf at a point x is c times the height of the 
function f. So the area under cf between a and b is c times the area under f. We can also 
give a proof using the definition of the integral, using the constant rule for limits, 

 

Example We saw in the previous section that 

.  

Using the constant rule we can use this to calculate that 

 

 

Example We saw in the previous section that 



. We can use this and the constant rule to calculate 
that  

 

The addition and subtraction rule 

Addition and Subtraction Rules of Integration 

 

 

As with the constant rule, the addition rule follows from the addition rule for limits: 

 
=

 

 =
 

 =
 

The subtraction rule can be proved in a similar way. 

Example From above and so 

 

 

Example 

The Comparison Rule 



Comparison Rule 

• Suppose for all x in [a,b]. Then  

 

• Suppose for all x in [a,b]. Then  

 

• Suppose for all x in [a,b]. Then  

 

If then each of the rectangles in the Riemann sum to calculate the integral of f 
will be above the y axis, so the area will be non-negative. If then 

and by linearity of the integral we get the second property. Finally if 
then the area under the graph of f will be greater than the area of 

rectangle with height m and less than the area of the rectangle with height M (see Figure 
9). So 

 



 
Figure 9 

Linearity with respect to endpoints 

Additivity with respect to endpoints Suppose a < c < b. Then 

 

Again suppose that f is positive. Then this property should be interpreted as saying that 
the area under the graph of f between a and b is the area between a and c plus the area 
between c and b (see Figure 8) 



 
Figure 8 

 

Extension of Additivity with respect to limits of integration 

When a = b we have that so 

 
Also in defining the integral we assumed that a<b. But the definition makes sense even 

when b<a in which case so has changed sign. This gives  

 
With these definitions,  

 
whatever the order of a,b,c. 

Fundamental Theorem of Calculus 

Statement of the Fundamental Theorem 

Suppose that f is continuous on [a,b]. We can define a function F by 



 

Fundamental Theorem of Calculus Part I Suppose f is continuous on [a,b] and F is 
defined by 

 
Then F is differentiable on (a,b) and for all ,  

 

 

Now recall that F is said to be an antiderivative of f if . 

Fundamental Theorem of Calculus Part II Suppose that f is continuous on [a,b] and 
that F is any antiderivative of f. Then 

 

 
Figure 1 

Note: a minority of mathematicians refer to part one as two and part two as one. All 
mathematicians refer to what is stated here as part 2 as The Fundamental Theorem of 
Calculus. 

Proofs 



Proof of Fundamental Theorem of Calculus Part I 

Suppose x is in (a,b). Pick Δx so that x + Δx is also in (a, b). Then 

 

and 

.  

Subtracting the two equations gives 

 

Now 

 

so rearranging this we have 

 

According to the mean value theorem for integration, there exists a c in [x, x + Δx] such 
that 

.  

Notice that c depends on Δx. Anyway what we have shown is that 

,  

and dividing both sides by Δx gives 

.  

Take the limit as we get the definition of the derivative of F at x so we have 



.  

To find the other limit, we will use the squeeze theorem. The number c is in the interval 

[x, x + Δx], so x≤ c ≤ x + Δx. Also, and . Therefore, 
according to the squeeze theorem, 

.  

As f is continuous we have 

 

which completes the proof. 

Proof of Fundamental Theorem of Calculus Part II 

Define Then by the Fundamental Theorem of Calculus part I we 
know that P is differentiable on (a,b) and for all  

 

So P is an antiderivative of f. Now we were assuming that F was also an antiderivative so 
for all , 

 

A consequence of the Mean Value Theorem is that this implies there is a constant C such 
that for all , 

,  

and as P and F are continuous we see this holds when x=a and when x=b as well. Since 
we know that P(a)=0 we can put x=a into the equation to get 0=F(a) +C so C=-F(a). 
And putting x=b gives 

 

Integration of Polynomials 



Using the power rule for differentiation we can find a formula for the integral of a power 
using the Fundamental Theorem of Calculus. Let f(x) = xn. We want to find an 
antiderivative for f. Since the differentiation rule for powers lowers the power by 1, we 
have that 

 

As long as we can divide by n+1 to get 

 

So the function is an antiderivative of f. If a,b>0 then F is continuous 
on [a,b] and we can apply the Fundamental Theorem of Calculus we can calculate the 
integral of f to get the following rule. 

Power Rule of Integration I 

as long as and a,b > 0. 

Notice that we allow all values of n, even negative or fractional. If n>0 then this works 
even if a or b are negative. 

Power Rule of Integration II 

 

as long as n > 0. 

Example 

To find we raise the power by 1 and have to divide by 4. So 

 

Example 



The power rule also works for negative powers. For instance 

 

Example 

We can also use the power rule for fractional powers. For instance 

 

Example 

Using the linearity rule we can now integrate any polynomial. For example 

 

Indefinite Integrals 
The Fundamental Theorem of Calculus tells us that if f is continuous then the function 

is an antiderivative of f (i.e. F'(x) = f(x). However it is not the only 
antiderivative. We can add any constant to F without changing the derivative. 

We write if the derivative of F is  

Example 

Since the derivative of x4 is 4x3 the general antiderivative of 4x3 is x4 plus a constant. 
Thus 

 

Example: Finding antiderivatives 

Let us return to the previous example, that of 6x2. How would we go about finding the 
integral of this function? Recall the rule from differentiation that 

 

In our circumstance, we have: 



 

This is a start! We now know that the function we seek will have a power of 3 in it. How 
would we get the constant of 6? Well, 

 

Thus, we say that 2x3 is an antiderivative of 6x2. 

 

Basic Properties of Indefinite Integrals 

Constant Rule for indefinite integrals 

If c is constant then  

Sum/Difference Rule for indefinite integrals 

 

 

Indefinite integrals of Polynomials 

Since 

 

we have the following rule for indefinite integrals. 

Power rule for indefinite integrals If then 

 

Integral of the Inverse function 

Since 



 

We know that 

 

Note that the polynomial integration rule does not apply when the exponent is -1. This 
technique of integration must be used instead. Since the argument of the natural 
logarithm function must be positive (on the real line), the absolute value signs are added 
around its argument to ensure that the argument is positive. 

Integral of Sine and Cosine 

In this section we will concern ourselves with determining the integrals of the sin and 
cosine function. 

Recall that 

 

 

So sin x is an antiderivative of cos x and -cos x is an antiderivative of sin x. Hence we get 
the following rules for integrating sin x and cos x. 

 

 

We will find how to integrate more complicated trigonometric functions in the chapter on 
Further integration techniques. 

Integral of the Exponential function 

Since 

 

we see that ex is its own antiderivative. Perhaps a more useful definition of this rule can 
be given as: 



 

hence: 

 

Where the exponent (x) is differentiated to give a value of 1 

 

Simplified:  

Becomes:  

So the integral of an exponential function can be found thusly: 

 

Integration Rules 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

The Substitution Rule 

Suppose that we want to find  

The Fundamental theorem of calculus tells us that we want to find an antiderivative of the 
function: 

 

Since sin(x) differentiates to cos(x) as a first guess we might try the function sin(x2). But 
by the Chain Rule 

 

which is almost what we wanted apart from the fact that there is an extra factor of 2 in 
front. But this is easily dealt with because we can divide by any constant so 

 

So using the Fundamental Theorem of Calculus,  



In fact this technique will work for more general integrands. Suppose u is a differentiable 

function. Then to evaluate we just have to notice that by the 
Chain Rule 

 

As long as u' is continuous the Fundamental Theorem applies and tells us that 

 

Now the right hand side of this equation is just the integral of cos(u) but with respect to u. 
If we write u instead of u(x) this becomes 

 

So for instance if u(x) = x3 we have worked out that 

 

Now there was nothing special about using the cosine function in the discussion above, 
and it could be replaced by any other function. Doing this gives us the substitution rule 
for indefinite integrals. 

Substitution rule for indefinite integrals Assume u is differentiable with continuous 
derivative and that f is continuous on the range of u. Then 

 

Notice that it looks like you can cancel in the expression to leave just a du. This 

does not really make any sense as is not a fraction, but is a good way to remember 
the substitution rule. 

There is a similar rule for definite integrals, but we have to change the endpoints. 

Substitution rule for definite integrals Assume u is differentiable with continuous 
derivative and that f is continuous on the range of u. Suppose c = u(a) and d = u(b). Then 

 



Examples 

Consider the integral 

 

By using the substitution u = x2 + 1, we obtain du = 2x dx and 

 
 

 
 

Note how the lower limit x = 0 was transformed into u = 02 + 1 = 1 and the upper limit x 
= 2 into u = 22 + 1 = 5. 

Proof of the substitution rule 

We will now prove the substitution rule for definite integrals. Let F be an anti derivative 
of f so 

F'(x) = f(x). By the Fundamental Theorem of Calculus  

 

Next we define a function G by the rule 

 

Then by the Chain rule G is differentiable with derivative 

 

Integrating both sides with respect to x and using the Fundamental Theorem of Calculus 
we get 

 



But by the definition of F this equals 

 

Hence 

 

which is the substitution rule for definite integrals. 

Integration of even and odd functions 

Recall that a function f is called odd if it satisfies f( − x) = − f(x) and is called even if f( − 
x) = f(x). 

Suppose f is a continuous odd function then for any a, 

 
If f is a continuous even function then for any a,  

 

Caution: For improper integrals (e.g. if a is infinity, or if the function approaches infinity 

at 0 or a, etc.), the first equation above is only true if exists. Otherwise the 
integral is undefined, and only the Cauchy principal value is 0. 

Suppose f is an odd function and consider first just the integral from -a to 0. We make the 
substitution u=-x so du=-dx. Notice that if x=-a then u=a and if x=0 then u=0. Hence 

Now as f is odd, f( − u) = − f(u) 

so the integral becomes Now we can replace the 
dummy variable u with any other variable. So we can replace it with the letter x to give 

 

Now we split the integral into two pieces 

 



The proof of the formula for even functions is similar, and is left as an exercise. 

Integration by Parts 
Integration by parts for indefinite integrals Suppose f and g are differentiable and their 
derivatives are continuous. Then 

 

If we write u=f(x) and v=g(x) then using the Leibnitz notation du=f'(x) dx and dv=g'(x) 
dx and the integration by parts rule becomes 

 

For definite integrals the rule is essentially the same, as long as we keep the endpoints. 

Integration by parts for definite integrals Suppose f and g are differentiable and their 
derivatives are continuous. Then 

 

.  

This can also be expressed in Leibniz notation. 

 

Example Find 

 

Here we let: 

u = x, so that du = dx,  
dv = cos(x)dx , so that v = sin(x).  

Then: 



  

 

 

 

where C is an arbitrary constant of integration. 

Example 

 

In this example we will have to use integration by parts twice. 

 
Here we let 

u = x2, so that du = 2xdx,  
dv = exdx, so that v = ex.  

Then: 

  

 

 

Now to calculate the last integral we use integration by parts again. Let 

u = ''x, so that du = dx,  
dv = exdx, so that v = ex  

and integrating by parts gives 

 

So in the end 



 

 
Example Find 

 

The trick here is to write this integral as 

 

Now let 

u = ln(x) so du = 1 / xdx,  
v = x so dv = 1dx.  

Then using integration by parts, 

 

 
 

 

 

where, again, C is an arbitrary constant. 

 

Example Find  

Again the trick here is to write the integrand as . Then let 

u = arctan(x); du = 1/(1+x2) dx  
v = x; dv = 1·dx  

so using integration by parts, 

  



 
 

 

Example Find :  This example uses integration by parts twice. First let, 

u = ex; thus du = exdx  
dv = cos(x)dx; thus v = sin(x)  

so 

 

Now, to evaluate the remaining integral, we use integration by parts again, with 

u = ex; du = exdx  
v = -cos(x); dv = sin(x)dx  

Then 

 

 
 

Putting these together, we get 

 

Notice that the same integral shows up on both sides of this equation. So we can simply 
add the integral to both sides to get: 

 

 

 



Integration techniques- 
Infinite Sums 
The most basic, and arguably the most difficult, type of evaluation is to use the formal 
definition of a Riemann integral. 

Exact Integrals as Limits of Sums 
Using the definition of an integral, we can evaluate the limit as n goes to infinity. This 
technique requires a fairly high degree of familiarity with summation identities. This 
technique is often referred to as evaluation "by definition," and can be used to find 
definite integrals, as long as the integrands are fairly simple. We start with definition of 
the integral: 

  

Then picking to be 

we 
get, 

  

In some simple cases, this expression can be reduced to a real number, which can be 
interpreted as the area under the curve if f(x) is positive on [a,b]. 

Example 1 

Find by writing the integral as a limit of Riemann sums. 

  

 
 

 
 

 
 



 
 

 

 
 

 
 

 
 

In other cases, it is even possible to evaluate indefinite using the formal definition. We 
can define the indefinite integral as follows: 

 

 
 

 
 

Example 2 

Suppose f(x) = x2, then we can evaluate the indefinite integral as follows. 

  

 
 

 
 

 
 

 
 



 
 

 
 

 
 

 

 
 

 
 

 
 

If we are to write this formally, we remember our arbitrary constant, and we get 

. 

Recognizing Derivatives and the 
Substitution Rule 
After learning a simple list of antiderivatives, it is time to move on to more complex 
integrands, which are not at first readily integrable. In these first steps, we notice certain 
special case integrands which can be easily integrated in a few steps. 

Recognizing Derivatives and Reversing Derivative 
Rules 
If we recognize a function g(x) as being the derivative of a function f(x), then we can 
easily express the antiderivative of g(x): 

 

For example, since 



 

we can conclude that 

 

Similarly, since we know ex is its own derivative, 

 

 
The power rule for derivatives can be reversed to give us a way to handle integrals of 
powers of x. Since 

, 

we can conclude that 

 

or, a little more usefully, 

. 

Integration by Substitution 
For many integrals, a substitution can be used to transform the integrand and make 
possible the finding of an antiderivative. There are a variety of such substitutions, each 
depending on the form of the integrand. 

Integrating with the derivative present 

If a component of the integrand can be viewed as the derivative of another component of 
the integrand, a substitution can be made to simplify the integrand. 

For example, in the integral 



 

we see that 3x2 is the derivative of x3 + 1. Letting 

u = x3 + 1  

we have 

 

or, in order to apply it to the integral, 

du = 3x2dx.  

With this we may write 

 

Note that it was not necessary that we had exactly the derivative of u in our integrand. It 
would have been sufficient to have any constant multiple of the derivative. 

For instance, to treat the integral 

 

we may let u = x5. Then 

 

and so 

 

the right-hand side of which is a factor of our integrand. Thus, 

 

In general, the integral of a power of a function times that function's derivative may be 

integrated in this way. Since , 



we have  

Therefore,  

 
 

 
 

 

Integration by Parts 
If y = u v where u and v are functions of x, 

Then y' = (uv)' = v'u + u'v 

Rearranging, uv' = (uv)' − vu' 

Therefore,  

Therefore, , or 

.  

This is the integration by parts formula. It is very useful in many integrals involving 
products of functions, as well as others. 

For instance, to treat 

 

we choose u = x and . With these choices, we have du = dx and v = − 
cosx, and we have 

 



Note that the choice of u and dv was critical. Had we chosen the reverse, so that u = sinx 
and , the result would have been 

 

The resulting integral is no easier to work with than the original; we might say that this 
application of integration by parts took us in the wrong direction. 

So the choice is important. One general guideline to help us make that choice is, if 
possible, to choose u to be the factor of the integrand which becomes simpler when we 
differentiate it. In the last example, we see that sinx does not become simpler when we 
differentiate it: cosx is no simpler than sinx. 

An important feature of the integration by parts method is that we often need to apply it 
more than once. For instance, to integrate 

,  

we start by choosing u = x2 and dv = ex to get 

 

Note that we still have an integral to take care of, and we do this by applying integration 
by parts again, with u = x and , which gives us 

 

So, two applications of integration by parts were necessary, owing to the power of x2 in 
the integrand. 

Note that any power of x does become simpler when we differentiate it, so when we see 
an integral of the form 

 

one of our first thoughts ought to be to consider using integration by parts with u = xn. Of 
course, in order for it to work, we need to be able to write down an antiderivative for dv. 

 

Example 



Use integration by parts to evaluate the integral 

 

Solution: If we let u = sin(x) and v' = ex, then we have u' = cos(x) and v = ex. Using our 
rule for integration by parts gives 

 

We do not seem to have made much progress. But if we integrate by parts again with u = 
cos(x) and v' = ex and hence u' = − sin(x) and v = ex, we obtain 

 

We may solve this identity to find the anti-derivative of exsin(x) and obtain 

 

Integration by Complexifying 
This technique requires an understanding and recognition of complex numbers. 
Specifically Euler's formula: 

 

Recognize, for example, that the real portion: 

 

Given an integral of the general form: 

 

We can complexify it: 

 



 

With basic rules of exponents: 

 

It can be proven that the "real portion" operator can be moved outside the integral: 

 

The integral easily evaluates: 

 

Multiplying and dividing by (1-2i): 

 

Which can be rewritten as: 

 

Applying Euler's forumula: 

 

Expanding: 

 

Taking the Real part of this expression: 

 



So: 

 

Partial Fraction Decomposition 

Suppose we want to find . One way to do this is to simplify the integrand 
by finding constants A and B so that 

 

This can be done by cross multiplying the fraction which gives 

As both sides have the same denominator we must 
have 3x + 1 = A(x + 1) + Bx. This is an equation for x so must hold whatever value x is. If 
we put in x = 0 we get 1 = A and putting x = - 1 gives − 2 = − B so B = 2. So we see that 

 

Returning to the original integral 

 
= 

 
 = 
   

Rewriting the integrand as a sum of simpler fractions has allowed us to reduce the initial 
integral to a sum of simpler integrals. In fact this method works to integrate any rational 
function. 

Method of Partial Fractions: 

• Step 1 Use long division to ensure that the degree of P(x) less than the 
degree of Q(x).  

• Step 2 Factor Q(x) as far as possible.  
• Step 3 Write down the correct form for the partial fraction decomposition 

(see below) and solve for the constants.  



To factor Q(x) we have to write it as a product of linear factors (of the form ax + b) and 
irreducible quadratic factors (of the form ax2 + bx + c with b2 − 4ac < 0). 

Some of the factors could be repeated. For instance if Q(x) = x3 − 6x2 + 9x we factor Q(x) 
as 

Q(x) = x(x2 − 6x + 9) = x(x − 3)(x − 3) = x(x − 3)2.  

It is important that in each quadratic factor we have b2 − 4ac < 0, otherwise it is possible 
to factor that quadratic piece further. For example if Q(x) = x3 − 3x2 − 2x then we can 
write 

Q(x) = x(x2 − 3x + 2) = x(x − 1)(x + 2)  

 
We will now show how to write P(x) / Q(x) as a sum of terms of the form 

and  

Exactly how to do this depends on the factorization of Q(x) and we now give four cases 
that can occur. 

Case (a) Q(x) is a product of linear factors with no repeats. 

This means that Q(x) = (a1x + b1)(a2x + b2)...(anx + bn) where no factor is repeated and no 
factor is a multiple of another. 

For each linear term we write down something of the form , so in total we 
write 

 

Example 1 

Find  

Here we have P(x) = 1 + x2,Q(x) = (x + 3)(x + 5)(x + 7) and Q(x) is a product of linear 
factors. So we write 



 

Multiply both sides by the denominator 

1 + x2 = A(x + 5)(x + 7) + B(x + 3)(x + 7) + C(x + 3)(x + 5) 

Substitute in three values of x to get three equations for the unknown constants, 

 

so A = 5 / 4,B = − 13 / 2,C = 25 / 4, and 

 

We can now integrate the left hand side. 

 

 

Case (b) Q(x) is a product of linear factors some of which are repeated. 

If (ax + b) appears in the factorisation of Q(x) k-times. Then instead of writing the piece 

we use the more complicated expression 

 

Example 2 

Find  

Here P(x)=1" and "Q(x)=(x+1)(x+2)2 We write 



 

Multiply both sides by the denominator 1 = A(x + 2)2 + B(x + 1)(x + 2) + C(x + 1) 

Substitute in three values of x to get 3 equations for the unknown constants, 

 

so A=1, B=-1, C=-1, and 

 

We can now integrate the left hand side. 

 

 

Case (c) Q(x) contains some quadratic pieces which are not repeated. 

If (ax2 + bx + c) appears we use  

Case (d) Q(x) contains some repeated quadratic factors. 

If (ax2 + bx + c) appears k-times then use 

 

Trigonometric Substitution 
If the integrand contains a single factor of one of the forms 

we can try a trigonometric substitution. 

• If the integrand contains let x = asinθ and use the identity 1 − 
sin2θ = cos2θ.  



• If the integrand contains let x = atanθ and use the identity 1 + 
tan2θ = sec2θ.  

• If the integrand contains let x = asecθ and use the identity 
sec2θ − 1 = tan2θ.  

Sine substitution 

 
This substitution is easily derived from a triangle, using the Pythagorean Theorem. 

If the integrand contains a piece of the form we use the substitution 

 

This will transform the integrand to a trigonometic function. If the new integrand can't be 
integrated on sight then the tan-half-angle substitution described below will generally 
transform it into a more tractable algebraic integrand. 

Eg, if the integrand is √(1-x2), 

 

If the integrand is √(1+x)/√(1-x), we can rewrite it as 

 

Then we can make the substitution 



 

Tangent substitution 

 
This substitution is easily derived from a triangle, using the Pythagorean Theorem. 

When the integrand contains a piece of the form we use the substitution 

 

E.g, if the integrand is (x2+a2)-3/2 then on making this substitution we find 

 

If the integral is 

 

then on making this substitution we find 



 

After integrating by parts, and using trigonometric identities, we've ended up with an 
expression involving the original integral. In cases like this we must now rearrange the 
equation so that the original integral is on one side only 

 

As we would expect from the integrand, this is approximately z2/2 for large z. 

Secant substitution 

 
This substitution is easily derived from a triangle, using the Pythagorean Theorem. 

If the integrand contains a factor of the form we use the substitution 

 

Example 1 

Find  



 

Example 2 

Find  

 

We can now integrate by parts 

 

Trigonometric Integrals 
When the integrand is primarily or exclusively based on trigonometric functions, the 
following techniques are useful. 

Powers of Sine and Cosine 

We will give a general method to solve generally integrands of the form cosm (x)sinn(x). 
First let us work through an example. 

 

Notice that the integrand contains an odd power of cos. So rewrite it as 

 



We can solve this by making the substitution u = sin(x) so du = cos(x) dx. Then we can 
write the whole integrand in terms of u by using the identity 

cos(x)2 = 1 - sin2(x)=1-u2.  

So 

 

This method works whenever there is an odd power of sine or cosine. 

To evaluate when either m or n is odd. 

• If m is odd substitute u=sin x and use the identity cos2x = 1 - sin2x=1-u2.  
• If n is odd substitute u=cos x and use the identity sin2x = 1 - cos2x=1-u2.  

Example 

Find . 

As there is an odd power of sin we let u = cosx so du = - sin(x)dx. Notice that when x=0 
we have u=cos(0)=1 and when x = π / 2 we have u = cos(π / 2) = 0. 

 

 

 
When both m and n are even things get a little more complicated. 



To evaluate when both m and n are even. 
Use the identities sin2x = 1/2 (1- cos 2x) and cos2x = 1/2 (1+ cos 2x). 

Example 

Find  

 
As sin2x = 1/2 (1- cos 2x) and cos2x = 1/2 (1+ cos 2x) we have 

 

and expanding, the integrand becomes 

 

Using the multiple angle identities 

 

then we obtain on evaluating 

 

Powers of Tan and Secant 

To evaluate . 

1. If n is even and then substitute u=tan x and use the identity sec2x = 
1 + tan2x.  

2. If n and m are both odd then substitute u=sec x and use the identity tan2x = 
sec2x-1.  

3. If n is odd and m is even then use the identity tan2x = sec2x-1 and apply a 
reduction formula to integrate  



Example 1 

Find . 

There is an even power of secx. Substituting u = tanx gives du = sec2xdx so 

 

 

Example 2 

Find . 

Let u = cosx so du = − sinxdx. Then 

 

 

Example 3 

Find . 

The trick to do this is to multiply and divide by the same thing like this: 

 

Making the substitution u = secx + tanx so du = secxtanx + sec2xdx, 

 



More trigonometric combinations 

For the integrals or or 

use the identities 

•  

•  

•  

Example 1 

Find  

We can use the fact that sin a cos b=(1/2)(sin(a+b)+sin(a-b)), so 

 

Now use the oddness property of sin(x) to simplify 

 

And now we can integrate 

 

Example 2 

Find: . 

Using the identities 

 

Then 



 

Reduction Formula 
A reduction formula is one that enables us to solve an integral problem by reducing it to 
a problem of solving an easier integral problem, and then reducing that to the problem of 
solving an easier problem, and so on. 

For example, if we let 

 

Integration by parts allows us to simplify this to 

 
 

which is our desired reduction formula. Note that we stop at 

.  

Similarly, if we let 

 

then integration by parts lets us simplify this to 

 

Using the trigonometric identity, tan2=sec2-1, we can now write 

 

Rearranging, we get 

 



Note that we stop at n=1 or 2 if n is odd or even respectively. 

As in these two examples, integrating by parts when the integrand contains a power often 
results in a reduction formula. 

Rational Functions Using Trig 
Here we look at using trigonometry to simplify various rational integrands. 

The "tan half angle" substitution 

Another useful change of variables is 

 

With this transformation, using the double-angle trig identities, 

 

This transforms a trigonometric integral into a algebraic integral, which may be easier to 
integrate. 

For example, if the integrand is 1/(1 + sin x ) then 

 

This method can be used to further simplify trigonometric integrals produced by the 
changes of variables described earlier. 

For example, if we are considering the integral 

 

we can first use the substitution x= sin θ, which gives 

 



then use the tan-half-angle substition to obtain 

 

In effect, we've removed the square root from the original integrand. We could do this 
with a single change of variables, but doing it in two steps gives us the opportunity of 
doing the trigonometric integral another way. 

Having done this, we can split the new integrand into partial fractions, and integrate. 

 

This result can be further simplified by use of the identities 

 

ultimately leading to 

 

In principle, this approach will work with any integrand which is the square root of a 
quadratic multiplied by the ratio of two polynomials. However, it should not be applied 
automatically. 

E.g, in this last example, once we deduced 

 

we could have used the double angle formula, since this contains only even powers of cos 
and sin. Doing that gives 

 

Using tan-half-angle on this new, simpler, integrand gives 

 



This can be integrated on sight to give 

 

This is the same result as before, but obtained with less algebra, which shows why it is 
best to look for the most straightforward methods at every stage. 

A more direct way of evaluating the integral I is to substitute t = tan θ right from the start, 
which will directly bring us to the line 

 

above. More generally, the substitution t = tan x gives us 

 

so this substitution is the preferable one to use if the integrand is such that all the square 
roots would disappear after substitution, as is the case in the above integral. 

Alternate Method 

In general, to evaluate integrals of the form 

,  

it is extremely tedious to use the aforementioned "tan half angle" substitution directly, as 
one easily ends up with a rational function with a 4th degree denominator. Instead, we 
may first write the numerator as 

.  

Then the integral can be written as 

 

which can be evaluated much more easily. 



Example 

Evaluate . 

Let 

.  

Then 

 
.  

Comparing coefficients of cos x, sin x and the constants on both sides, we obtain 

 

yielding p = q = 1/2, r = 2. Substituting back into the integrand, 

.  

The last integral can now be evaluated using the "tan half angle" substitution described 
above, and we obtain 

.  

The original integral is thus 

.  

Irrational Functions 



Integration of irrational functions is more difficult than rational functions, and many 
cannot be done. However, there are some particular types that can be reduced to rational 
forms by suitable substitutions. 

Type 1 

Integrand contains  

Use the substitution . 

Example 

Find . 

 

Type 2 

Integral is of the form  

Write Px + Q as . 

Example 

Find . 

Type 3 

Integrand contains , or  

This was discussed in "trigonometric substitutions above". Here is a summary: 

1. For , use x = asinθ.  



2. For , use x = atanθ.  
3. For , use x = asecθ.  

Type 4 

Integral is of the form  

Use the substitution . 

Example 

Find . 

Type 5 

Other rational expressions with the irrational function  

1. If a > 0, we can use .  

2. If c > 0, we can use .  

3. If ax2 + bx + c can be factored as a(x − α)(x − β), we can use .  
4. If a < 0 and ax2 + bx + c can be factored as − a(α − x)(x − β), we can use x = 

αcos2θ + βsin2θ, / theta + β.  

Numerical Approximations 
It is often the case, when evaluating definite integrals, that an antiderivative for the 
integrand cannot be found, or is extremely difficult to find. In some instances, a 
numerical approximation to the value of the definite value will suffice. The following 
techniques can be used, and are listed in rough order of ascending complexity. 

Riemann Sum 
This comes from the definition of an integral. If we pick n to be finite, then we have: 



 

where is any point in the i-th sub-interval [xi − 1,xi] on [a,b]. 

Right Rectangle 

A special case of the Riemann sum, where we let , in other words the point on 
the far right-side of each sub-interval on, [a,b]. Again if we pick n to be finite, then we 
have: 

 

Left Rectangle 

Another special case of the Riemann sum, this time we let , which is the the 
point on the far left side of each sub-interval on [a,b]. As always, this is an approximation 
when n is finite. Thus, we have: 

 

Trapezoidal Rule 

 

Simpson's Rule 
Remember, n must be even, 

  

 

Improper Integrals 



In a definite integral ( ) the function has defined intervals and the function 
itself is continuous. In this section, we deal with integrals of functions where the interval 
is infinite (type I) or the function has infinite discontinuity in the intervals [a,b] (type II). 
 
Type I: Infinite Integrals 
An integral with infinite region includes ±  included in the interval such as 

. We cannot simply find the antiderivative and plug in . We can 

however rewrite the integral using a limit. Let  
Now this represents a definite integral so we can find the antiderivative and see if the 

integral converges.  
We can now define the the type 1 integral: 

(a) If there is some value b where and exists, then 

 
 

(b) If there is some value a where and exists, then 

 
 

(c) We can also define as 
 

assuming that both integrals 
converge. 
 
**note that if the limits fail to exist, we say that the integral diverges and if the improper 
integrals yield a finite solution, the integral converges. 
 

Lets look at an example: Evaluate the integral if it converges.  

Use the chain rule to 



find the antiderivative with  
 

 
 

 
 

This shows that the integral converges to 0. 
 
Type II: Infinite Discontinuity 
Integrating a function that contains a vertical asymptote. 

Applications of Integration 

Area 
Finding the area between two curves, usually given by two explicit functions, is often 
useful in calculus. 

In general the rule for finding the area between two curves is 

or 

If f(x) is the upper function and g(x) is the lower function 

 

This is true whether the functions are in the first quadrant or not. 

Area between two curves 
Suppose we are given two functions y1=f(x) and y2=g(x) and we want to find the area 
between them on the interval [a,b]. Also assume that f(x)≥ g(x) for all x on the interval 
[a,b]. Begin by partitioning the interval [a,b] into n equal subintervals each having a 
length of Δx=(b-a)/n. Next choose any point in each subinterval, xi*. Now we can 'create' 
rectangles on each interval. At the point xi*, the height of each rectangle is f(xi*)-g(xi*) 



and the width is Δx. Thus the area of each rectangle is [f(xi*)-g(xi*)]Δx. An 
approximation of the area, A, between the two curves is 

.  

Now we take the limit as n approaches infinity and get 

 

which gives the exact area. Recalling the definition of the definite integral we notice that 

.  

This formula of finding the area between two curves is sometimes known as applying 
integration with respect to the x-axis since the rectangles used to approximate the area 
have their bases lying parallel to the x-axis. It will be most useful when the two functions 
are of the form y1=f(x) and y2=g(x). Sometimes however, one may find it simpler to 
integrate with respect to the y-axis. This occurs when integrating with respect to the x-
axis would result in more than one integral to be evaluated. These functions take the form 
x1=f(y) and x2=g(y) on the interval [c,d]. Note that [c,d] are values of y. The derivation 
of this case is completely identical. Similar to before, we will assume that f(y)≥ g(y) for 
all y on [c,d]. Now, as before we can divide the interval into n subintervals and create 
rectangles to approximate the area between f(y) and g(y). It may be useful to picture each 
rectangle having their 'width', Δy, parallel to the y-axis and 'height', f(yi*)-g(yi*) at the 
point yi*, parallel to the x-axis. Following from the work above we may reason that an 
approximation of the area, A, between the two curves is 

.  

As before, we take the limit as n approaches infinity to arrive at 

,  

which is nothing more than a definite integral, so 

.  



Regardless of the form of the functions, we basically use the same formula. 

Volume 
In this section we will learn how to find the volume of a shape. The procedure is very 
similar to calculating the Area. The basic procedure is: 

• Partition the shape in  
• Calculate basal area of every partition  
• Multiply by height of the partition  
• Sum up all the volumes  

So, given a function f(x) that gives us the basal area at a given height x, we can write it up 
as follows: 

Now limit it to infinity:  

This is a Riemann's Sum, so we can rewrite it as:  

 

Examples 

Calculate the volume of a square pyramid of base b and height h. 

The basal shape is a square, and depends on the height x at which it is taken. For 

simplicity, we will consider an inverted pyramid, so that . We 
integrate in the proper range (0 to h):  

 

Volume of solids of revolution 
Revolution solids 
A solid is said to be of revolution when it is formed by rotating a given curve against an 
axis. For example, rotating a circle positioned at (0,0) against the y-axis would create a 
revolution solid, namely, a sphere. 



Calculating the volume 

Calculating the volume of this kind of solid is very similar to calculating any volume: we 
calculate the basal area, and then we integrate through the height of the volume. 

Say we want to calculate the volume of the shape formed rotating over the x-axis the area 
contained between the curves f(x) and g(x) in the range [a,b]. First calculate the basal 
area: 

| πf(x)2 − πg(x)2 |  

And then integrate in the range [a,b]: 

 

Alternatively, if we want to rotate in the y-axis instead, f and g must be invertible in the 
range [a,b], and, following the same logic as before: 

 

Arc length 
Suppose that we are given a function f and we want to calculate the length of the curve 
drawn out by the graph of f. If the graph were a straight line this would be easy — the 
formula for the length of the line is given by Pythagoras' theorem. And if the graph were 
a polygon we can calculate the length by adding up the length of each piece. 

The problem is that most graphs are not polygons. Nevertheless we can estimate the 
length of the curve by approximating it with straight lines. Suppose the curve C is given 
by the formula y=f(x) for . We divide the interval [a,b] into n subintervals 
with equal width Δx and endpoints . Now let yi = f(xi) so Pi = (xi,yi) is 
the point on the curve above xi. The length of the straight line between Pi and Pi + 1 is 

 

So an estimate of the length of the curve C is the sum 

 



As we divide the interval [a,b] into more pieces this gives a better estimate for the length 
of C. In fact we make that a definition. 

Definition (Length of a Curve) 

The length of the curve y=f(x) for is defined to be 

 

The Arclength Formula 
Suppose that f' is continuous on [a,b]. Then the length of the curve given by y = f(x) 
between a and b is given by 

 

And in Leibniz notation 

 

 
Proof: Consider yi + 1 − yi = f(xi + 1) − f(xi). By the Mean Value Theorem there is a point zi 
in (xi + 1,xi) such that 

.  

So 

 =  
 = 

 =  
 =  

 
Putting this into the definiton of the length of C gives 



 

Now this is the definition of the integral of the function 

between a and b (notice that g is continuous because we are 
assuming that f' is continuous). Hence 

 

as claimed. 

Arclength of a parametric curve 
For a parametric curve, that is, a curve defined by x = f(t) and y = g(t), the formula is 
slightly different: 

 

Proof: The proof is analogous to the previous one: Consider yi + 1 − yi = g(ti + 1) − g(ti) and 
xi + 1 − xi = f(ti + 1) − f(ti). By the Mean Value Theorem there are points ci and di in (ti + 1,ti) 
such that 

and  
.  

So 

 =  
 =  
 =  
 =  

Putting this into the definiton of the length of the curve gives 

 



This is equivalent to: 

 

Surface area 
Suppose we are given a function f and we want to calculate the surface area of the 
function f rotated around a given line. The calculation of surface area of revolution is 
related to the arc length calculation. 

If the function f is a straight line, other methods such as surface area formulas for 
cylinders and conical frustra can be used. However, if f is not linear, an integration 
technique must be used. 

Recall the formula for the lateral surface area of a conical frustrum: 

 

where r is the average radius and l is the slant height of the frustrum. 

For y=f(x) and , we divide [a,b] into subintervals with equal width Δx and 
endpoints . We map each point to a conical frustrum of 
width Δx and lateral surface area . 

We can estimate the surface area of revolution with the sum 

 

As we divide [a,b] into smaller and smaller pieces, the estimate gives a better value for 
the surface area. 

Definition (Surface of Revolution) 

The surface area of revolution of the curve y=f(x) about a line for is defined 
to be 

 

The Surface Area Formula 



Suppose f is a continuous function on the interval [a,b] and r(x) represents the distance 
from f(x) to the axis of rotation. Then the lateral surface area of revolution about a line is 
given by 

 

And in Leibniz notation 

 

Proof: 

 = 
 

 = 
 

 = 
 

   

As and , we know two things: 

1. the average radius of each conical frustrum ri approaches a single value 

2. the slant height of each conical frustrum li equals an infitesmal segment of arc length 

From the arc length formula discussed in the previous section, we know that 

 

Therefore 

 = 
 

 = 

   



Because of the definition of an integral , we can 
simplify the sigma operation to an integral. 

 

Or if f is in terms of y on the interval [c,d] 

 

Work 

 



Infinite Series 

Series 
An arithmetic series is the sum of a sequence of terms with a common difference. A 
geometric series is the sum of terms with a common ratio. For example, an interesting 
series which appears in many practical problems in science, engineering, and 
mathematics is the geometric series r + r2 + r3 + r4 + ... where the ... indicates that the 
series continues indefinitely. A common way to study a particular series (following 
Cauchy) is to define a sequence consisting of the sum of the first n terms. For example, to 
study the geometric series we can consider the sequence which adds together the first n 
terms: 

 

Generally by studying the sequence of partial sums we can understand the behavior of the 
entire infinite series. 

Two of the most important questions about a series are 

• Does it converge?  
• If so, what does it converge to?       

For example, it is fairly easy to see that for r > 1, the geometric series Sn(r) will not 
converge to a finite number (i.e., it will diverge to infinity). To see this, note that each 
time we increase the number of terms in the series, Sn(r) increases by rn + 1, since rn + 1 > 1 
for all r > 1 (as we defined), Sn(r) must increase by a number greater than one every term. 
When increasing the sum by more than one for every term, it will diverge. 

Perhaps a more surprising and interesting fact is that for | r | < 1, Sn(r) will converge to a 
finite value. Specifically, it is possible to show that 

 

Indeed, consider the quantity 

 



Since as for | r | < 1, this shows that as 
. The quantity 1 - r is non-zero and doesn't depend on n so we can divide by it 

and arrive at the formula we want. 

We'd like to be able to draw similar conclusions about any series. 

Unfortunately, there is no simple way to sum a series. The most we will be able to do in 
most cases is determine if it converges. The geometric and the telescoping series are the 
only types of series in which we can easily find the sum of. 

Convergence 
It is obvious that for a series to converge, the an must tend to zero (because sum of any 
infinite terms is infinity, except when the sequence approaches 0), but even if the limit of 
the sequence is 0, is not sufficient to say it converges. 

Consider the harmonic series, the sum of 1/n, and group terms 

 

As m tends to infinity, so does this final sum, hence the series diverges. 

We can also deduce something about how quickly it diverges. Using the same grouping 
of terms, we can get an upper limit on the sum of the first so many terms, the partial 
sums. 

 

or 

 

and the partial sums increase like log m, very slowly. 

Notice that to discover this, we compared the terms of the harmonic series with a series 
we knew diverged. 

This is a convergence test (also known as the direct comparison test) we can apply to any 
pair of series. 



• If bn converges and |an|≤|bn| then an converges.  
• If bn diverges and |an|≥|bn| then an diverges.  

There are many such tests, the most important of which we'll describe in this chapter. 

Absolute convergence 

Theorem: If the series of absolute values, , converges, then so does the series 

 

We say such a series converges absolutely. 

Proof: 

Let ε > 0 

According to the Cauchy criterion for series convergence, exists N so that for all N < m,n: 

 

We know that: 

 

And then we get: 

 

Now we get: 

 

Which is exactly the Cauchy criterion for series convergence. 

Q.E.D 



 
The converse does not hold. The series 1-1/2+1/3-1/4 ... converges, even though the 
series of its absolute values diverges. 

A series like this that converges, but not absolutely, is said to converge conditionally. 

If a series converges absolutely, we can add terms in any order we like. The limit will 
still be the same. 

If a series converges conditionally, rearranging the terms changes the limit. In fact, we 
can make the series converge to any limit we like by choosing a suitable rearrangement. 

E.g, in the series 1-1/2+1/3-1/4 ..., we can add only positive terms until the partial sum 
exceeds 100, subtract 1/2, add only positive terms until the partial sum exceeds 100, 
subtract 1/4, and so on, getting a sequence with the same terms that converges to 100. 

This makes absolutely convergent series easier to work with. Thus, all but one of 
convergence tests in this chapter will be for series all of whose terms are positive, which 
must be absolutely convergent or divergent series. Other series will be studied by 
considering the corresponding series of absolute values. 

Ratio test 

For a series with terms an, all positive, if 

 

then 

• the series converges if r<1  
• the series diverges if r>1  
• the series could do either if r=1, the test is not conclusive in this case.  

E.g, suppose 

 

then 

 

so this series converges. 



Integral test 

If f(x) is a monotonically decreasing, always positive function, then the series 

 

converges if and only if the integral 

 

converges. 

E.g, consider f(x)=1/xp, for a fixed p. 

• If p=1 this is the harmonic series, which diverges.  
• If p<1 each term is larger than the harmonic series, so it diverges.  
• If p>1 then  

 

The integral converges, for p>1, so the series converges. 

 
We can prove this test works by writing the integral as 

 

and comparing each of the integrals with rectangles, giving the inequalities 

 

Applying these to the sum then shows convergence. 

Limit Comparison 

• If bn converges, and the limit  



 
exists and is not zero, then an converges  

• If cn diverges, and  

 
then an diverges  

Example: 

 

For large n, the terms of this series are similar to, but smaller than, those of the harmonic 
series. We compare the limits. 

 

so this series diverges. 

Alternating series 

If the signs of the an alternate, 

 

then we call this an alternating series. The series sum converges provided that 

and .  

The error in a partial sum of an alternating series is smaller than the first omitted term. 

 

Geometric series 
The geometric series can take either of the following forms 



or  

As you have seen at the start, the sum of the geometric series is 

.  

Telescoping series 

 

Expanding (or "telescoping") this type of series is informative. If we expand this series, 
we get: 

 

Additive cancellation leaves: 

 

Thus, 

 

and all that remains is to evaluate the limit. 

There are other tests that can be used, but these tests are sufficient for all commonly 
encountered series. 

Taylor Series 



 
sin(x) and Taylor approximations, polynomials of degree 1, 3, 5, 7, 9, 11 and 13. 

The Taylor series of an infinitely often differentiable real (or complex) function f 
defined on an open interval (a-r, a+r) is the power series 

 

Here, n! is the factorial of n and f (n)(a) denotes the nth derivative of f at the point a. If 
this series converges for every x in the interval (a-r, a+r) and the sum is equal to f(x), 
then the function f(x) is called analytic. To check whether the series converges towards 
f(x), one normally uses estimates for the remainder term of Taylor's theorem. A function 
is analytic if and only if a power series converges to the function; the coefficients in that 
power series are then necessarily the ones given in the above Taylor series formula. 

If a = 0, the series is also called a Maclaurin series. 



The importance of such a power series representation is threefold. First, differentiation 
and integration of power series can be performed term by term and is hence particularly 
easy. Second, an analytic function can be uniquely extended to a holomorphic function 
defined on an open disk in the complex plane, which makes the whole machinery of 
complex analysis available. Third, the (truncated) series can be used to approximate 
values of the function near the point of expansion. 

T
he function e-1/x² is not analytic: the Taylor series is 0, although the function is not. 

Note that there are examples of infinitely often differentiable functions f(x) whose Taylor 
series converge, but are not equal to f(x). For instance, for the function defined piecewise 
by saying that f(x) = exp(−1/x²) if x ≠ 0 and f(0) = 0, all the derivatives are zero at x = 0, 
so the Taylor series of f(x) is zero, and its radius of convergence is infinite, even though 
the function most definitely is not zero. This particular pathology does not afflict 
complex-valued functions of a complex variable. Notice that exp(−1/z²) does not 
approach 0 as z approaches 0 along the imaginary axis. 

Some functions cannot be written as Taylor series because they have a singularity; in 
these cases, one can often still achieve a series expansion if one allows also negative 
powers of the variable x; see Laurent series. For example, f(x) = exp(−1/x²) can be written 
as a Laurent series. 



The Parker-Sockacki theorem is a recent advance in finding Taylor series which are 
solutions to differential equations. This theorem is an expansion on the Picard iteration. 

List of Taylor series 

Several important Taylor series expansions follow. All these expansions are also valid for 
complex arguments x. 

Exponential function and natural logarithm: 

 

 

Geometric series: 

 

Binomial series: 

 

Trigonometric functions: 

 

 

 

 

 

 



Hyperbolic functions: 

 

 

 

 

 

Lambert's W function: 

 

The numbers Bk appearing in the expansions of tan(x) and tanh(x) are the Bernoulli 
numbers. The C(α,n) in the binomial expansion are the binomial coefficients. The Ek in 
the expansion of sec(x) are Euler numbers.  

Multiple dimensions 

The Taylor series may be generalized to functions of more than one variable with 

 

History 

The Taylor series is named for mathematician Brook Taylor, who first published the 
power series formula in 1715. 

Constructing a Taylor Series 

Several methods exist for the calculation of Taylor series of a large number of functions. 
One can attempt to use the Taylor series as-is and generalize the form of the coefficients, 
or one can use manipulations such as substitution, multiplication or division, addition or 
subtraction of standard Taylor series (such as those above) to construct the Taylor series 
of a function, by virtue of Taylor series being power series. In some cases, one can also 
derive the Taylor series by repeatedly applying integration by parts. The use of computer 



algebra systems to calculate Taylor series is common, since it eliminates tedious 
substitution and manipulation. 

Example 1 

Consider the function 

 

for which we want a Taylor series at 0. 

We have for the natural logarithm 

 

and for the cosine function 

 

We can simply substitute the second series into the first. Doing so gives 

 

Expanding by using multinomial coefficients gives the required Taylor series. Note that 
cosine and therefore f are even functions, meaning that f(x) = f( − x), hence the 
coefficients of the odd powers x, x3, x5, x7 and so on have to be zero and don't need to be 
calculated. The first few terms of the series are 

 

The general coefficient can be represented using Faà di Bruno's formula. However, this 
representation does not seem to be particularly illuminating and is therefore omitted here. 

Example 2 

Suppose we want the Taylor series at 0 of the function 

 



We have for the exponential function 

 

and, as in the first example, 

 

Assume the power series is 

 

Then multiplication with the denominator and substitution of the series of the cosine 
yields 

 

Collecting the terms up to fourth order yields 

 

Comparing coefficients with the above series of the exponential function yields the 
desired Taylor series 

 

Power Series 
The study of power series is aimed at investigating series which can approximate some 
function over a certain interval. 

Motivations 



Elementary calculus (differentiation) is used to obtain information on a line which 
touches a curve at one point (i.e. a tangent). This is done by calculating the gradient, or 
slope of the curve, at a single point. However, this does not provide us with reliable 
information on the curve's actual value at given points in a wider interval. This is where 
the concept of power series becomes useful. 

An example 

Consider the curve of y = cos(x), about the point x = 0. A naïve approximation would be 
the line y = 1. However, for a more accurate approximation, observe that cos(x) looks like 
an inverted parabola around x = 0 - therefore, we might think about which parabola could 
approximate the shape of cos(x) near this point. This curve might well come to mind: 

 

In fact, this is the best estimate for cos(x) which uses polynomials of degree 2 (i.e. a 
highest term of x2) - but how do we know this is true? This is the study of power series: 
finding optimal approximations to functions using polynomials. 

Definition 
A power series is a series of the form 

a0x0 + a1x1 + ... + anxn  

or, equivalently, 

 

Radius of convergence 
When using a power series as an alternative method of calculating a function's value, the 
equation 

 

can only be used to study f(x) where the power series converges - this may happen for a 
finite range, or for all real numbers. 



The size of the interval (around its center) in which the power series converges to the 
function is known as the radius of convergence. 

An example 

(a geometric series)  

this converges when | x | < 1, the range -1 < x < +1, so the radius of convergence - 
centered at 0 - is 1. It should also be observed that at the extremities of the radius, that is 
where x = 1 and x = -1, the power series does not converge. 

Another example 

 

Using the ratio test, this series converges when the ratio of successive terms is less than 
one: 

 

 

or  

which is always true - therefore, this power series has an infinite radius of convergence. 
In effect, this means that the power series can always be used as a valid alternative to the 
original function, ex. 

Abstraction 

If we use the ratio test on an arbitrary power series, we find it converges when 

 

and diverges when 



 

The radius of convergence is therefore 

 

If this limit diverges to infinity, the series has an infinite radius of convergence. 

Differentiation and Integration 
Within its radius of convergence, a power series can be differentiated and integrated term 
by term. 

 

 

Both the differential and the integral have the same radius of convergence as the original 
series. 

This allows us to sum exactly suitable power series. For example, 

 

This is a geometric series, which converges for | x | < 1. Integrating both sides, we get 

 

which will also converge for | x | < 1. When x = -1 this is the harmonic series, which 
diverges'; when x = 1 this is an alternating series with diminishing terms, which 
converges to ln 2 - this is testing the extremities. 

It also lets us write power series for integrals we cannot do exactly such as the error 
function: 

 



The left hand side can not be integrated exactly, but the right hand side can be. 

 

This gives us a power series for the sum, which has an infinite radius of convergence, 
letting us approximate the integral as closely as we like. 



Multivariable & Differential Calculus 
 

Two-Dimensional Vectors 

Introduction 

In most mathematics courses up until this point, we deal with scalars. These are 
quantities which only need one number to express. For instance, the amount of gasoline 
used to drive to the grocery store is a scalar quantity because it only needs one number: 2 
gallons. 

In this unit, we deal with vectors. A vector is a directed line segment -- that is, a line 
segment that points one direction or the other. As such, it has an initial point and a 
terminal point. The vector starts at the initial point and ends at the terminal point, and 
the vector points towards the terminal point. A vector is drawn as a line segment with an 
arrow at the terminal point: 



 

 
The same vector can be placed anywhere on the coordinate plane and still be the same 
vector -- the only two bits of information a vector represents are the magnitude and the 
direction. The magnitude is simply the length of the vector, and the direction is the angle 
at which it points. Since neither of these specify a starting or ending location, the same 
vector can be placed anywhere. To illustrate, all of the line segments below can be 
defined as the vector with magnitude and angle 45 degrees: 



 

It is customary, however, to place the vector with the initial point at the origin as 
indicated by the black vector. This is called the standard position. 

Component Form 

In standard practice, we don't express vectors by listing the length and the direction. We 
instead use component form, which lists the height (rise) and width (run) of the vectors. 
It is written as follows: 

 



 

From the diagram we can now see the benefits of the standard position: the two numbers 
for the terminal point's coordinates are the same numbers for the vector's rise and run. 
Note that we named this vector u. Just as you can assign numbers to variables in algebra 
(usually x, y, and z), you can assign vectors to variables in calculus. The letters u, v, and 
w are usually used, and either boldface or an arrow over the letter is used to identify it as 
a vector. 

When expressing a vector in component form, it is no longer obvious what the magnitude 
and direction are. Therefore, we have to perform some calculations to find the magnitude 
and direction. 

Magnitude 



 

where ux is the width, or run, of the vector; uy is the height, or rise, of the vector. You 
should recognize this formula as the Pythagorean theorem. It is -- the magnitude is the 
distance between the initial point and the terminal point. 

The magnitude of a vector can also be called the norm. 

Direction 

 

 



 
where θ is the direction of the vector. This formula is simply the tangent formula for right 
triangles. 

Vector Operations 

For these definitions, assume: 

 

 

Vector Addition 

Graphically, adding two vectors together places one vector at the end of the other. This is 
called tip-to-tail addition: The resultant vector, or solution, is the vector drawn from the 
initial point of the first vector to the terminal point of the second vector when they are 
drawn tip-to-tail: 



 

 

Numerically: 

 

 

Scalar Multiplication 

Graphically, multiplying a vector by a scalar changes only the magnitude of the vector by 
that same scalar. That is, multiplying a vector by 2 will "stretch" the vector to twice its 
original magnitude, keeping the direction the same. 



 

Numerically, you calculate the resultant vector with this formula: 

, where c is a constant scalar. 

As previously stated, the magnitude is changed by the same constant: 

 

Since multiplying a vector by a constant results in a vector in the same direction, we can 
reason that two vectors are parallel if one is a constant multiple of the other -- that is, that 

if for some constant c. 



We can also divide by a non-zero scalar by instead multiplying by the reciprocal, as with 
dividing regular numbers: 

 

 

Dot Product 

The dot product, sometimes confusingly called the scalar product, of two vectors is given 
by: 

 

or which is equivalent to: 

 

where θ is the angle difference between the two vectors. This provides a convenient way 
of finding the angle between two vectors: 

 

Applications of Scalar Multiplication and Dot Product 

Unit Vectors 

A unit vector is a vector with a magnitude of 1. The unit vector of u is a vector in the 
same direction as , but with a magnitude of 1: 



 

 
The process of finding the unit vector of u is called normalization. As mentioned in 
scalar multiplication, multiplying a vector by constant C will result in the magnitude 
being multiplied by C. We know how to calculate the magnitude of . We know that 
dividing a vector by a constant will divide the magnitude by that constant. Therefore, if 
that constant is the magnitude, dividing the vector by the magnitude will result in a unit 
vector in the same direction as : 

, where is the unit vector of  

Standard Unit Vectors 

A special case of Unit Vectors are the Standard Unit Vectors i and j: i points one unit 
directly right in the x direction, and j points one unit directly up in the y direction: 



 

 

Using the scalar multiplication and vector addition rules, we can then express vectors in a 
different way: 

 

If we work that equation out, it makes sense. Multiplying x by i will result in the vector 

. Multiplying y by j will result in the vector . Adding these two together will 

give us our original vector, . Expressing vectors using i and j is called standard 
form. 

Projection and Decomposition of Vectors 

Sometimes it is necessary to decompose a vector into two components: one component 
parallel to a vector , which we will call ; and one component perpendicular to it, . 



 

Since the length of is ( ), it is straightforward to write down the formulas 
for and  : 

 

and 

 

Length of a vector 

The length of a vector is given by the dot product of a vector with itself, and θ = 0deg: 

 

Perpendicular vectors 

If the angle θ between two vectors is 90 degrees or (if the two vectors are orthogonal to 
each other), that is the vectors are perpendicular, then the dot product is 0. This provides 



us with an easy way to find a perpendicular vector: if you have a vector , a 
perpendicular vector can easily be found by either 

 

 

Polar coordinates 

Polar coordinates are an alternative two-dimensional coordinate system, which is often 
useful when rotations are important. Instead of specifying the position along the x and y 
axes, we specify the distance from the origin, r, and the direction, an angle θ. 

 

Looking at this diagram, we can see that the values of x and y are related to those of r and 
θ by the equations 

 

Because tan-1 is multivalued, care must be taken to select the right value. 

Just as for Cartesian coordinates the unit vectors that point in the x and y directions are 
special, so in polar coordinates the unit vectors that point in the r and θ directions are also 
special. 



We will call these vectors and , pronounced r-hat and theta-hat. Putting a circumflex 
over a vector this way is often used to mean the unit vector in that direction. 

Again, on looking at the diagram we see, 

 

Three-Dimensional Coordinates and Vectors 

Basic definition 

Two-dimensional Cartesian coordinates as we've discussed so far can be easily extended 
to three-dimensions by adding one more value: 'z'. If the standard (x,y) coordinate axes 
are drawn on a sheet of paper, the 'z' axis would extend upwards off of the paper. 

 

Similar to the two coordinate axes in two-dimensional coordinates, there are three 
coordinate planes in space. These are the xy-plane, the yz-plane, and the xz-plane. 
Each plane is the "sheet of paper" that contains both axes the name mentions. For 
instance, the yz-plane contains both the y and z axes and is perpendicular to the x axis. 



 

Therefore, vectors can be extended to three dimensions by simply adding the 'z' value. 

 

To facilitate standard form notation, we add another standard unit vector: 

 

Again, both forms (component and standard) are equivalent. 

 

Magnitude: Magnitude in three dimensions is the same as in two dimensions, with the 
addition of a 'z' term in the radicand. 



 

Three dimensions 
The polar coordinate system is extended into three dimensions with two different 
coordinate systems, the cylindrical and spherical coordinate systems, both of which 
include two-dimensional or planar polar coordinates as a subset. In essence, the 
cylindrical coordinate system extends polar coordinates by adding an additional distance 
coordinate, while the spherical system instead adds an additional angular coordinate. 

Cylindrical coordinates 

 
 



a point plotted with cylindrical coordinates 

The cylindrical coordinate system is a coordinate system that essentially extends the two-
dimensional polar coordinate system by adding a third coordinate measuring the height of 
a point above the plane, similar to the way in which the Cartesian coordinate system is 
extended into three dimensions. The third coordinate is usually denoted h, making the 
three cylindrical coordinates (r, θ, h). 

The three cylindrical coordinates can be converted to Cartesian coordinates by 

 

Spherical coordinates 

 
 
A point plotted using spherical coordinates 

Polar coordinates can also be extended into three dimensions using the coordinates (ρ, φ, 
θ), where ρ is the distance from the origin, φ is the angle from the z-axis (called the 
colatitude or zenith and measured from 0 to 180°) and θ is the angle from the x-axis (as in 
the polar coordinates). This coordinate system, called the spherical coordinate system, is 
similar to the latitude and longitude system used for Earth, with the origin in the centre of 
Earth, the latitude δ being the complement of φ, determined by δ = 90° − φ, and the 
longitude l being measured by l = θ − 180°. 



The three spherical coordinates are converted to Cartesian coordinates by 

 

 

 

 

 

Cross Product 

The cross product of two vectors is a determinant: 

 

and is also a pseudovector. 

The cross product of two vectors is orthogonal to both vectors. The magnitude of the 
cross product is the product of the magnitude of the vectors and the sin of the angle 
between them. 

 

This magnitude is the area of the parallelogram defined by the two vectors. 

The cross product is linear and anticommutative. For any numbers a and b, 

 

If both vectors point in the same direction, their cross product is zero. 

Triple Products 

If we have three vectors we can combine them in two ways, a triple scalar product, 

 



and a triple vector product 

 

The triple scalar product is a determinant 

 

If the three vectors are listed clockwise, looking from the origin, the sign of this product 
is positive. If they are listed anticlockwise the sign is negative. 

The order of the cross and dot products doesn't matter. 

 

Either way, the absolute value of this product is the volume of the parallelepiped defined 
by the three vectors, u, v, and w 

The triple vector product can be simplified 

 

This form is easier to do calculations with. 

The triple vector product is not associative. 

 

There are special cases where the two sides are equal, but in general the brackets matter. 
They must not be omitted. 

Three-Dimensional Lines and Planes 

We will use r to denote the position of a point. 

The multiples of a vector, a all lie on a line through the origin. Adding a constant vector 
b will shift the line, but leave it straight, so the equation of a line is, 

 

This is a parametric equation. The position is specified in terms of the parameter s. 



Any linear combination of two vectors, a and b lies on a single plane through the origin, 
provided the two vectors are not colinear. We can shift this plane by a constant vector 
again and write 

 

If we choose a and b to be orthonormal vectors in the plane (i.e unit vectors at right 
angles) then s and t are Cartesian coordinates for points in the plane. 

These parametric equations can be extended to higher dimensions. 

Instead of giving parametric equations for the line and plane, we could use constraints. 
E.g, for any point in the xy plane z=0 

For a plane through the origin, the single vector normal to the plane, n, is at right angle 
with every vector in the plane, by definition, so 

 

is a plane through the origin, normal to n. 

For planes not through the origin we get 

 

A line lies on the intersection of two planes, so it must obey the constraint for both 
planes, i.e 

 

These constraint equations can also be extended to higher dimensions. 

Vector-Valued Functions 
Vector-Valued Functions are functions that instead of giving a resultant scalar value, give 
a resultant vector value. These aid in the create of direction and vector fields, and are 
therefore used in physics to aid with visualizations of electric, magnetic, and many other 
fields. They are of the following form: 



 

Limits, Derivatives, and Integrals 

Put simply, the limit of a vector-valued function is the limit of its parts. 

Proof: 

Suppose  

Therefore for any ε > 0 there is a φ > 0 such that 

 

But by the triangle inequality 
 

So 

 

Therefore A similar argument can be used through parts a_n(t) 



Now let again, and that for any ε>0 there is a corresponding 
φ>0 such 0<|t-c|<φ implies 

 

Then 

 

therefore: 

 

From this we can then create an accurate definition of a derivative of a vector-valued 
function: 

 

 



 

 

The final step was accomplished by taking what we just did with limits. 

By the Fundamental Theorem of Calculus integrals can be applied to the vector's 
components. 

In other words: the limit of a vector function is the limit of its parts, the derivative of a 
vector function is the derivative of its parts, and the integration of a vector function is the 
integration of it parts. 

Velocity, Acceleration, Curvature, and a brief mention of the Binormal 

Assume we have a vector-valued function which starts at the origin and as its 
independent variables changes the points that the vectors point at trace a path. 

We will call this vector , which is commonly known as the position vector. 

If then represents a position and t represents time, then in model with Physics we know 
the following: 

is displacement. where is the velocity vector. 
is the speed. where is the acceleration vector. 

The only other vector that comes in use at times is known as the curvature vector. 



The vector used to find it is known as the unit tangent vector, which is defined as 

or shorthand . 

The vector normal to this then is . 

We can verify this by taking the dot product 

 

Also note that  

and 

 

and 

 

Then we can actually verify: 

 

 

 

 

 

Therefore is perpendicular to  



What this gives rise to is the Unit Normal Vector of which the top-most vector is 

the Normal vector, but the bottom half is known as the curvature. Since the 
Normal vector points toward the inside of a curve, the sharper a turn, the Normal vector 
has a large magnitude, therefore the curvature has a small value, and is used as an index 
in civil engineering to reflect the sharpness of a curve (clover-leaf highways, for 
instance). 

The only other thing not mentioned is the Binormal that occurs in 3-d curves 
, which is useful in creating planes parallel to the curve. < 

Calculus/Outline 

In your previous study of calculus, we have looked at functions and their behavior. Most 
of these functions we have examined have been all in the form 

f(x) : R → R,  

and only occasional examination of functions of two variables. However, the study of 
functions of several variables is quite rich in itself, and has applications in several fields. 

We write functions of vectors - many variables - as follows: 

f : Rm → Rn  

and f(x) for the function that maps a vector in Rm to a vector in Rn. 

Before we can do calculus in Rn, we must familiarize ourselves with the structure of Rn. 
We need to know which properties of R can be extended to Rn 

Topology in Rn 
We are already familiar with the nature of the regular real number line, which is the set 
R, and the two-dimensional plane, R2. This examination of topology in Rn attempts to 
look at a generalization of the nature of n-dimensional spaces - R, or R23, or Rn. 

Lengths and distances 

If we have a vector in R2, we can calculate its length using the Pythagorean theorem. For 
instance, the length of the vector (2, 3) is 

 



We can generalize this to Rn. We define a vector's length, written |x|, as the square root of 
the sum of the squares of each of its components. That is, if we have a vector x=(x1,...,xn), 

 

Now that we have established some concept of length, we can establish the distance 
between two vectors. We define this distance to be the length of the two vectors' 
difference. We write this distance d(x, y), and it is 

 

This distance function is sometimes referred to as a metric. Other metrics arise in 
different circumstances. The metric we have just defined is known as the Euclidean 
metric. 

Open and closed balls 

In R, we have the concept of an interval, in that we choose a certain number of other 
points about some central point. For example, the interval [-1, 1] is centered about the 
point 0, and includes points to the left and right of zero. 

In R2 and up, the idea is a little more difficult to carry on. For R2, we need to consider 
points to the left, right, above, and below a certain point. This may be fine, but for R3 we 
need to include points in more directions. 

We generalize the idea of the interval by considering all the points that are a given, fixed 
distance from a certain point - now we know how to calculate distances in Rn, we can 
make our generalization as follows, by introducing the concept of an open ball and a 
closed ball respectively, which are analogous to the open and closed interval respectively. 

an open ball  
 

is a set in the form { x � Rn|d(x, a) < r}  
an closed ball  

 
is a set in the form { x � Rn|d(x, a) ≤ r}  

In R, we have seen that the open ball is simply an open interval centered about the point 
x=a. In R2 this is a circle with no boundary, and in R3 it is a sphere with no outer surface. 
(What would the closed ball be?) 

 

Boundary points 



If we have some area, say a field, then the common sense notion of the boundary is the 
points 'next to' both the inside and outside of the field. For a set, S, we can define this 
rigorously by saying the boundary of the set contains all those points such that we can 
find points both inside and outside the set. We call the set of such points ∂S 

Typically, when it exists the dimension of ∂S is one lower than the dimension of S. e.g, 
the boundary of a volume is a surface and the boundary of a surface is a curve. 

This isn't always true; but it is true of all the sets we will be using. 

 
A set S is bounded if there is some positive number such that we can encompass this set 
by a closed ball about 0. --> if every point in it is within a finite distance of the origin, i.e 
there exists some r>0 such that x is in S implies |x|<r. 

Curves and parameterizations 
If we have a function f : R → Rn, we say that f's image (the set {f(t) | t � R} - or some 
subset of R) is a curve in Rn and f is its parametrization. 

Parameterizations are not necessarily unique - for example, f(t) = (cos t, sin t) such that t 
� [0, 2π) is one parametrization of the unit circle, and g(t) = (cos at, sin at) such that t � 
[0, 2π/a) is a whole family of parameterizations of that circle. 

Collision and intersection points 

Say we have two different curves. It may be important to consider 

• when the two curves cross each other - where they intersect  
• when the two curves hit each other at the same time - where they collide.  

Intersection points 

Firstly, we have two parameterizations f(t) and g(t), and we want to find out when they 
intersect, this means that we want to know when the function values of each 
parametrization are the same. This means that we need to solve 

f(t) = g(s)  

because we're seeking the function values independent of the times they intersect. 

For example, if we have f(t) = (t, 3t) and g(t) = (t, t2), and we want to find intersection 
points: 

f(t) = g(s)  
(t, 3t) = (s, s2)  



t = s and 3t = s2  

with solutions (t, s) = (0, 0) and (3, 3) 

So, the two curves intersect at the points (0, 0) and (3, 3). 

Collision points 

However, if we want to know when the points "collide", with f(t) and g(t), we need to 
know when both the function values and the times are the same, so we need to solve 
instead 

f(t) = g(t)  

For example, using the same functions as before, f(t) = (t, 3t) and g(t) = (t, t2), and we 
want to find collision points: 

f(t) = g(t)  
(t, 3t) = (t, t2)  
t = t and 3t = t2  

which gives solutions t = 0, 3 So the collision points are (0, 0) and (3, 9). 

We may want to do this to actually model physical problems, such as in ballistics. 

Continuity and differentiability 

If we have a parametrization f : R → Rn, which is built up out of component functions in 
the form f(t) = (f1(t),...,fn(t)), f is continuous if and only if each component function is 
also. 

In this case the derivative of f(t) is 

ai = (f1′(t),...,fn′(t)). This is actually a specific consequence of a more general fact 
we will see later.  

 

Tangent vectors 

Recall in single-variable calculus that on a curve, at a certain point, we can draw a line 
that is tangent to that curve at exactly at that point. This line is called a tangent. In the 
several variable case, we can do something similar. 



We can expect the tangent vector to depend on f′(t) and we know that a line is its own 
tangent, so looking at a parametrised line will show us precisely how to define the 
tangent vector for a curve. 

An arbitrary line is f(t)=at+b, with  :fi(t)=ait+bi, so 

fi′(t)=ai and  
f′(t)=a, which is the direction of the line, its tangent vector.  

Similarly, for any curve, the tangent vector is f′(t). 

 

 

Angle between curves 

 
 

We can then formulate the concept of the angle between two curves by considering the 
angle between the two tangent vectors. If two curves, parametrized by f1 and f2 intersect 
at some point, which means that 

f1(s)=f2(t)=c,  

the angle between these two curves at c is the angle between the tangent vectors f1′(s) and 
f2′(t) is given by 



 

Tangent lines 

With the concept of the tangent vector as being analogous to being the gradient of the line 
in the one variable case, we can form the idea of the tangent line. Recall that we need a 
point on the line and its direction. 

If we want to form the tangent line to a point on the curve, say p, we have the direction of 
the line f′(p), so we can form the tangent line 

x(t)=p+t f′(p)  

 

Different parameterizations 

One such parametrization of a curve is not necessarily unique. Curves can have several 
different parametrizations. For example, we already saw that the unit circle can be 
parametrized by g(t) = (cos at, sin at) such that t � [0, 2π/a). 

Generally, if f is one parametrization of a curve, and g is another, with 

f(t0) = g(s0)  

there is a function u(t) such that u(t0)=s0, and g'(u(t)) = f(t) near t0. 

This means, in a sense, the function u(t) "speeds up" the curve, but keeps the curve's 
shape. 

Surfaces 

A surface in space can be described by the image of a function f : R2 → Rn. f is said to be 
the parametrization of that surface. 

For example, consider the function 

f(α, β) = α(2,1,3)+β(-1,2,0)  

This describes an infinite plane in R3. If we restrict α and β to some domain, we get a 
parallelogram-shaped surface in R3. 

Surfaces can also be described explicitly, as the graph of a function z = f(x, y) which has a 
standard parametrization as f(x,y)=(x, y, f(x,y)), or implictly, in the form f(x, y, z)=c. 



Level sets 

The concept of the level set (or contour) is an important one. If you have a function f(x, y, 
z), a level set in R3 is a set of the form {(x,y,z)|f(x,y,z)=c}. Each of these level sets is a 
surface. 

Level sets can be similarly defined in any Rn 

Level sets in two dimensions may be familiar from maps, or weather charts. Each line 
represents a level set. For example, on a map, each contour represents all the points 
where the height is the same. On a weather chart, the contours represent all the points 
where the air pressure is the same. 

 

Limits and continuity 
Before we can look at derivatives of multivariate functions, we need to look at how limits 
work with functions of several variables first, just like in the single variable case. 

If we have a function f : Rm → Rn, we say that f(x) approaches b (in Rn) as x approaches 
a (in Rm) if, for all positive ε, there is a corresponding positive number δ, |f(x)-b| < ε 
whenever |x-a| < δ, with x ≠ a. 

This means that by making the difference between x and a smaller, we can make the 
difference between f(x) and b as small as we want. 

If the above is true, we say 

• f(x) has limit b at a  

•  
• f(x) approaches b as x approaches a  
• f(x) → b as x → a  

These four statements are all equivalent. 

Rules 

Since this is an almost identical formulation of limits in the single variable case, many of 
the limit rules in the one variable case are the same as in the multivariate case. 

For f and g, mapping Rm to Rn, and h(x) a scalar function mapping Rm to R, with 

• f(x) → b as x → a  
• g(x) → c as x → a  



• h(x) → H as x → a  

then: 

•  

•  

and consequently 

•  

•  

when H≠0 

•  

Continuity 

Again, we can use a similar definition to the one variable case to formulate a definition of 
continuity for multiple variables. 

If f : Rm → Rn, f is continuous at a point a in Rm if f(a) is defined and 

 

Just as for functions of one dimension, if f, g are both continuous at p, f+g, λf (for a 
scalar λ), f·g, and f×g are continuous also. If φ : Rm → R is continus at p, φf, f/φ are too if 
φ is never zero. 

From these facts we also have that if A is some matrix which is n×m in size, with x in Rm, 
a function f(x)=A x is continuous in that the function can be expanded in the form 
x1a1+...+xmam, which can be easily verified from the points above. 

If f : Rm → Rn which is in the form f(x) = (f1(x),...,fn(x) is continuous if and only if each 
of its component functions are a polynomial or rational function, whenever they are 
defined. 

Finally, if f is continuous at p, g is continuous at f(p), g(f(x)) is continuous at p. 

Special note about limits 



It is important to note that we can approach a point in more than one direction, and thus, 
the direction that we approach that point counts in our evaluation of the limit. It may be 
the case that a limit may exist moving in one direction, but not in another. 

Differentiable functions 
We will start from the one-variable definition of the derivative at a point p, namely 

 

Let's change above to equivalent form of 

 

which achieved after pulling f'(p) inside and putting it over a common denominator. 

We can't divide by vectors, so this definition can't be immediately extended to the 
multiple variable case. Nonetheless, we don't have to: the thing we took interest in was 
the quotient of two small distances (magnitudes), not their other properties (like sign). It's 
worth noting that 'other' property of vector neglected is its direction. Now we can divide 
by the absolute value of a vector, so lets rewrite this definition in terms of absolute values 

 

Another form of formula above is obtained by letting h = x − p we have x = p + h and if 
, the , so 

,  

where h can be thought of as a 'small change'. 

So, how can we use this for the several-variable case? 

If we switch all the variables over to vectors and replace the constant (which performs a 
linear map in one dimension) with a matrix (which denotes also a linear map), we have 

 



or 

 

If this limit exists for some f : Rm → Rn, and there is a linear map A : Rm → Rn (denoted 
by matrix A which is m×n), we refer to this map as being the derivative and we write it as 
Dp f. 

A point on terminology - in referring to the action of taking the derivative (giving the 
linear map A), we write Dp f, but in referring to the matrix A itself, it is known as the 
Jacobian matrix and is also written Jp f.  

Properties 

There are a number of important properties of this formulation of the derivative. 

Affine approximations 

If f is differentiable at p for x close to p, |f(x)-(f(p)+A(x-p))| is small compared to |x-p|, 
which means that f(x) is approximately equal to f(p)+A(x-p). 

We call an expression of the form g(x)+c affine, when g(x) is linear and c is a constant. 
f(p)+A(x-p) is an affine approximation to f(x). 

Jacobian matrix and partial derivatives 

The Jacobian matrix of a function is in the form 

 

for a f : Rm → Rn, Jp f' is a m×n matrix. 

The consequence of this is that if f is differentiable at p, all the partial derivatives of f 
exist at p. 

However, it is possible that all the partial derivatives of a function exist at some point yet 
that function is not differentiable there, so it's very important not to mix derivative (linear 
map) with the Jacobian (matrix) especially when cited situation arised. 

Continuity and differentiability 

Furthermore, if all the partial derivatives exist, and are continuous in some 
neighbourhood of a point p, then f is differentiable at p. This has the consequence that for 



a function f which has its component functions built from continuous functions (such as 
rational functions, differentiable functions or otherwise), f is differentiable everywhere f 
is defined. 

We use the terminology continuously differentiable for a function differentiable at p 
which has all its partial derivatives existing and are continuous in some neighbourhood at 
p. 

Rules of taking Jacobians 

If f : Rm → Rn, and h(x) : Rm → R are differentiable at 'p': 

•  
•  
•  

Important: make sure the order is right - matrix multiplication is not commutative! 

Chain rule 

The chain rule for functions of several variables is as follows. For f : Rm → Rn and g : Rn 
→ Rp, and g o f differentiable at p, then the Jacobian is given by 

 

Again, we have matrix multiplication, so one must preserve this exact order. 
Compositions in one order may be defined, but not necessarily in the other way. 

 

Alternate notations 

For simplicity, we will often use various standard abbreviations, so we can write most of 
the formulae on one line. This can make it easier to see the important details. 

We can abbreviate partial differentials with a subscript, e.g, 

 

When we are using a subscript this way we will generally use the Heaviside D rather than 
∂, 



 

Mostly, to make the formulae even more compact, we will put the subscript on the 
function itself. 

 

If we are using subscripts to label the axes, x1, x2 …, then, rather than having two layers 
of subscripts, we will use the number as the subscript. 

 

We can also use subscripts for the components of a vector function, u=(ux, uy, uy) or 
u=(u1,u2…un) 

If we are using subscripts for both the components of a vector and for partial derivatives 
we will separate them with a comma. 

 

The most widely used notation is hx. Both h1 and ∂1h are also quite widely used whenever 
the axes are numbered. The notation ∂xh is used least frequently. 

We will use whichever notation best suits the equation we are working with. 

Directional derivatives 

Normally, a partial derivative of a function with respect to one of its variables, say, xj, 
takes the derivative of that "slice" of that function parallel to the xj'th axis. 

More precisely, we can think of cutting a function f(x1,...,xn) in space along the xj'th axis, 
with keeping everything but the xj variable constant. 

From the definition, we have the partial derivative at a point p of the function along this 
slice as 

 

provided this limit exists. 



Instead of the basis vector, which corresponds to taking the derivative along that axis, we 
can pick a vector in any direction (which we usually take as being a unit vector), and we 
take the directional derivative of a function as 

 

where d is the direction vector. 

If we want to calculate directional derivatives, calculating them from the limit definition 
is rather painful, but, we have the following: if f : Rn → R is differentiable at a point p, 
|p|=1, 

 

There is a closely related formulation which we'll look at in the next section. 

Gradient vectors 

The partial derivatives of a scalar tell us how much it changes if we move along one of 
the axes. What if we move in a different direction? 

We'll call the scalar f, and consider what happens if we move an infintesimal direction 
dr=(dx,dy,dz), using the chain rule. 

 

This is the dot product of dr with a vector whose components are the partial derivatives 
of f, called the gradient of f 

 

We can form directional derivatives at a point p, in the direction d then by taking the dot 
product of the gradient with d 

.  

Notice that grad f looks like a vector multiplied by a scalar. This particular combination 
of partial derivatives is commonplace, so we abbreviate it to 



 

We can write the action of taking the gradient vector by writing this as an operator. 
Recall that in the one-variable case we can write d/dx for the action of taking the 
derivative with respect to x. This case is similar, but � acts like a vector. 

We can also write the action of taking the gradient vector as: 

 

Properties of the gradient vector 

Geometry 

• Grad f(p) is a vector pointing in the direction of steepest slope of f. |grad f(p)| is 
the rate of change of that slope at that point.  

For example, if we consider h(x, y)=x2+y2. The level sets of h are concentric circles, 
centred on the origin, and 

 

grad h points directly away from the origin, at right angles to the contours. 

• Along a level set, (�f)(p) is perpendicular to the level set {x|f(x)=f(p) at x=p}.  

If dr points along the contours of f, where the function is constant, then df will be zero. 
Since df is a dot product, that means that the two vectors, df and grad f, must be at right 
angles, i.e the gradient is at right angles to the contours. 

Algebraic properties 

Like d/dx, � is linear. For any pair of constants, a and b, and any pair of scalar functions, 
f and g 

 

Since it's a vector, we can try taking its dot and cross product with other vectors, and with 
itself. 

Divergence 



If the vector function u maps Rn to itself, then we can take the dot product of u and �. 
This dot product is called the divergence. 

 

If we look at a vector function like v=(1+x2,xy) we can see that to the left of the origin all 
the v vectors are converging towards the origin, but on the right they are diverging away 
from it. 

Div u tells us how much u is converging or diverging. It is positive when the vector is 
diverging from some point, and negative when the vector is converging on that point. 

Example:  
For v=(1+x2, xy), div v=3x, which is positive to the right of the origin, where v is 
diverging, and negative to the left of the origin, where v is converging.  

Like grad, div is linear. 

 

Later in this chapter we will see how the divergence of a vector function can be 
integrated to tell us more about the behaviour of that function. 

To find the divergence we took the dot product of � and a vector with � on the left. If 
we reverse the order we get 

 

To see what this means consider i·� This is Dx, the partial differential in the i direction. 
Similarly, u·� is the the partial differential in the u direction, multiplied by |u| 

Curl 

If u is a three-dimensional vector function on R3 then we can take its cross product with 
�. This cross product is called the curl. 

 

Curl u tells us if the vector u is rotating round a point. The direction of curl u is the axis 
of rotation. 



We can treat vectors in two dimensions as a special case of three dimensions, with uz=0 
and Dzu=0. We can then extend the definition of curl u to two-dimensional vectors 

 

This two dimensional curl is a scalar. In four, or more, dimensions there is no vector 
equivalent to the curl. 

Example: 
Consider u=(-y, x). These vectors are tangent to circles centred on the origin, so appear to 
be rotating around it anticlockwise. 

 

Example 
Consider u=(-y, x-z, y), which is similar to the previous example. 

 

This u is rotating round the axis i+k 

Later in this chapter we will see how the curl of a vector function can be integrated to tell 
us more about the behaviour of that function. 

Product and chain rules 

Just as with ordinary differentiation, there are product rules for grad, div and curl. 

• If g is a scalar and v is a vector, then  

the divergence of gv is  
 

the curl of gv is  
 

• If u and v are both vectors then  

the gradient of their dot product is  
 

the divergence of their cross product is  
 

the curl of their cross product is  
 



 
We can also write chain rules. In the general case, when both functions are vectors and 
the composition is defined, we can use the Jacobian defined earlier. 

 

where Ju is the Jacobian of u at the point v. 

Normally J is a matrix but if either the range or the domain of u is R1 then it becomes a 
vector. In these special cases we can compactly write the chain rule using only vector 
notation. 

• If g is a scalar function of a vector and h is a scalar function of g then  

 

• If g is a scalar function of a vector then  

 

This substitution can be made in any of the equations containing � 

Second order differentials 

We can also consider dot and cross products of � with itself, whenever they can be 
defined. Once we know how to simplify products of two �'s we'll know out to simplify 
products with three or more. 

The divergence of the gradient of a scalar f is 

 

This combination of derivatives is the Laplacian of f. It is commmonplace in physics and 
multidimensional calculus because of its simplicity and symmetry. 

We can also take the Laplacian of a vector, 

 

The Laplacian of a vector is not the same as the divergence of its gradient 



 

Both the curl of the gradient and the divergence of the curl are always zero. 

 

This pair of rules will prove useful. 

Integration 
We have already considered differentiation of functions of more than one variable, which 
leads us to consider how we can meaningfully look at integration. 

In the single variable case, we interpret the definite integral of a function to mean the area 
under the function. There is a similar interpretation in the multiple variable case: for 
example, if we have a paraboloid in R3, we may want to look at the integral of that 
paraboloid over some region of the xy plane, which will be the volume under that curve 
and inside that region. 

Riemann sums 

When looking at these forms of integrals, we look at the Riemann sum. Recall in the one-
variable case we divide the interval we are integrating over into rectangles and summing 
the areas of these rectangles as their widths get smaller and smaller. For the multiple-
variable case, we need to do something similar, but the problem arises how to split up R2, 
or R3, for instance. 

To do this, we extend the concept of the interval, and consider what we call a n-interval. 
An n-interval is a set of points in some rectangular region with sides of some fixed width 
in each dimension, that is, a set in the form {x�Rn|ai ≤ xi ≤ bi with i = 0,...,n}, and its 
area/size/volume (which we simply call its measure to avoid confusion) is the product of 
the lengths of all its sides. 

So, an n-interval in R2 could be some rectangular partition of the plane, such as {(x,y) | x 
� [0,1] and y � [0, 2]|}. Its measure is 2. 

If we are to consider the Riemann sum now in terms of sub-n-intervals of a region Ω, it is 

 

where m(Si) is the measure of the division of Ω into k sub-n-intervals Si, and x*
i is a point 

in Si. The index is important - we only perform the sum where Si falls completely within 
Ω - any Si that is not completely contained in Ω we ignore. 



As we take the limit as k goes to infinity, that is, we divide up Ω into finer and finer sub-
n-intervals, and this sum is the same no matter how we divide up Ω, we get the integral 
of f over Ω which we write 

∫ f 

Ω  

For two dimensions, we may write 

 

and likewise for n dimensions. 

Iterated integrals 

Thankfully, we need not always work with Riemann sums every time we want to 
calculate an integral in more than one variable. There are some results that make life a bit 
easier for us. 

For R2, if we have some region bounded between two functions of the other variable (so 
two functions in the form f(x) = y, or f(y) = x), between a constant boundary (so, between 
x = a and x =b or y = a and y = b), we have 

 

An important theorem (called Fubini's theorem) assures us that this integral is the same 
as 

.  

Order of integration 

In some cases the first integral of the entire iterated integral is difficult or impossible to 
solve, therefore, it can be to our advantage to change the order of integration. 

 

 



As of the writing of this, there is no set method to change an order of integration from 
dxdy to dydx or some other variable. Although, it is possible to change the order of 
integration in an x and y simple integration by simply switching the limits of integration 
around also, in non-simple x and y integrations the best method as of yet is to recreate the 
limits of the integration from the graph of the limits of integration. 

In higher order integration that can't be graphed, the process can be very tedious. For 
example, dxdydz can be written into dzdydx, but first dxdydz must be switched to dydxdz 
and then to dydzdx and then to dzdydx (but since 3-dimensional cases can be graphed, 
doing this would be seemingly idiotic). 

Parametric integrals 

If we have a vector function, u, of a scalar parameter, s, we can integrate with respect to s 
simply by integrating each component of u seperately. 

 

Similarly, if u is given a function of vector of parameters, s, lying in Rn, integration with 
respect to the parameters reduces to a multiple integral of each component. 

Line integrals 

In one dimension, saying we are 
integrating from a to b uniquely specifies the integral. 

In higher dimensions, saying we are integrating from a to b is not sufficient. In general, 
we must also specify the path taken between a and b. 

We can then write the integrand as a function of the arclength along the curve, and 
integrate by components. 



E.g, given a scalar function h(r) we write 

 

where C is the curve being integrated along, and t is the unit vector tangent to the curve. 

There are some particularly natural ways to integrate a vector function, u, along a curve, 

 

where the third possibility only applies in 3 dimensions. 

Again, these integrals can all be written as integrals with respect to the arclength, s. 

 

If the curve is planar and u a vector lying in the same plane, the second integral can be 
usefully rewritten. Say, 

 

where t, n, and b are the tangent, normal, and binormal vectors uniquely defined by the 
curve. 

Then 

 

For the 2-d curves specified b is the constant unit vector normal to their plane, and ub is 
always zero. 

Therefore, for such curves, 

 

Green's Theorem 



 

Let C be a piecewise smooth, simple closed curve that bounds a region S on the Cartesian 
plane. If two function M(x,y) and N(x,y) are continuous and their partial derivatives are 
continuous, then 

 

In order for Green's theorem to work there must be no singularities in the vector field 
within the boundaries of the curve. 

Green's theorem works by summing the circulation in each infinitesimal segment of area 
enclosed within the curve. 

Inverting differentials 

We can use line integrals to calculate functions with specified divergence, gradient, or 
curl. 

• If grad V = u  



 
where h is any function of zero gradient and curl u must be zero.  

• If div u = V  

 
where w is any function of zero divergence.  

• If curl u = v  

 
where w is any function of zero curl.  

For example, if V=r2 then 

 

and 

 

so this line integral of the gradient gives the original function. 

Similarly, if v=k then 

 

Consider any curve from 0 to p=(x, y', z), given by r=r(s) with r(0)=0 and r(S)=p for 
some S, and do the above integral along that curve. 



 

and curl u is 

 

as expected. 

We will soon see that these three integrals do not depend on the path, apart from a 
constant. 

Surface and Volume Integrals 

Just as with curves, it is possible to parameterise surfaces then integrate over those 
parameters without regard to geometry of the surface. 

That is, to integrate a scalar function V over a surface A parameterised by r and s we 
calculate 

 

where J is the Jacobian of the tranformation to the parameters. 

To integrate a vector this way, we integrate each component seperately. 

However, in three dimensions, every surface has an associated normal vector n, which 
can be used in integration. We write dS=ndS. 

For a scalar function, V, and a vector function, v, this gives us the integrals 

 

These integrals can be reduced to parametric integrals but, written this way, it is clear that 
they reflect more of the geometry of the surface. 



When working in three dimensions, dV is a scalar, so there is only one option for 
integrals over volumes. 

Gauss's divergence theorem 

 

We know that, in one dimension, 

 

Integration is the inverse of differentiation, so integrating the differential of a function 
returns the original function. 

This can be extended to two or more dimensions in a natural way, drawing on the 
analogies between single variable and multivariable calculus. 

The analog of D is �, so we should consider cases where the integrand is a divergence. 

Instead of integrating over a one-dimensional interval, we need to integrate over a n-
dimensional volume. 



In one dimension, the integral depends on the values at the edges of the interval, so we 
expect the result to be connected with values on the boundary. 

This suggests a theorem of the form, 

 

This is indeed true, for vector fields in any number of dimensions. 

This is called Gauss's theorem. 

There are two other, closely related, theorems for grad and curl: 

• ,  

• ,  

with the last theorem only being valid where curl is defined. 

Stokes' curl theorem 



 

These theorems also hold in two dimensions, where they relate surface and line integrals. 
Gauss's divergence theorem becomes 

 

where s is arclength along the boundary curve and the vector n is the unit normal to the 
curve that lies in the surface S, i.e in the tangent plane of the surface at its boundary, 
which is not necessarily the same as the unit normal associated with the boundary curve 
itself. 

Similarly, we get 

,  

where C is the boundary of S 

In this case the integral does not depend on the surface S. 



To see this, suppose we have different surfaces, S1 and S2, spanning the same curve C, 
then by switching the direction of the normal on one of the surfaces we can write 

 

The left hand side is an integral over a closed surface bounding some volume V so we can 
use Gauss's divergence theorem. 

 

but we know this integrand is always zero so the right hand side of (2) must always be 
zero, i.e the integral is independent of the surface. 

This means we can choose the surface so that the normal to the curve lying in the surface 
is the same as the curves intrinsic normal. 

Then, if u itself lies in the surface, we can write 

 

just as we did for line integrals in the plane earlier, and substitute this into (1) to get 

 

Ordinary differential equations involve equations containing: 

• variables  
• functions  
• their derivatives  

and their solutions. 

In studying integration, you already have considered solutions to very simple differential 
equations. For example, when you look to solving 

 

for g(x), you are really solving the differential equation 

 



Notations and terminology 
The notations we use for solving differential equations will be crucial in the ease of 
solubility for these equations. 

This document will be using three notations primarily: 

• f' to denote the derivative of f  
• D f to denote the derivative of f  

• to denote the derivative of f (for separable equations).  

Terminology 

Consider the differential equation 

 

Since the equation's highest derivative is 2, we say that the differential equation is of 
order 2. 

Some simple differential equations 
A key idea in solving differential equations will be that of integration. 

Let us consider the second order differential equation (remember that a function acts on a 
value). 

 

How would we go about solving this? It tells us that on differentiating twice, we obtain 
the constant 2 so, if we integrate twice, we should obtain our result. 

Integrating once first of all: 

 
 

We have transformed the apparently difficult second order differential equation into a 
rather simpler one, viz. 

 



This equation tells us that if we differentiate a function once, we get 2x + C1. If we 
integrate once more, we should find the solution. 

 
 

This is the solution to the differential equation. We will get for all values of C1 
and C2. 

The values C1 and C2 are related to quantities known as initial conditions. 

Why are initial conditions useful? ODEs (ordinary differential equations) are useful in 
modeling physical conditions. We may wish to model a certain physical system which is 
initially at rest (so one initial condition may be zero), or wound up to some point (so an 
initial condition may be nonzero and be say 5 for instance) and we may wish to see how 
the system reacts under such an initial condition. 

When we solve a system with given initial conditions, we substitute them after our 
process of integration. 

Example 

When we solved say we had the initial conditions and . 
(Note, initial conditions need not occur at f(0)). 

After we integrate we make substitutions: 

 
 

 
 

 
 

 

Without initial conditions, the answer we obtain is known as the general solution or the 
solution to the family of equations. With them, our solution is known as a specific 
solution. 

Basic first order Differential Equations 
In this section we will consider four main types of differential equations: 



• separable  
• homogeneous  
• linear  
• exact  

There are many other forms of differential equation, however, and these will be dealt 
with in the next section 

Separable equations 

A separable equation is in the form (using dy/dx notation which will serve us greatly 
here) 

 

Previously we have only dealt with simple differential equations with g(y)=1. How do we 
solve such a separable equation as above? 

We group x and dx terms together, and y and dy terms together as well. 

 

Integrating both sides with respect to y on the left hand side and x on the right hand side: 

 

we will obtain the solution. 

Worked example 

Here is a worked example illustrating the process. 

We are asked to solve 

 

Separating 

 

Integrating 



 
 

 

Letting k = eC where k is a constant we obtain 

 

which is the general solution. 

Verification 

This step does not need be part of your working, but if you have time, you can verify 
your answer by differentiation. We obtained 

 

as the solution to 

 

Differentiating the solution, 

 

Since , we can write 

 

We see that we obtain our original differential equation, so we can confirm our working 
as being correct. 

Homogeneous equations 

A homogeneous equation is in the form 

 



This looks difficult as it stands, however we can utilize the substitution 

 

so that we are now dealing with F(v) rather than F(y/x). 

Now we can express y in terms of v, as y=xv and use the product rule. 

The equation above then becomes, using the product rule 

 

Then 

 

 

 

which is a separable equation and can be solved as above. 

However let's look at a worked equation to see how homogeneous equations are solved. 

Worked example 

We have the equation 

 

This does not appear to be immediately separable, but let us expand to get 

 

 

Substituting y=xv which is the same as substituting v=y/x: 



 

Now 

 

Canceling v from both sides 

 

Separating 

 

Integrating both sides 

 

 
 

 

which is our desired solution. 

Linear equations 

A linear first order differential equation is a differential equation in the form 

 

Multiplying or dividing this equation by any non-zero function of x makes no difference 
to its solutions so we could always divide by a(x) to make the coefficient of the 
differential 1, but writing the equation in this more general form may offer insights. 

At first glance, it is not possible to integrate the left hand side, but there is one special 
case. If b happens to be the differential of a then we can write 



 

and integration is now straightforward. 

Since we can freely multiply by any function, lets see if we can use this freedom to write 
the left hand side in this special form. 

We multiply the entire equation by an arbitrary, I(x), getting 

 

then impose the condition 

 

If this is satisfied the new left hand side will have the special form. Note that multiplying 
I by any constant will leave this condition still satisfied. 

Rearranging this condition gives 

 

We can integrate this to get 

 

We can set the constant k to be 1, since this makes no difference. 

Next we use I on the original differential equation, getting 

 

Because we've chosen I to put the left hand side in the special form we can rewrite this as 

 



Integrating both sides and dividing by I we obtain the final result 

 

We call I an integrating factor. Similar techniques can be used on some other calclulus 
problems. 

Example 

Consider 

 

First we calculate the integrating factor. 

 

Multiplying the equation by this gives 

 

 

or 

 

We can now integrate 

 

Exact equations 

An exact equation is in the form 

f(x, y) dx + g(x, y) dy = 0  

and, has the property that 



Dx f = Dy g  

(If the differential equation does not have this property then we can't proceed any 
further). 

As a result of this, if we have an exact equation then there exists a function h(x, y) such 
that 

Dy h = f and Dx h = g  

So then the solutions are in the form 

h(x, y) = c  

by using the fact of the total differential. We can find then h(x, y) by integration 

 

Basic second and higher order ODE's 
The generic solution of a nth order ODE will contain n constants of integration. To 
calculate them we need n more equations. Most often, we have either 

boundary conditions, the values of y and its derivatives take for two different 
values of x  

or 

initial conditions, the values of y and its first n-1 derivatives take for one 
particular value of x.  

Reducible ODE's 

1. If the independent variable, x, does not occur in the differential equation then its order 
can be lowered by one. This will reduce a second order ODE to first order. 

Consider the equation: 

 

Define 

 



Then 

 

Substitute these two expression into the equation and we get 

=0  

which is a first order ODE 

Example 

Solve 

 

if at x=0,  y=Dy=1 

First, we make the substitution, getting 

 

This is a first order ODE. By rearranging terms we can separate the variables 

 

Integrating this gives 

u2 / 2 = c + 1 / 2y  

We know the values of y and u when x=0 so we can find c 

 

Next, we reverse the substitution 

 



and take the square root 

 

To find out which sign of the square root to keep, we use the initial condition, Dy=1 at 
x=0, again, and rule out the negative square root. We now have another separable first 
order ODE, 

 

Its solution is 

 

Since y=1 when x=0, d=2/3, and 

 

2. If the dependent variable, y, does not occur in the differential equation then it may also 
be reduced to a first order equation. 

Consider the equation: 

 

Define 

 

Then 

 

Substitute these two expressions into the first equation and we get 



=0  

which is a first order ODE 

Linear ODEs 

An ODE of the form 

 

is called linear. Such equations are much simpler to solve than typical non-linear ODEs. 
Though only a few special cases can be solved exactly in terms of elementary functions, 
there is much that can be said about the solution of a generic linear ODE.  

 
If F(x)=0 for all x the ODE is called homogeneous 

Two useful properties of generic linear equations are 

1. Any linear combination of solutions of an homogeneous linear equation is also a 
solution.  

2. If we have a solution of a nonhomogeneous linear equation and we add any 
solution of the corresponding homogenous linear equation we get another solution 
of the nonhomogeneous linear equation  

Variation of constants 

Suppose we have a linear ODE, 

 

and we know one solution, y=w(x) 

The other solutions can always be written as y=wz. This substitution in the ODE will give 
us terms involving every differential of z upto the nth, no higher, so we'll end up with an 
nth order linear ODE for z. 

We know that z is constant is one solution, so the ODE for z must not contain a z term, 
which means it will effectively be an n-1th order linear ODE. We will have reduced the 
order by one. 



Lets see how this works in practice. 

Example 

Consider 

 

One solution of this is y=x2, so substitute y=zx2 into this equation. 

 

Rearrange and simplify. 

x2D2z + 6xDz = 0  

This is first order for Dz. We can solve it to get 

 

Since the equation is linear we can add this to any multiple of the other solution to get the 
general solution, 

y = Ax - 3 + Bx2  

 

Linear homogeneous ODE's with constant coefficients 

Suppose we have a ODE 

(Dn + a1Dn - 1 + ... + an - 1D + a0)y = 0  

we can take an inspired guess at a solution (motivate this) 

y = epx  

For this function Dny=pny so the ODE becomes 

(pn + a1pn - 1 + ... + an - 1p + a0)y = 0  

y=0 is a trivial solution of the ODE so we can discard it. We are then left with the 
equation 



pn + a1pn - 1 + ... + an - 1p + a0) = 0  

This is called the characteristic equation of the ODE. 

It can have up to n roots, p1, p2 … pn, each root giving us a different solution of the ODE. 

Because the ODE is linear, we can add all those solution together in any linear 
combination to get a general solution 

 

To see how this works in practice we will look at the second order case. Solving 
equations like this of higher order uses the exact same principles; only the algebra is 
more complex. 

Second order 

If the ODE is second order, 

D2y + bDy + cy = 0  

then the characteristic equation is a quadratic, 

p2 + bp + c = 0  

with roots 

 

What these roots are like depends on the sign of b2-4c, so we have three cases to 
consider. 

1) b2 > 4c 

In this case we have two different real roots, so we can write down the solution straight 
away. 

 

 
2) b2 < 4c 

In this case, both roots are imaginary. We could just put them directly in the formula, but 
if we are interested in real solutions it is more useful to write them another way. 



Defining k2=4c-b2, then the solution is 

 

For this to be real, the A's must be complex conjugates 

 

Make this substitution and we can write, 

y = Ae - bx / 2cos(kx + a)  

If b is positive, this is a damped oscillation. 

 
3) b2 = 4c 

In this case the characteristic equation only gives us one root, p=-b/2. We must use 
another method to find the other solution. 

We'll use the method of variation of constants. The ODE we need to solve is, 

D2y - 2pDy + p2y = 0  

rewriting b and c in terms of the root. From the characteristic equation we know one 
solution is y = epx so we make the substitution y = zepx, giving 

(epxD2z + 2pepxDz + p2epxz) - 2p(epxDz + pepxz) + p2epxz = 0  

This simplifies to D2z=0, which is easily solved. We get 

 

so the second solution is the first multiplied by x. 

Higher order linear constant coefficient ODE's behave similarly: an exponential for every 
real root of the characteristic and a exponent multiplied by a trig factor for every complex 
conjugate pair, both being multiplied by a polynomial if the root is repeated. 

E.g, if the characteristic equation factors to 

(p - 1)4(p - 3)(p2 + 1)2 = 0  

the general solution of the ODE will be 



y = (A + Bx + Cx2 + Dx3)ex + Ee3x + Fcos(x + a) + Gxcos(x + b)  

The most difficult part is finding the roots of the characteristic equation. 

Linear nonhomogeneous ODEs with constant coefficients 

First, let's consider the ODE 

Dy - y = x  

a nonhomogeneous first order ODE which we know how to solve. 

Using the integrating factor e-x we find 

y = ce - x + 1 - x  

This is the sum of a solution of the corresponding homogeneous equation, and a 
polynomial. 

Nonhomogeneous ODE's of higher order behave similarly. 

If we have a single solution, yp of the nonhomogeneous ODE, called a particular 
solution, 

 

then the general solution is y=yp+yh, where yh is the general solution of the homogeneous 
ODE. 

Find yp for an arbitrary F(x) requires methods beyond the scope of this chapter, but there 
are some special cases where finding yp is straightforward. 

Remember that in the first order problem yp for a polynomial F(x) was itself a polynomial 
of the same order. We can extend this to higher orders. 

Example: 

D2y + y = x3 - x + 1  

Consider a particular solution 

yp = b0 + b1x + b2x2 + x3  

Substitute for y and collect coefficients 

x3 + b2x2 + (6 + b1)x + (2b2 + b0) = x3 - x + 1  



So b2=0, b1=-7, b0=1, and the general solution is 

y = asinx + bcosx + 1 - 7x + x3  

This works because all the derivatives of a polynomial are themselves polynomials. 

Two other special cases are 

 
 

where Pn,Qn,An, and Bn are all polynomials of degree n. 

Making these substitutions will give a set of simultaneous linear equations for the 
coefficients of the polynomials. 

Non-Linear ODEs 

If the ODE is not linear, first check if it is reducible. If it is neither linear nor reducible 
there is no generic method of solution. You may, with sufficient ingenuity and algebraic 
skill, be able to transform it into a linear ODE. 

First order 

Any partial differential equation of the form 

 

where h1, h2 … hn, and b are all functions of both u and Rn can be reduced to a set of 
ordinary differential equations. 

To see how to do this, we will first consider some simpler problems. 

Special cases 

We will start with the simple PDE 

 

Because u is only differentiated with respect to z, for any fixed x and y we can treat this 
like the ODE, du/dz=u. The solution of that ODE is cez, where c is the value of u when 
z=0, for the fixed x and y 

Therefore, the solution of the PDE is 



u(x,y,z) = u(x,y,0)ez  

Instead of just having a constant of integration, we have an arbitary function. This will be 
true for any PDE. 

Notice the shape of the solution, an arbitary function of points in the xy, plane, which is 
normal to the 'z' axis, and the solution of an ODE in the 'z' direction. 

Now consider the slightly more complex PDE 

 

where h can be any function, and each a is a real constant. 

We recognize the left hand side as being a·�, so this equation says that the differential of 
u in the a direction is h(u). Comparing this with the first equation suggests that the 
solution can be written as an arbitary function on the plane normal to a combined with 
the solution of an ODE. 

Remembering from Calculus/Vectors that any vector r can be split up into components 
parallel and perpendicular to a, 

 

we will use this to split the components of r in a way suggested by the analogy with (1). 

Let's write 

 

and substitute this into (2), using the chain rule. Because we are only differentiating in 
the a direction, adding any function of the perpendicular vector to s will make no 
difference. 

First we calculate grad s, for use in the chain rule, 

 

On making the substitution into (2), we get, 

 



which is an ordinary differential equation with the solution 

 

The constant c can depend on the perpendicular components, but not upon the parallel 
coordinate. Replacing s with a monotonic scalar function of s multiplies the ODE by a 
function of s, which doesn't affect the solution. 

Example: 

u(x,t)x = u(x,t)t  

For this equation, a is (1, -1), s=x-t, and the perpendicular vector is (x+t)(1, 1). The 
reduced ODE is du/ds=0 so the solution is 

u=f(x+t)  

To find f we need initial conditions on u. Are there any constraints on what initial 
conditions are suitable? 

Consider, if we are given 

• u(x,0), this is exactly f(x),  
• u(3t,t), this is f(4t) and f(t) follows immediately  
• u(t3+2t,t), this is f(t3+3t) and f(t) follows, on solving the cubic.  
• u(-t,t), then this is f(0), so if the given function isn't constant we have a 

inconsistency, and if it is the solution isn't specified off the initial line.  

Similarly, if we are given u on any curve which the lines x+t=c intersect only once, and to 
which they are not tangent, we can deduce f. 

For any first order PDE with constant coefficients, the same will be true. We will have a 
set of lines, parallel to r=at, along which the solution is gained by integrating an ODE 
with initial conditions specified on some surface to which the lines aren't tangent. 

If we look at how this works, we'll see we haven't actually used the constancy of a, so 
let's drop that assumption and look for a similar solution. 

The important point was that the solution was of the form u=f(x(s),y(s)), where (x(s),y(s)) 
is the curve we integrated along -- a straight line in the previous case. We can add 
constant functions of integration to s without changing this form. 

Consider a PDE, 

a(x,y)ux + b(x,y)uy = c(x,y,u)  



For the suggested solution, u=f(x(s),y(s)), the chain rule gives 

 

Comparing coefficients then gives 

 

so we've reduced our original PDE to a set of simultaneous ODE's. This procedure can be 
reversed. 

The curves (x(s),y(s)) are called characteristics of the equation. 

Example: Solve yux = xuy given u=f(x) for x≥0 The ODE's are 

 

subject to the initial conditions at s=0, 

 

This ODE is easily solved, giving 

 

so the characteristics are concentric circles round the origin, and in polar coordinates 
u(r,θ)=f(r) 

Considering the logic of this method, we see that the independence of a and b from u has 
not been used either, so that assumption too can be dropped, giving the general method 
for equations of this quasilinear form. 

Quasilinear 

Summarising the conclusions of the last section, to solve a PDE 

 

subject to the initial condition that on the surface, (x1(r1,…,rn-1, …xn(r1,…,rn-1), 
u=f(r1,…,rn-1) --this being an arbitary paremetrisation of the initial surface-- 



• we transform the equation to the equivalent set of ODEs,  

 
subject to the initial conditions  

 

• Solve the ODE's, giving xi as a function of s and the ri.  
• Invert this to get s and the ri as functions of the xi.  
• Substitute these inverse functions into the expression for u as a function of s and 

the ri obtained in the second step.  

Both the second and third steps may be troublesome. 

The set of ODEs is generally non-linear and without analytical solution. It may even be 
easier to work with the PDE than with the ODEs. 

In the third step, the ri together with s form a coordinate system adapted for the PDE. We 
can only make the inversion at all if the Jacobian of the transformation to Cartesian 
coordinates is not zero, 

 

This is equivalent to saying that the vector (a1, &hellip:, an) is never in the tangent plane 
to a surface of constant s. 

If this condition is not false when s=0 it may become so as the equations are integrated. 
We will soon consider ways of dealing with the problems this can cause. 

Even when it is technically possible to invert the algebraic equations it is obviously 
inconvenient to do so. 

Example 

To see how this works in practice, we will 
a/ consider the PDE, 

uux + uy + ut = 0  

with generic initial condition, 

u = f(x,y) on t = 0  



Naming variables for future convenience, the corresponding ODE's are 

 

subject to the initial conditions at τ=0 

 

These ODE's are easily solved to give 

 

These are the parametric equations of a set of straight lines, the characteristics. 

The determinant of the Jacobian of this coordinate transformation is 

 

This determinant is 1 when t=0, but if fr is anywhere negative this determinant will 
eventually be zero, and this solution fails. 

In this case, the failure is because the surface sfr = - 1 is an envelope of the 
characteristics. 

For arbitary f we can invert the transformation and obtain an implicit expression for u 

u = f(x - tu,y - x)  

If f is given, this can be solved for u. 

1/ f(x,y) = ax, The implicit solution is 

 

This is a line in the u-x plane, rotating clockwise as t increases. If a is negative, this line 
eventually become vertical. If a is positive, this line tends towards u=0, and the solution 
is valid for all t. 

2/ f(x,y)=x2, The implicit solution is 



 

 
This solution clearly fails when 1 + 4tx < 0, which is just when sfr = - 1. For any t>0 this 
happens somewhere. As t increases, this point of failure moves toward the origin. 

Notice that the point where u=0 stays fixed. This is true for any solution of this equation, 
whatever f is. 

We will see later that we can find a solution after this time, if we consider discontinuous 
solutions. We can think of this as a shockwave. 

3/ f(x,y) = sin(xy) 
The implicit solution is 

 

and we can not solve this explitly for u. The best we can manage is a numerical solution 
of this equation. 

b/We can also consider the closely related PDE 

uux + uy + ut = y  

The corresponding ODE's are 

 

subject to the initial conditions at τ=0 

 

These ODE's are easily solved to give 

 

Writing f in terms of u, s, and τ, then substituting into the equation for x gives an implicit 
solution 

 



It is possible to solve this for u in some special cases, but in general we can only solve 
this equation numerically. However, we can learn much about the global properties of the 
solution from further analysis 

Characteristic initial value problems 

What if initial conditions are given on a characteristic, on an envelope of characteristics, 
on a surface with characteristic tangents at isolated points? 

Discontinuous solutions 

So far, we've only considered smooth solutions of the PDE, but this is too restrictive. We 
may encounter initial conditions which aren't smooth, e.g. 

 

If we were to simply use the general solution of this equation for smooth initial 
conditions, 

 

we would get 

 

which appears to be a solution to the original equation. However, since the partial 
differentials are undefined on the characteristic x+ct=0, so it becomes unclear what it 
means to say that the equation is true at that point. 

We need to investigate further, starting by considering the possible types of 
discontinuities. 

If we look at the derivations above, we see we've never use any second or higher order 
derivatives so it doesn't matter if they aren't continuous, the results above will still apply. 

The next simplest case is when the function is continuous, but the first derivative is not, 
e.g |x|. We'll initially restrict ourselves to the two-dimensional case, u(x, t) for the generic 
equation. 

 

Typically, the discontinuity is not confined to a single point, but is shared by all points on 
some curve, (x0(s), t0(s) ) 



Then we have 

 

We can then compare u and its derivatives on both sides of this curve. 

It will prove useful to name the jumps across the discontinuity. We say 

 

Now, since the equation (1) is true on both sides of the discontinuity, we can see that both 
u+ and u-, being the limits of solutions, must themselves satisfy the equation. That is, 

 

Subtracting then gives us an equation for the jumps in the differentials 

 

We are considering the case where u itself is continuous so we know that [u]=0. 
Differentiating this with respect to s will give us a second equation in the differential 
jumps. 

 

The last two equations can only be both true if one is a multiple of the other, but 
multiplying s by a constant also multiplies the second equation by that same constant 
while leaving the curve of discontinuity unchanged, hence we can without loss of 
generality define s to be such that 

 

But these are the equations for a characteristic, i.e discontinuities propagate along 
characteristics. We could use this property as an alternative definition of characteristics. 

We can deal similarly with discontinuous functions by first writing the equation in 
conservation form, so called because conservation laws can always be written this way. 

 



Notice that the left hand side can be regarded as the divergence of (au, bu). Writing the 
equation this way allows us to use the theorems of vector calculus. 

Consider a narrow strip with sides parallel to the discontinuity and width h 

We can integrate both sides of (1) over R, giving 

 

Next we use Green's theorem to convert the left hand side into a line integral. 

 

Now we let the width of the strip fall to zero. The right hand side also tends to zero but 
the left hand side reduces to the difference between two integrals along the part of the 
boundary of R parallel to the curve. 

 

The integrals along the opposite sides of R have different signs because they are in 
opposite directions. 

For the last equation to always be true, the integrand must always be zero, i.e 

 

Since, by assumption [u] isn't zero, the other factor must be, which immediately implies 
the curve of discontinuity is a characteristic. 

Once again, discontinuities propagate along characteristics. 

Above, we only considered functions of two variables, but it is straightforward to extend 
this to functions of n variables. 

The initial condition is given on an n-1 dimensional surface, which evolves along the 
characteristics. Typical discontinuities in the initial condition will lie on a n-2 
dimensional surface embedded within the initial surface. This surface of discontinuity 
will propagate along the characteristics that pass through the initial discontinuity. 



The jumps themselves obey ordinary differential equations, much as u itself does on a 
characteristic. In the two dimensional case, for u continuous but not smooth, a little 
algebra shows that 

 

while u obeys the same equation as before, 

 

We can integrate these equations to see how the discontinuity evolves as we move along 
the characteristic. 

We may find that, for some future s, [ux] passes through zero. At such points, the discontinuity 

has vanished, and we can treat the function as smooth at that characteristic from then on. 

Conversely, we can expect that smooth functions may, under the righr circumstances, become 

discontinuous. 

To see how all this works in practice we'll consider the solutions of the equation 

 

for three different initial conditions. 

The general solution, using the techniques outlined earlier, is 

 

u is constant on the characteristics, which are straight lines with slope dependent on u. 

First consider f such that 

 



While u is continuous its derivative is discontinuous at x=0, where u=0, and at x=a, where u=1. The 

characteristics through these points divide the solution into three regions. 

All the characteristics to the right of the characteristic through x=a, t=0 intersect the x-axis to the right 

of x=1, where u=1 so u is 1 on all those characteristics, i.e whenever x-t>a. 

Similarly the characteristic through the origin is the line x=0, to the left of which u remains zero. 

We could find the value of u at a point in between those two characteristics either by finding which 

intermediate characteristic it lies on and tracing it back to the initial line, or via the general solution. 

Either way, we get 

 

At larger t the solution u is more spread out than at t=0 but still the same shape. 

We can also consider what happens when a tends to 0, so that u itself is discontinuous at x=0. 

If we write the PDE in conservation form then use Green's theorem, as we did above for the linear 

case, we get 

 

[u²] is the difference of two squares, so if we take s=t we get 

 

In this case the discontinuity behaves as if the value of u on it were the average of the limiting values 

on either side. 

However, there is a caveat. 



Since the limiting value to the left is u- the discontinuity must lie on that characteristic, and similarly 

for u+; i.e the jump discontinuity must be on an intersection of characteristics, at a point where u 

would otherwise be multivalued. 

For this PDE the characteristic can only intersect on the discontinuity if 

 

If this is not true the discontinuity can not propagate. Something else must happen. 

The limit a=0 is an example of a jump discontinuity for which this condition is false, so 
we can see what happens in such cases by studying it. 

Taking the limit of the solution derived above gives 

 

If we had taken the limit of any other sequence of initials conditions tending to the same 
limit we would have obtained a trivially equivalent result. 

Looking at the characteristics of this solution, we see that at the jump discontinuity 
characteristics on which u takes every value betweeen 0 and 1 all intersect. 

At later times, there are two slope discontinuities, at x=0 and x=t, but no jump 
discontinuity. 

This behaviour is typical in such cases. The jump discontinuity becomes a pair of slope 
discontinuities between which the solution takes all appropriate values. 

Now, lets consider the same equation with the initial condition 

 

This has slope discontinuities at x=0 and x=a, dividing the solution into three regions. 

The boundaries between these regions are given by the characteristics through these 
initial points, namely the two lines 

 



These characteristics intersect at t=a, so the nature of the solution must change then. 

In between these two discontinuities, the characteristic through x=b at t=0 is clearly 

 

All these characteristics intersect at the same point, (x,t)=(a,a). 

We can use these characteristics, or the general solution, to write u for t<a 

 

As t tends to a, this becomes a step function. Since u is greater to the left than the right of 
the discontinuity, it meets the condition for propagation deduced above, so for t>a u is a 
step function moving at the average speed of the two sides. 

 

This is the reverse of what we saw for the initial condition previously considered, two 
slope discontinuities merging into a step discontinuity rather than vice versa. Which 
actually happens depends entirely on the initial conditions. Indeed, examples could be 
given for which both processes happen. 

In the two examples above, we started with a discontinuity and investigated how it 
evolved. It is also possible for solutions which are initially smooth to become 
discontinuous. 

For example, we saw earlier for this particular PDE that the solution with the initial 
condition u=x² breaks down when 2xt+1=0. At these points the solution becomes 
discontinuous. 

 
Typically, discontinuities in the solution of any partial differential equation, not merely 
ones of first order, arise when solutions break down in this way and propagate similarly, 
merging and splitting in the same fashion. 

Fully non-linear PDEs 

It is possible to extend the approach of the previous sections to reduce any equation of the 
form 



 

to a set of ODE's, for any function, F. 

We will not prove this here, but the corresponding ODE's are 

 

If u is given on a surface parameterized by r1…rn then we have, as before, n initial 
conditions on the n, xi 

 

given by the parameterization and one initial condition on u itself, 

 

but, because we have an extra n ODEs for the ui's, we need an extra n initial conditions. 

These are, n-1 consistency conditions, 

 

which state that the ui's are the partial derivatives of u on the initial surface, and one 
initial condition 

 

stating that the PDE itself holds on the initial surface. 

These n initial conditions for the ui will be a set of algebraic equations, which may have 
multiple solutions. Each solution will give a different solution of the PDE. 

Example 

Consider 

 

The initial conditions at τ=0 are 



 

and the ODE's are 

 

Note that the partial derivatives are constant on the characteristics. This always happen,  
when the PDE contains only partial derivatives, simplifying the procedure. 

These equations are readily solved to give 

 

On eliminating the parameters we get the solution, 

 

which can easily be checked.  

Second order 
Suppose we are given a second order linear PDE to solve 

 

The natural approach, after our experience with ordinary differential equations and with 
simple algebraic equations, is attempt a factorisation. Let's see how for this takes us. 

We would expect factoring the left hand of (1) to give us an equivalent equation of the 
form 

 

and we can immediately divide through by a. This suggests that those particular 
combinations of first order derivatives will play a special role. 

Now, when studying first order PDE's we saw that such combinations were equivalent to 
the derivatives along characteristic curves. Effectively, we changed to a coordinate 
system defined by the characteristic curve and the initial curve. 



Here, we have two combinations of first order derivatives each of which may define a 
different characteristic curve. If so, the two sets of characteristics will define a natural 
coordinate system for the problem, much as in the first order case. 

In the new coordinates we will have 

 

with each of the factors having become a differentiation along its respective characteristic 
curve, and the left hand side will become simply urs giving us an equation of the form 

 

If A, B, and C all happen to be zero, the solution is obvious. If not, we can hope that the 
simpler form of the left hand side will enable us to make progress. 

However, before we can do all this, we must see if (1) can actually be factored. 

Multiplying out the factors gives 

 

On comparing coefficients, and solving for the α's we see that they are the roots of 

 

Since we are discussing real functions, we are only interested in real roots, so the 
existence of the desired factorization will depend on the discriminant of this quadratic 
equation. 

• If b(x,y)2 > 4a(x,y)c(x,y)  

then we have two factors, and can follow the procedure outlined above. Equations 
like this are called hyperbolic  

• If b(x,y)2 = 4a(x,y)c(x,y)  

then we have only factor, giving us a single characteristic curve. It will be natural 
to use distance along these curves as one coordinate, but the second must be 
determined by other considerations.  
The same line of argument as before shows that use the characteristic curve this 
way gives a second order term of the form urr, where we've only taken the second 
derivative with respect to one of the two coordinates. Equations like this are 
called parabolic  



• If b(x,y)2 < 4a(x,y)c(x,y)  

then we have no real factors. In this case the best we can do is reduce the second 
order terms to the simplest possible form satisfying this inequality, i.e urr+uss  
It can be shown that this reduction is always possible. Equations like this are 
called elliptic  

It can be shown that, just as for first order PDEs, discontinuities propagate along 
characteristics. Since elliptic equations have no real characteristics, this implies that any 
discontinuities they may have will be restricted to isolated points; i.e, that the solution is 
almost everywhere smooth. 

This is not true for hyperbolic equations. Their behavior is largely controlled by the shape 
of their characteristic curves. 

These differences mean different methods are required to study the three types of second 
equation. Fortunately, changing variables as indicated by the factorisation above lets us 
reduce any second order PDE to one in which the coefficients of the second order terms 
are constant, which means it is sufficient to consider only three standard equations. 

 

We could also consider the cases where the right hand side of these equations is a given 
function, or proportional to u or to one of its first order derivatives, but all the essential 
properties of hyperbolic, parabolic, and elliptic equations are demonstrated by these three 
standard forms. 

While we've only demonstrated the reduction in two dimensions, a similar reduction 
applies in higher dimensions, leading to a similar classification. We get, as the reduced 
form of the second order terms, 

 

where each of the ais is equal to either 0, +1, or -1. 

If all the ais have the same sign the equation is elliptic 

If any of the ais are zero the equation is parabolic 

If exactly one of the ais has the opposite sign to the rest the equation is hyperbolic 

In 2 or 3 dimensions these are the only possibilities, but in 4 or more dimensions there is 
a fourth possibility: at least two of the ais are positive, and at least two of the ais are 
negative. 



Such equations are called ultrahyperbolic. They are less commonly encountered than the 
other three types, so will not be studied here. 

When the coefficients are not constant, an equation can be hyperbolic in some regions of 
the xy plane, and elliptic in others. If so, different methods must be used for the solutions 
in the two regions. 

 

Elliptic 

Standard form, Laplace's equation: 

 

Quote equation in spherical and cylindrical coordinates, and give full solution for 
cartesian and cylindrical coordinates. Note averaging property Comment on physical 
significance, rotation invariance of laplacian. 

Hyperbolic 

Standard form, wave equation: 

 

Solution, any sum of functions of the form 

 

These are waves. Compare with solution from separating variables. Domain of 
dependance, etc. 

Parabolic 

The canonical parabolic equation is the diffusion equation: 

 

Here, we will consider some simple solutions of the one-dimensional case. 

The properties of this equation are in many respects intermediate between those of 
hyperbolic and elliptic equation. 

As with hyperbolic equations but not elliptic, the solution is well behaved if the value is 
given on the initial surface t=0. 



However, the characteristic surfaces of this equation are the surfaces of constant t, thus 
there is no way for discontinuities to propagate to positive t. 

Therefore, as with elliptic equations but not hyberbolic, the solutions are typically 
smooth, even when the initial conditions aren't. 

Furthermore, at a local maximum of h, its Laplacian is negative, so h is decreasing with t, 
while at local minima, where the Laplacian will be positive, h will increase with t. Thus, 
initial variations in h will be smoothed out as t increases. 

In one dimension, we can learn more by integrating both sides, 

 

Provided that hx tends to zero for large x, we can take the limit as a and b tend to infinity, 
deducing 

 

so the integral of h over all space is constant. 

This means this PDE can be thought of as describing some conserved quantity, initially 
concentrated but spreading out, or diffusing, over time. 

This last result can be extended to two or more dimensions, using the theorems of vector 
calculus. 

We can also differentiate any solution with respect to any coordinate to obtain another 
solution. E.g if h is a solution then 

 

so hx also satisfies the diffusion equation. 

Similarity solution 

Looking at this equation, we might notice that if we make the change of variables 

 

then the equation retains the same form. This suggests that the combination of variables 
x²/t, which is unaffected by this variable change, may be significant. 



We therefore assume this equation to have a solution of the special form 

 

then 

 

and substituting into the diffusion equation eventually gives 

 

which is an ordinary differential equation. 

Integrating once gives 

 

Reverting to h, we find 

 

This last integral can not be written in terms of elementary functions, but its values are 
well known. 

In particular the limiting values of h at infinity are 

 

taking the limit as t tends to zero gives 

 

 
We see that the initial discontinuity is immediately smoothed out. The solution at later 
times retains the same shape, but is more stretched out. 



The derivative of this solution with respect to x 

 

is itself a solution, with h spreading out from its initial peak, and plays a significant role 
in the further analysis of this equation. 

The same similiarity method can also be applied to some non-linear equations. 

Separating variables 

We can also obtain some solutions of this equation by separating variables. 

 

giving us the two ordinary differential equations 

 

and solutions of the general form 

 
 



Extensions 

Systems of Ordinary Differential 
Equations 
We have already examined cases where we have a single differential equation and found 
several methods to aid us in finding solutions to these equations. But what happens if we 
have two or more differential equations that depend on each other? For example, consider 
the case where 

Dtx(t) = 3y(t)2 + x(t)t  

and 

Dty(t) = x(t) + y(t)  

Such a set of differential equations is said to be coupled. Systems of ordinary differential 
equations such as these are what we will look into in this section. 

First order systems 
A general system of differential equations can be written in the form 

 

Instead of writing the set of equations in a vector, we can write out each equation 
explicitly, in the form: 

 
 

 

If we have the system at the very beginning, we can write it as: 

 

where 

 

and 



 

or write each equation out as shown above. 

Why are these forms important? Often, this arises as a single, higher order differential 
equation that is changed into a simpler form in a system. For example, with the same 
example, 

Dtx(t) = 3y(t)2 + x(t)t  
Dty(t) = x(t) + y(t)  

we can write this as a higher order differential equation by simple substitution. 

Dty(t) - y(t) = x(t)  

then 

Dtx(t) = 3y(t)2 + (Dty(t) - y(t))t  
Dtx(t) = 3y(t)2 + tDty(t) - ty(t)  

Notice now that the vector form of the system is dependent on t since 

 

the first component is dependent on t. However, if instead we had 

 

notice the vector field is no longer dependent on t. We call such systems autonomous. 
They appear in the form 

 

We can convert between an autonomous system and a non-autonomous one by simply 
making a substitution that involves t, such as y=(x, t), to get a system: 

 

In vector form, we may be able to separate F in a linear fashion to get something that 
looks like: 

 

where A(t) is a matrix and b is a vector. The matrix could contain functions or constants, 
clearly, depending on whether the matrix depends on t or not. 



Formal limits 
In preliminary calculus, the definition of a limit is probably the most difficult concept to 
grasp (if nothing else, it took some of the most brilliant mathematicians 150 years to 
arrive at it); it is also the most important and most useful. 

The intuitive definition of a limit is adequate for manipulation most of the time, but is 
inadequate to understand the concept, or to prove anything with it. The issue here lies 
with our meaning of "arbitrarily close". We discussed earlier that the meaning of this 
term is that the closer x gets to the specified value, the closer the function must get to the 
limit, so that however close we want the function to the limit, we can find a 
corresponding x close to our value. We can express this concept as follows: 

Definition: (Formal definition of a limit) 
Let f(x) be a function defined on an open interval that contains x=c, except possibly at 
x=c. Let L be an existing number. Then we say that, 

 

if, for every , there exists a δ > 0 such that for all x Df when 

 

we have 

 

To further explain, earlier we said that "however close we want the function to the limit, 
we can find a corresponding x close to our value." Using our new notation of epsilon ( ) 
and delta (δ), we mean that if we want to find f(x) within of L, the limit, then we know 
that there is an x within δ of c that puts it there. 

Again, since this is tricky; let's resume our example from before: f(x) = x2, at x = 2. To 
start, let's say we want f(x) to be within .01 of the limit. We know here that the limit 
should be 4, so we say; for , there is some delta so that as long as 

, then  

To show this, we can pick any delta that is bigger than 0. To be sure, you might pick 
.00000000000001, because you are absolutely sure that if x is within .00000000000001 
of 2, then f(x) will be within .01 of 4. Of course, we can't just pick a specific value for 
epsilon, like .01, because we said in our definition "for every ." This means that 



we need to be able to show an infinite number of deltas, one for each epsilon. We can't 
list an infinite number of deltas! 

Of course, we know of a very good way to do this; we simply create a function, so that 
for every epsilon, it can give us a delta. In this case, it's a rather easy function; all we 

need is . 

So how do you show that f(x) tends to L as x tends to c? Well imagine somebody gave 
you a small number (e.g., say ). Then you have to find a δ > 0 and show that 
whenever we have | f(x) − L | < 0.03. Now if that person gave you a 
smaller (say ) then you would have to find another δ, but this time with 0.03 
replaced by 0.002. If you can do this for any choice of then you have shown that f(x) 
tends to L as x tends to c. 

Definition: (Limit of a function at infinity) 
We call L the limit of f(x) as x approaches if for every number there exists a δ 
such that whenever x > δ we have 

 

When this holds we write 

 

or 

 

Similarly, we call L the limit of f(x) as x approaches if for every number , 
there exists a number δ such that whenever x < δ we have 

 

When this holds we write 

 

or 

 



Notice the difference in these two definitions. For the limit of f(x) as x approaches we 
are interested in those x such that x > δ. For the limit of f(x) as x approaches we are 
interested in those x such that x < δ. 

Examples 
Here are some examples on finding limits using the definition. 

1) What is δ when ε = 0.01 for 

?  

we start with the conclusion and substitute the given values for f(x) and ε 

 

and simplify 

7.96 < x < 8.04  

using the first part of the definition of a limit 

- 0.04 < x - 8 < 0.04  

we normally choose the smaller of |-0.04| and 0.04 for δ but any smaller number will 
work so δ=0.04 

2) What is the limit of f(x) = x + 7 as x approaches 4? 

There are two steps to answering such a question; first we must determine the answer — 
this is where intuition and guessing is useful, as well as the informal definition of a limit. 
Then, we must prove that the answer is right. For this problem, the answer happens to be 
11. Now, we must prove it using the definition of a limit: 

Informal: 11 is the limit because when x is roughly equal to 4, f(x) = x + 7 approximately 
equals 4 + 7, which equals 11. 

Formal: We need to prove that no matter what value of ε is given to us, we can find a 
value of δ such that 

 

whenever 



 

For this particular problem, letting δ equal ε works (see choosing delta for help in 
determining the value of delta to use). Now, we have to prove 

 

given that 

.  

Since , we know 

 

which is what we wished to prove. 

3) What is the limit of f(x) = x2 as x approaches 4? 

Formal: Again, we pull two things out of thin air; the limit is 16 (use the informal 
definition to find the limit of f(x)), and δ equals √(ε+16) - 4. Note that δ is always positive 
for positive ε. Now, we have to prove 

 
given that 

. 

We know that |x + 4| = |(x - 4) + 8| ≤ |x - 4| + 8  < δ + 8 (because of the triangle 
inequality), thus 

 

4) Show that the limit of sin(1 / x) as x approaches 0 does not exist. 



Suppose the limit exists and is l. We will proceed by contradiction. Assume that , 
the case for l = 1 is similar. Choose , then for every δ > 0, there exists a 

large enough n such that , but 
a contradiction. 

The function sin(1 / x) is known as the topologist's comb. 

5) What is the limit of xsin(1 / x) as x approaches 0? 

It is 0. For every , choose so that for all x, if 0 < | x | < δ, then 
as required. 

Real numbers 
Fields 
You are probably already familiar with many different sets of numbers from your past 
experience. Some of the commonly used sets of numbers are 

• Natural numbers, usually denoted with an N, are the numbers 0,1,2,3,...  
• Integers, usually denoted with a Z, are the positive and negative natural numbers: 

...-3,-2,-1,0,1,2,3...  
• Rational numbers, denoted with a Q, are fractions of integers (excluding division 

by zero): -1/3, 5/1, 0, 2/7. etc.  
• Real numbers, denoted with a R, are constructed and discussed below.  

Note that different sets of numbers have different properties. In the set integers for 
example, any number always has an additive inverse: for any integer x, there is another 
integer t such that x + t = 0 This should not be terribly surprising: from basic arithmetic 
we know that t = − x. Try to prove to yourself that not all natural numbers have an 
additive inverse. 

In mathematics, it is useful to note the important properties of each of these sets of 
numbers. The rational numbers, which will be of primary concern in constructing the real 
numbers, have the following properties: 

There exists a number 0 such that for any other number a, 0+a=a+0=a  
For any two numbers a and b, a+b is another number  
For any three numbers a,b, and c, a+(b+c)=(a+b)+c  
For any number a there is another number -a such that a+(-a)=0  
For any two numbers a and b, a+b=b+a  
For any two numbers a and b,a*b is another number  



There is a number 1 such that for any number a, a*1=1*a=a  
For any two numbers a and b, a*b=b*a  
For any three numbers a,b and c, a(bc)=(ab)c  
For any three numbers a,b and c, a(b+c)=ab+ac  
For every number a there is another number a-1 such that aa-1=1  

As presented above, these may seem quite intimidating. However, these properties are 
nothing more than basic facts from arithmetic. Any collection of numbers (and operations 
+ and * on those numbers) which satisfies the above properties is called a field. The 
properties above are usually called field axioms. As an exercise, determine if the integers 
form a field, and if not, which field axiom(s) they violate. 

Even though the list of field axioms is quite extensive, it does not fully explore the 
properties of rational numbers. Rational numbers also have an ordering.' A total ordering 
must satisfy several properties: for any numbers a, b, and c 

if a ≤ b and b ≤ a then a = b (antisymmetry)  
if a ≤ b and b ≤ c then a ≤ c (transitivity)  
a ≤ b or b ≤ a (totality)  

To familiarize yourself with these properties, try to show that (a) natural numbers, 
integers and rational numbers are all totally ordered and more generally (b) convince 
yourself that any collection of rational numbers are totally ordered (note that the integers 
and natural numbers are both collections of rational numbers). 

Finally, it is useful to recognize one more characterization of the rational numbers: every 
rational number has a decimal expansion which is either repeating or terminating. The 
proof of this fact is omitted, however it follows from the definition of each rational 
number as a fraction. When performing long division, the remainder at any stage can only 
take on positive integer values smaller than the denominator, of which there are finitely 
many. 

Constructing the Real Numbers 
There are two additional tools which are needed for the construction of the real numbers: 
the upper bound and the least upper bound. Definition A collection of numbers E is 
bounded above if there exists a number m such that for all x in E x≤m. Any number m 
which satisfies this condition is called an upper bound of the set E. 

Definition If a collection of numbers E is bounded above with m as an upper bound of E, 
and all other upper bounds of E are bigger than m, we call m the least upper bound or 
supremum of E, denoted by sup E. 

Many collections of rational numbers do not have a least upper bound which is also 
rational, although some do. Suppose the the numbers 5 and 10/3 are, together, taken to be 
E. The number 10/3 is not only an upper bound of E, it is a least upper bound. In general, 



there are many upper bounds (12, for instance, is an upper bound of the collection above), 
but there can be at most one least upper bound. 

Consider the collection of numbers : You may 
recognize these decimals as the first few digits of pi. Since each decimal terminates, each 
number in this collection is a rational number. This collection has infinitely many upper 
bounds. The number 4, for instance, is an upper bound. There is no least upper bound, at 
least not in the rational numbers. Try to convince yourself of this fact by attempting to 
construct such a least upper bound: (a) why does pi not work as a least upper bound (hint: 
pi does not have a repeating or terminating decimal expansion), (b) what happens if the 
proposed supremum is equal to pi up to some decimal place, and zeros after (c) if the 
proposed supremum is bigger than pi, can you find a smaller upper bound which will 
work? 

In fact, there are infinitely many collections of rational numbers which do not have a 
rational least upper bound. We define a real number to be any number that is the least 
upper bound of some collection of rational numbers. 

Properties of Real Numbers 
The reals are well ordered. 

For all reals; a, b, c  
Either b>a, b=a', or b<a.  
If a<b and b<c then a<c  

Also 

b>a implies b+c>a+c  
b>a and c>0 implies bc>ac  
b>a implies -a>-b  

Upper bound axiom 

Every non-empty set of real numbers which is bounded above has a supremum.  

The upper bound axiom is necessary for calculus. It is not true for rational numbers. 

We can also define lower bounds in the same way. 

Definition A set E is bounded below if there exists a real M such that for all x�E x≥M 
Any M which satisfies this condition is called an lower bound of the set E 

Definition If a set, E, is bounded below, M is an lower bound of E, and all other lower 
bounds of E are less than M, we call M the greatest lower bound or inifimum of E, 
denoted by inf E 



The supremum and infimum of finite sets are the same as their maximum and minimum. 

Theorem 

Every non-empty set of real numbers which is bounded below has an infimum.  

Proof: 

Let E be a non-empty set of of real numbers, bounded below  
Let L be the set of all lower bounds of E  
L is not empty, by definition of bounded below  
Every element of E is an upper bound to the set L, by definition  
Therefore, L is a non empty set which is bounded above  
L has a supremum, by the upper bound axiom  
1/ Every lower bound of E is ≤sup L, by definition of supremum  
Suppose there were an e�E such that e<sup L  
Every element of L is ≤e, by definition  
Therefore e is an upper bound of L and e<sup L  
This contradicts the definition of supremum, so there can be no such e.  
If e�E then e≥sup L, proved by contradiction  
2/ Therefore, sup L is a lower bound of E  
inf E exists, and is equal to sup L, on comparing definition of infinum to lines 1 
& 2  

Bounds and inequalities, theorems: 

 

 
Theorem: (The triangle inequality) 

 

Proof by considering cases 

If a≤b≤c then |a-c|+|c-b| = (c-a)+(c-b) = 2(c-b)+(b-a)>b-a = |b-a| 

Exercise: Prove the other five cases. 

This theorem is a special case of the triangle inequality theorem from geometry: The sum 
of two sides of a triangle is greater than or equal to the third side. It is useful whenever 
we need to manipulate inequalities and absolute values. 

Theory of Sequences 



A sequence is an ordered list of objects (or events). Like a set, it contains members (also 
called elements or terms), and the number of terms (possibly infinite) is called the length 
of the sequence. Unlike a set, order matters, and the exact same elements can appear 
multiple times at different positions in the sequence. 

For example, (C, R, Y) is a sequence of letters that differs from (Y, C, R), as the ordering 
matters. Sequences can be finite, as in this example, or infinite, such as the sequence of 
all even positive integers (2, 4, 6,...). 

 
An infinite sequence of real numbers (in blue). This sequence is neither increasing, nor 
decreasing, nor convergent. It is however bounded. 

Examples and notation 
There are various and quite different notions of sequences in mathematics, some of which 
(e.g., exact sequence) are not covered by the notations introduced below. 

A sequence may be denoted (a1, a2, ...). For shortness, the notation (an) is also used. 

A more formal definition of a finite sequence with terms in a set S is a function from {1, 
2, ..., n} to S for some n ≥ 0. An infinite sequence in S is a function from {1, 2, ...} (the 
set of natural numbers without 0) to S. 

Sequences may also start from 0, so the first term in the sequence is then a0. 

A finite sequence is also called an n-tuple. Finite sequences include the empty sequence ( 
) that has no elements. 

A function from all integers into a set is sometimes called a bi-infinite sequence, since it 
may be thought of as a sequence indexed by negative integers grafted onto a sequence 
indexed by positive integers. 

Types and properties of sequences 
A subsequence of a given sequence is a sequence formed from the given sequence by 
deleting some of the elements without disturbing the relative positions of the remaining 
elements. 



If the terms of the sequence are a subset of an ordered set, then a monotonically 
increasing sequence is one for which each term is greater than or equal to the term before 
it; if each term is strictly greater than the one preceding it, the sequence is called strictly 
monotonically increasing. A monotonically decreasing sequence is defined similarly. 
Any sequence fulfilling the monotonicity property is called monotonic or monotone. This 
is a special case of the more general notion of monotonic function. 

The terms non-decreasing and non-increasing are used in order to avoid any possible 
confusion with strictly increasing and strictly decreasing, respectively. If the terms of a 
sequence are integers, then the sequence is an integer sequence. If the terms of a 
sequence are polynomials, then the sequence is a polynomial sequence. 

If S is endowed with a topology, then it becomes possible to consider convergence of an 
infinite sequence in S. Such considerations involve the concept of the limit of a sequence. 

Sequences in analysis 
In analysis, when talking about sequences, one will generally consider sequences of the 
form 

or  

which is to say, infinite sequences of elements indexed by natural numbers. (It may be 
convenient to have the sequence start with an index different from 1 or 0. For example, 
the sequence defined by xn = 1/log(n) would be defined only for n ≥ 2. When talking 
about such infinite sequences, it is usually sufficient (and does not change much for most 
considerations) to assume that the members of the sequence are defined at least for all 
indices large enough, that is, greater than some given N.) 

The most elementary type of sequences are numerical ones, that is, sequences of real or 
complex numbers. 

Summation notation 
Summation notation allows an expression that contains a sum to be expressed in a simple, 
compact manner. The uppercase Greek letter sigma, Σ, is used to denote the sum of a set 
of numbers. 

Example  

 

Let f be a function and N,M are integers with N < M. Then 



 
We say N is the lower limit and M is the upper limit of the sum. 

We can replace the letter i with any other variable. For this reason i is referred to as a 
dummy variable. So 

 

Conventionally we use the letters i, j, k, m for dummy variables. 

Example  

 

Here, the dummy variable is i, the lower limit of summation is 1, and the upper limit is 5. 

Example  

Sometimes, you will see summation signs with no dummy variable specified, e.g., 

 

In such cases the correct dummy variable should be clear from the context. 

You may also see cases where the limits are unspecified. Here too, they must be deduced 
from the context. 

Common summations 
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